Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Mass Spectrometry-based Detection of Mycotoxins in Imported Meat and their Perspective Role on Myocardial Apoptosis

Author(s): Maged Al Ansari, Fahad A. Al Abbasi, Salman Hosawi, Mirza Rafi Baig, Sultan Alhayyani, Vikas Kumar, Turky Omar Asar and Firoz Anwar*

Volume 31, Issue 24, 2024

Published on: 20 July, 2023

Page: [3834 - 3843] Pages: 10

DOI: 10.2174/0929867330666230609100707

Price: $65

Abstract

Background: Fungal mycotoxins are the secondary metabolities and are harmful to plants, animals, and humans. Common aflatoxins are present and isolated from feeds and food comprises aflatoxins B1, B2, G1, and G2. Public health threats or risk of foodborne disease posed by mycotoxins, especially the export or import of such meat products are of primary concern. This study aims to determine the concentration of the level of aflatoxins B1, B2, G1, G2 M1, and M2 respectively in imported burger meat.

Methods: The present work is designed to select and collect the various samples of meat products from different sources and subjected to mycotoxin analysis by LCMS/MS. Random selection was made on sites of burger meat was found to be on sale.

Results: Simultaneous presence of several mycotoxins in the same sample of imported meat under the set conditions of LCMS/MS detected 26% (18 samples) was positive for various mycotoxins. The most frequent mycotoxins proportion in the analyzed samples was aflatoxin B1 (50%) followed by aflatoxin G1 (44%), aflatoxin G2 (38.8%), aflatoxin B2 (33%) respectively which were least among all with 16.66 and 11.11%.

Discussion: A positive correlation is deduced between CVD and mycotoxin present in burger meat. Isolated mycotoxins initiate death receptor-mediated apoptosis, death receptor-mediated necrosis, mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, and immunogenic cell deaths through various pathways that can damage the cardiac tissues.

Conclusion: The presence of these toxins in such samples is just the tip of the iceberg. Further investigation is necessary for complete clarifications of toxins on human health especially on CVD and other related metabolic complications.

[1]
Frisvad, J.C.; Thrane, U.; Filtenborg, O. Role and Use of Secondary Metabolites in Fungal Taxonomy. Chemical Fungal Taxonomy, 2020, 289-319.
[http://dx.doi.org/10.1201/9781003064626-12]
[2]
Chander, J. Textbook of medical mycology; JP Medical Ltd, 2017.
[3]
Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin production in Fusarium according to contemporary species concepts. Annu. Rev. Phytopathol., 2021, 59(1), 373-402.
[http://dx.doi.org/10.1146/annurev-phyto-020620-102825] [PMID: 34077240]
[4]
Barac, A. Mycotoxins and Human Disease. In: Clinically Relevant Mycoses; Springer, Cham, 2019.
[http://dx.doi.org/10.1007/978-3-319-92300-0_14]
[5]
Nouh, F.A.A.; Gezaf, S.A.; Abdel-Azeem, A.M. Aspergillus mycotoxins: Potential as biocontrol agents. In: Agriculturally Important Fungi for Sustainable Agriculture; Springer, 2020; pp. 217-237.
[6]
Tahir, N.I.; Hussain, S.; Javed, M.; Rehman, H.; Shahzady, T.G.; Parveen, B.; Ali, K.G. Nature of aflatoxins: Their extraction, analysis, and control. J. Food Saf., 2018, 38(6), e12561.
[http://dx.doi.org/10.1111/jfs.12561]
[7]
Chandra, P. Aflatoxins: Food safety, human health hazards and their prevention. In: Aflatoxins; IntechOpen, 2021.
[8]
Turna, N.S.; Wu, F. Aflatoxin M1 in milk: A global occurrence, intake, & exposure assessment. Trends Food Sci. Technol., 2021.
[9]
Chhonker, S.; Rawat, D.; Naik, R.; Koiri, R. An overview of mycotoxins in human health with emphasis on development and progression of liver cancer. Clin. Oncol., 2018, 3, 1408.
[10]
Wang, S.J.; Liu, B.R.; Zhang, F.; Li, Y.P.; Su, X.R.; Yang, C.T.; Cong, B.; Zhang, Z.H. Abnormal fatty acid metabolism and ceramide expression may discriminate myocardial infarction from strangulation death: A pilot study. Tissue Cell, 2023, 80, 101984.
[http://dx.doi.org/10.1016/j.tice.2022.101984] [PMID: 36434828]
[11]
Tesfamariam, K.; De Boevre, M.; Kolsteren, P.; Belachew, T.; Mesfin, A.; De Saeger, S.; Lachat, C. Dietary mycotoxins exposure and child growth, immune system, morbidity, and mortality: a systematic literature review. Crit. Rev. Food Sci. Nutr., 2020, 60(19), 3321-3341.
[http://dx.doi.org/10.1080/10408398.2019.1685455] [PMID: 31694387]
[12]
Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.; Viegas, C. Exposure assessment to mycotoxins in a Portuguese fresh bread dough company by using a multi-biomarker approach. Toxins (Basel), 2018, 10(9), 342.
[http://dx.doi.org/10.3390/toxins10090342] [PMID: 30142887]
[13]
Zhang, W.; Naveena, B.M.; Jo, C.; Sakata, R.; Zhou, G.; Banerjee, R.; Nishiumi, T. Technological demands of meat processing–An Asian perspective. Meat Sci., 2017, 132, 35-44.
[http://dx.doi.org/10.1016/j.meatsci.2017.05.008] [PMID: 28648604]
[14]
Ritchie, H,; Roser, M, Meat and dairy production. Our World in Data. 2019. Available from: https://ourworldindata.org/meat-production
[16]
Alrobaish, W.S.; Vlerick, P.; Luning, P.A.; Jacxsens, L. Food safety governance in Saudi Arabia: Challenges in control of imported food. J. Food Sci., 2021, 86(1), 16-30.
[http://dx.doi.org/10.1111/1750-3841.15552] [PMID: 33314129]
[17]
Elzupir, A.O.; Abdulkhair, B.Y. Health risk from aflatoxins in processed meat products in Riyadh, KSA. Toxicon, 2020, 181, 1-5.
[http://dx.doi.org/10.1016/j.toxicon.2020.04.092] [PMID: 32304673]
[18]
Das, A.K.; Nanda, P.; Das, A.; Biswas, S. Hazards and Safety Issues of Meat and Meat Products. In: Food Safety and Human Health; , 2019; pp. 145-168.
[http://dx.doi.org/10.1016/B978-0-12-816333-7.00006-0]
[19]
World Health Organization & Food and Agriculture Organization of the United Nations. INFOSAN members’ guide: Web annex: template for INFOSAN/IHR communication: National protocol for information sharing with National and International partners during food safety events and outbreaks of foodborne illness. 2020. Available from: https://apps.who.int/iris/handle/10665/337469
[20]
Al-Thubaiti, E.; Shaikh Omar, A.; El-Omri, A.; Al-Matary, M.; Al-Mwallad, A.; Eldeeb, S. Safety of commercially available beef burger in Saudi Arabia. Coatings, 2021, 11(6), 686.
[http://dx.doi.org/10.3390/coatings11060686]
[21]
Blagojevic, B.; Nesbakken, T.; Alvseike, O.; Vågsholm, I.; Antic, D.; Johler, S.; Houf, K.; Meemken, D.; Nastasijevic, I.; Vieira Pinto, M.; Antunovic, B.; Georgiev, M.; Alban, L. Drivers, opportunities, and challenges of the European risk-based meat safety assurance system. Food Control, 2021, 124, 107870.
[http://dx.doi.org/10.1016/j.foodcont.2021.107870]
[22]
Islam, A.K.M.M.; Hong, S.M.; Lee, H.S.; Moon, B.C.; Kim, D.; Kwon, H. Identification and characterization of matrix components in spinach during QuEChERS sample preparation for pesticide residue analysis by LC–ESI–MS/MS, GC–MS and UPLC-DAD. J. Food Sci. Technol., 2018, 55(10), 3930-3938.
[http://dx.doi.org/10.1007/s13197-018-3318-4] [PMID: 30228391]
[23]
Moreau, S.; Levi, M. Highly sensitive and rapid simultaneous method for 45 mycotoxins in baby food samples by HPLC-MS/MS using fast polarity switching (POCON1480E). Am. Soc. Mass Spectrom., 2014.
[24]
Imran, M.; Cao, S.; Wan, S.; Chen, Z.; Saleemi, M.K.; Wang, N.; Naseem, M.; Munawar, J. Mycotoxins - a global one health concern: A review. Agrobiological Records, 2020, 2, 1-16.
[http://dx.doi.org/10.47278/journal.abr/2020.006]
[25]
Stoev, S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol., 2015, 39(2), 794-809.
[http://dx.doi.org/10.1016/j.etap.2015.01.022] [PMID: 25734690]
[26]
Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the US corn industry from aflatoxin contamination. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2016, 33(3), 540-550.
[http://dx.doi.org/10.1080/19440049.2016.1138545] [PMID: 26807606]
[27]
Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci., 2019, 29, 99-108.
[http://dx.doi.org/10.1016/j.cofs.2019.08.009]
[28]
Kaynarca, H.D.; Hecer, C.; Ulusoy, B. Mycotoxin hazard in meat and meat products. Atatürk Üniv. Vet. Bilim. Derg., 2019, 14, 90-97.
[29]
Ezekiel, C.N.; Sulyok, M.; Ogara, I.M.; Abia, W.A.; Warth, B.; Šarkanj, B.; Turner, P.C.; Krska, R. Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food Chem. Toxicol., 2019, 128, 171-179.
[http://dx.doi.org/10.1016/j.fct.2019.04.002] [PMID: 30965105]
[30]
Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3489-3507.
[http://dx.doi.org/10.1080/10408398.2016.1140632] [PMID: 26918653]
[31]
Di Paola, D.; Iaria, C.; Capparucci, F.; Arangia, A.; Crupi, R.; Cuzzocrea, S.; Spanò, N.; Gugliandolo, E.; Peritore, A.F. Impact of mycotoxin contaminations on aquatic organisms: Toxic effect of aflatoxin B1 and fumonisin B1 mixture. Toxins (Basel), 2022, 14(8), 518.
[http://dx.doi.org/10.3390/toxins14080518] [PMID: 36006180]
[32]
Yusuf, S.; Wood, D.; Ralston, J.; Reddy, K.S. The World Heart Federation’s vision for worldwide cardiovascular disease prevention. Lancet, 2015, 386(9991), 399-402.
[http://dx.doi.org/10.1016/S0140-6736(15)60265-3] [PMID: 25892680]
[33]
Zhe-Wei, S.; Li-Sha, G.; Yue-Chun, L. The role of necroptosis in cardiovascular disease. Front. Pharmacol., 2018, 9, 721.
[http://dx.doi.org/10.3389/fphar.2018.00721] [PMID: 30034339]
[34]
Jia, X.F.; Liang, F.G.; Kitsis, R.N. Multiple cell death programs contribute to myocardial infarction. Circ Res, 2021, 129(3), 397-399.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319584]
[35]
Shi, G.Q.; Huang, W.L.; Zhang, J.; Zhao, H.; Shen, T.; Fontaine, R.E.; Yang, L.; Zhao, S.; Lu, B.L.; Wang, Y.B.; Ma, L.; Li, Z.X.; Gao, Y.; Yang, Z.L.; Zeng, G. Clusters of sudden unexplained death associated with the mushroom, Trogia venenata, in rural Yunnan Province, China. PLoS One, 2012, 7(5), e35894.
[http://dx.doi.org/10.1371/journal.pone.0035894] [PMID: 22615743]
[36]
Pottenger, L.H.; Andrews, L.S.; Bachman, A.N.; Boogaard, P.J.; Cadet, J.; Embry, M.R.; Farmer, P.B.; Himmelstein, M.W.; Jarabek, A.M.; Martin, E.A.; Mauthe, R.J.; Persaud, R.; Preston, R.J.; Schoeny, R.; Skare, J.; Swenberg, J.A.; Williams, G.M.; Zeiger, E.; Zhang, F.; Kim, J.H. An organizational approach for the assessment of DNA adduct data in risk assessment: case studies for aflatoxin B 1, tamoxifen and vinyl chloride. Crit. Rev. Toxicol., 2014, 44(4), 348-391.
[http://dx.doi.org/10.3109/10408444.2013.873768] [PMID: 24494825]
[37]
da Rocha, M.E.B.; Freire, F.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control, 2014, 36(1), 159-165.
[http://dx.doi.org/10.1016/j.foodcont.2013.08.021]
[38]
Mughal, M.J.; Peng, X.; Zhou, Y.; Fang, J. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget, 2017, 8(5), 8239-8249.
[http://dx.doi.org/10.18632/oncotarget.14158] [PMID: 28030812]
[39]
Ge, J.; Yu, H.; Li, J.; Lian, Z.; Zhang, H.; Fang, H.; Qian, L. Assessment of aflatoxin B1 myocardial toxicity in rats: mitochondrial damage and cellular apoptosis in cardiomyocytes induced by aflatoxin B1. J. Int. Med. Res., 2017, 45(3), 1015-1023.
[http://dx.doi.org/10.1177/0300060517706579] [PMID: 28553767]
[40]
Yilmaz, S.; Kaya, E.; Karaca, A.; Karatas, O. Aflatoxin B1 induced renal and cardiac damage in rats: Protective effect of lycopene. Res. Vet. Sci., 2018, 119, 268-275.
[http://dx.doi.org/10.1016/j.rvsc.2018.07.007] [PMID: 30059796]
[41]
Wang, X.; Muhammad, I.; Sun, X.; Han, M.; Hamid, S.; Zhang, X. Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol. Biol. Rep., 2018, 45(5), 881-891.
[http://dx.doi.org/10.1007/s11033-018-4234-4] [PMID: 29974318]
[42]
Chen, X.; Li, C.; Chen, Y.; Ni, C.; Chen, X.; Zhang, L.; Xu, X.; Chen, M.; Ma, X.; Zhan, H.; Xu, A.; Ge, R.; Guo, X. Aflatoxin B1 impairs leydig cells through inhibiting AMPK/mTOR-mediated autophagy flux pathway. Chemosphere, 2019, 233, 261-272.
[http://dx.doi.org/10.1016/j.chemosphere.2019.05.273] [PMID: 31176127]
[43]
Chang, X.; Tian, M.; Zhang, Q.; Liu, F.; Gao, J.; Li, S.; Liu, H.; Hou, X.; Li, L.; Li, C.; Sun, Y. Grape seed proanthocyanidin extract ameliorates cisplatin-induced testicular apoptosis via PI3K/Akt/mTOR and endoplasmic reticulum stress pathways in rats. J. Food Biochem., 2021, 45(8), e13825.
[http://dx.doi.org/10.1111/jfbc.13825] [PMID: 34152018]
[44]
Chen, B.; Li, D.; Li, M.; Li, S.; Peng, K.; Shi, X.; Zhou, L.; Zhang, P.; Xu, Z.; Yin, H.; Wang, Y.; Zhao, X.; Zhu, Q. Induction of mitochondria-mediated apoptosis and PI3K/Akt/ mTOR-mediated autophagy by aflatoxin B2 in hepatocytes of broilers. Oncotarget, 2016, 7(51), 84989-84998.
[http://dx.doi.org/10.18632/oncotarget.13356] [PMID: 27863407]
[45]
Shen, H.; Liu, J.; Wang, Y.; Lian, H.; Wang, J.; Xing, L.; Yan, X.; Wang, J.; Zhang, X. Aflatoxin G1-induced oxidative stress causes DNA damage and triggers apoptosis through MAPK signaling pathway in A549 cells. Food Chem. Toxicol., 2013, 62, 661-669.
[http://dx.doi.org/10.1016/j.fct.2013.09.030] [PMID: 24090735]
[46]
Fouad, M.T.; El-Shenawy, M.; El-Desouky, T.A. Efficiency of Selected Lactic Acid Bacteria Isolated from some dairy products on aflatoxin B1 and ochratoxin A. J. Pure Appl. Microbiol., 2021, 15(1), 312-319.
[http://dx.doi.org/10.22207/JPAM.15.1.24]
[47]
Enciso, J.M.; López de Cerain, A.; Pastor, L.; Azqueta, A.; Vettorazzi, A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem. Toxicol., 2018, 116(Pt B), 379-387.
[http://dx.doi.org/10.1016/j.fct.2018.04.050] [PMID: 29689355]
[48]
Herman, D.; Mantle, P. Immunohistochemical analysis of rat renal tumours caused by ochratoxin A. Toxins (Basel), 2017, 9(12), 384.
[http://dx.doi.org/10.3390/toxins9120384] [PMID: 29182526]
[49]
Mally, A.; Dekant, W. DNA adduct formation by ochratoxin A: Review of the available evidence. Food Addit. Contam., 2005, 22(sup1)(Suppl. 1), 65-74.
[http://dx.doi.org/10.1080/02652030500317544] [PMID: 16332624]
[50]
Mantle, P.; Kilic, M.; Mor, F.; Ozmen, O. Contribution of organ vasculature in rat renal analysis for ochratoxin a: relevance to toxicology of nephrotoxins. Toxins (Basel), 2015, 7(4), 1005-1017.
[http://dx.doi.org/10.3390/toxins7041005] [PMID: 25811304]
[51]
Said, S.; Hernandez, G.T. The link between chronic kidney disease and cardiovascular disease. J. Nephropathol., 2014, 3(3), 99-104.
[PMID: 25093157]
[52]
Kosicki, R.; Buharowska-Donten, J.; Twarużek, M. Ochratoxin A levels in serum of Polish dialysis patients with chronic renal failure. Toxicon, 2021, 200, 183-188.
[http://dx.doi.org/10.1016/j.toxicon.2021.08.002] [PMID: 34375657]
[53]
Li, H.; Mao, X.; Liu, K.; Sun, J.; Li, B.; Malyar, R.M.; Liu, D.; Pan, C.; Gan, F.; Liu, Y.; Huang, K.; Chen, X. Ochratoxin A induces nephrotoxicity in vitro and in vivovia pyroptosis. Arch. Toxicol., 2021, 95(4), 1489-1502.
[http://dx.doi.org/10.1007/s00204-021-02993-6] [PMID: 33543323]
[54]
Li, H.; Wang, M.; Kang, W.; Lin, Z.; Gan, F.; Huang, K. Non-cytotoxic dosage of fumonisin B1 aggravates ochratoxin A-induced nephrocytotoxicity and apoptosis via ROS-dependent JNK/MAPK signaling pathway. Toxicology, 2021, 457, 152802.
[http://dx.doi.org/10.1016/j.tox.2021.152802] [PMID: 33905761]
[55]
Song, Y.; Liu, W.; Zhao, Y.; Zang, J.; Gao, H. Ochratoxin A induces human kidney tubular epithelial cell apoptosis through regulating lipid raft/ PTEN / AKT signaling pathway. Environ. Toxicol., 2021, 36(9), 1880-1885.
[http://dx.doi.org/10.1002/tox.23308] [PMID: 34101318]
[56]
Zhang, Q.; Chen, W.; Zhang, B.; Li, C.; Zhang, X.; Wang, Q.; Wang, Y.; Zhou, Q.; Li, X.; Shen, X.L. Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A. Toxicology, 2021, 450, 152681.
[http://dx.doi.org/10.1016/j.tox.2021.152681] [PMID: 33465424]
[57]
Tai, H.; Jiang, X.; Lan, Z.; Li, Y.; Kong, L.; Yao, S.; Song, N.; Lv, M.; Wu, J.; Yang, P.; Xiao, X.; Yang, G.; Kuang, J.; Jia, L. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemia-reperfusion injury in obese rats. BMC Complementary Medicine and Therapies, 2021, 21(1), 100.
[http://dx.doi.org/10.1186/s12906-021-03270-w] [PMID: 33752661]
[58]
Kowalska, K.; Habrowska-Górczyńska, D.E.; Domińska, K.; Piastowska-Ciesielska, A.W. The dose-dependent effect of zearalenone on mitochondrial metabolism, plasma membrane permeabilization and cell cycle in human prostate cancer cell lines. Chemosphere, 2017, 180, 455-466.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.027] [PMID: 28427036]
[59]
Bhatnagar, D.; Yu, J.; Ehrlich, K.C. Toxins of filamentous fungi. Chem. Immunol., 2002, 81, 167-206.
[PMID: 12102001]
[60]
Zheng, W.; Feng, N.; Wang, Y.; Noll, L.; Xu, S.; Liu, X.; Lu, N.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Zhu, G.; Bian, J.; Bai, J.; Liu, Z. Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem. Toxicol., 2019, 126, 262-276.
[http://dx.doi.org/10.1016/j.fct.2019.02.031] [PMID: 30825585]
[61]
Woźny, M.; Dobosz, S.; Hliwa, P.; Gomułka, P.; Król, J.; Obremski, K.; Blahova, J.; Svobodova, Z.; Michalik, O.; Ocalewicz, K.; Brzuzan, P. Feed-borne exposure to zearalenone impairs reproduction of rainbow trout. Aquaculture, 2020, 528, 735522.
[http://dx.doi.org/10.1016/j.aquaculture.2020.735522]
[62]
Wan, B.; Yuan, X.; Yang, W.; Jiao, N.; Li, Y.; Liu, F.; Liu, M.; Yang, Z.; Huang, L.; Jiang, S. The effects of zearalenone on the localization and expression of reproductive hormones in the ovaries of weaned gilts. Toxins (Basel), 2021, 13(9), 626.
[http://dx.doi.org/10.3390/toxins13090626] [PMID: 34564630]
[63]
Hennig-Pauka, I.; Koch, F.J.; Schaumberger, S.; Woechtl, B.; Novak, J.; Sulyok, M.; Nagl, V. Current challenges in the diagnosis of zearalenone toxicosis as illustrated by a field case of hyperestrogenism in suckling piglets. Porcine Health Manag., 2018, 4(1), 18.
[http://dx.doi.org/10.1186/s40813-018-0095-4] [PMID: 30221009]
[64]
Gao, X.; Xiao, Z.H.; Liu, M.; Zhang, N.Y.; Khalil, M.M.; Gu, C.Q.; Qi, D.S.; Sun, L.H. Dietary silymarin supplementation alleviates zearalenone-induced hepatotoxicity and reproductive toxicity in rats. J. Nutr., 2018, 148(8), 1209-1216.
[http://dx.doi.org/10.1093/jn/nxy114] [PMID: 30137478]
[65]
Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem. Toxicol., 2019, 129, 211-228.
[http://dx.doi.org/10.1016/j.fct.2019.04.047] [PMID: 31034935]
[66]
El Golli, E.; Hassen, W.; Bouslimi, A.; Bouaziz, C.; Ladjimi, M.M.; Bacha, H. Induction of Hsp 70 in Vero cells in response to mycotoxins. Toxicol. Lett., 2006, 166(2), 122-130.
[http://dx.doi.org/10.1016/j.toxlet.2006.06.004] [PMID: 16870361]
[67]
Salem, I.B.; Boussabbeh, M.; Neffati, F.; Najjar, M.F.; Abid-Essefi, S.; Bacha, H. Zearalenone-induced changes in biochemical parameters, oxidative stress and apoptosis in cardiac tissue. Hum. Exp. Toxicol., 2016, 35(6), 623-634.
[http://dx.doi.org/10.1177/0960327115597467] [PMID: 26231423]
[68]
Ben Salem, I.; Boussabbeh, M.; Da Silva, J.P.; Guilbert, A.; Bacha, H.; Abid-Essefi, S.; Lemaire, C. SIRT1 protects cardiac cells against apoptosis induced by zearalenone or its metabolites α- and β-zearalenol through an autophagy-dependent pathway. Toxicol. Appl. Pharmacol., 2017, 314, 82-90.
[http://dx.doi.org/10.1016/j.taap.2016.11.012] [PMID: 27889531]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy