Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

New Insights into the Relationship between Nutrition and Neuroinflammation in Alzheimer's Disease: Preventive and Therapeutic Perspectives

Author(s): Fabiola De Marchi, Francesca Vignaroli, Letizia Mazzini, Cristoforo Comi and Giacomo Tondo*

Volume 23, Issue 5, 2024

Published on: 13 June, 2023

Page: [614 - 627] Pages: 14

DOI: 10.2174/1871527322666230608110201

Price: $65

conference banner
Abstract

Neurodegenerative diseases are progressive brain disorders characterized by inexorable synaptic dysfunction and neuronal loss. Since the most consistent risk factor for developing neurodegenerative diseases is aging, the prevalence of these disorders is intended to increase with increasing life expectancy. Alzheimer’s disease is the most common cause of neurodegenerative dementia, representing a significant medical, social, and economic burden worldwide. Despite growing research to reach an early diagnosis and optimal patient management, no disease-modifying therapies are currently available. Chronic neuroinflammation has been recognized as a crucial player in sustaining neurodegenerative processes, along with pathological deposition of misfolded proteins, including amyloid-β and tau protein. Modulating neuroinflammatory responses may be a promising therapeutic strategy in future clinical trials. Among factors that are able to regulate neuroinflammatory mechanisms, diet, and nutrients represent easily accessible and modifiable lifestyle components. Mediterranean diet and several nutrients, including polyphenols, vitamins, and omega-3 polyunsaturated fatty acids, can exert antioxidant and anti-inflammatory properties, impacting clinical manifestations, cognitive decline, and dementia. This review aims to provide an updated overview of the relationship between neuroinflammation, nutrition, gut microbiota, and neurodegeneration. We summarize the major studies exploring the effects of diet regimes on cognitive decline, primarily focusing on Alzheimer’s disease dementia and the impact of these results on the design of ongoing clinical trials.

Graphical Abstract

[1]
Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 2018; 10(4): a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[2]
Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative disorders of Alzheimer, Parkinsonism, amyotrophic lateral sclerosis and multiple sclerosis: An early diagnostic approach for precision treatment. Metab Brain Dis 2021; 37(1): 67-104.
[http://dx.doi.org/10.1007/s11011-021-00800-w] [PMID: 34719771]
[3]
Foguem C, Kamsu-Foguem B. Neurodegeneration in tauopathies and synucleinopathies. Rev Neurol 2016; 172(11): 709-14.
[http://dx.doi.org/10.1016/j.neurol.2016.05.002] [PMID: 27344208]
[4]
Tondo G, De Marchi F. From biomarkers to precision medicine in neurodegenerative diseases: Where are we? J Clin Med 2022; 11: 4515.
[5]
Rana JS, Khan SS, Lloyd-Jones DM, Sidney S. Changes in mortality in top 10 causes of death from 2011 to 2018. J Gen Intern Med 2021; 36(8): 2517-8.
[http://dx.doi.org/10.1007/s11606-020-06070-z] [PMID: 32705476]
[6]
Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimers Res Ther 2017; 9(1): 71.
[http://dx.doi.org/10.1186/s13195-017-0297-z] [PMID: 28899416]
[7]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[8]
Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol 2014; 13(6): 614-29.
[http://dx.doi.org/10.1016/S1474-4422(14)70090-0] [PMID: 24849862]
[9]
Mendez MF. Early-onset Alzheimer disease. Neurol Clin 2017; 35(2): 263-81.
[http://dx.doi.org/10.1016/j.ncl.2017.01.005] [PMID: 28410659]
[10]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[11]
Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest 2017; 127(10): 3577-87.
[http://dx.doi.org/10.1172/JCI90609] [PMID: 28872464]
[12]
Comi C, Tondo G. Insights into the protective role of immunity in neurodegenerative disease. Neural Regen Res 2017; 12(1): 64-5.
[http://dx.doi.org/10.4103/1673-5374.198980] [PMID: 28250745]
[13]
Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 2019; 10: 1008.
[http://dx.doi.org/10.3389/fphar.2019.01008] [PMID: 31572186]
[14]
Tondo G, Perani D, Comi C. TAM receptor pathways at the crossroads of neuroinflammation and neurodegeneration. Dis Markers 2019; 2019.
[http://dx.doi.org/10.1155/2019/2387614]
[15]
Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr Neurosci 2021; 24(10): 810-34.
[http://dx.doi.org/10.1080/1028415X.2019.1681088] [PMID: 31684843]
[16]
McGrattan AM, McGuinness B, McKinley MC, et al. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr Nutr Rep 2019; 8(2): 53-65.
[http://dx.doi.org/10.1007/s13668-019-0271-4] [PMID: 30949921]
[17]
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener 2020; 9(1): 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[18]
Golde TE, Borchelt DR, Giasson BI, Lewis J. Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 2013; 123(5): 1847-55.
[http://dx.doi.org/10.1172/JCI66029] [PMID: 23635781]
[19]
Calder PC, Bosco N, Bourdet-Sicard R, et al. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 2017; 40: 95-119.
[http://dx.doi.org/10.1016/j.arr.2017.09.001] [PMID: 28899766]
[20]
Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C, aging and Alzheimer’s disease. Nutrients 2017; 9(7): 670.
[http://dx.doi.org/10.3390/nu9070670] [PMID: 28654021]
[21]
Ambrogini P, Torquato P, Bartolini D, et al. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865(6): 1098-112.
[http://dx.doi.org/10.1016/j.bbadis.2019.01.026] [PMID: 30703511]
[22]
van Wijk N, Broersen LM, de Wilde MC, et al. Targeting synaptic dysfunction in Alzheimer’s disease by administering a specific nutrient combination. J Alzheimers Dis 2013; 38(3): 459-79.
[http://dx.doi.org/10.3233/JAD-130998] [PMID: 23985420]
[23]
Williams RJ, Spencer JPE, Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Free Radic Biol Med 2004; 36(7): 838-49.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[24]
Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: A focus on SIRT1-mediated mechanisms. Mol Nutr Food Res 2014; 58(1): 22-32.
[http://dx.doi.org/10.1002/mnfr.201300195] [PMID: 23881751]
[25]
Biesalski HK. Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 2007; 10(6): 724-8.
[http://dx.doi.org/10.1097/MCO.0b013e3282f0cef2] [PMID: 18089954]
[26]
Vauzour D, Martinsen A, Layé S. Neuroinflammatory processes in cognitive disorders: Is there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their detrimental effects? Neurochem Int 2015; 89: 63-74.
[http://dx.doi.org/10.1016/j.neuint.2015.08.004] [PMID: 26260547]
[27]
Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 2014; 9(6): 2124-38.
[http://dx.doi.org/10.1016/j.celrep.2014.11.018] [PMID: 25497089]
[28]
Melo HM, Santos LE, Ferreira ST. Diet-derived fatty acids, brain inflammation, and mental health. Front Neurosci 2019; 13: 265.
[http://dx.doi.org/10.3389/fnins.2019.00265] [PMID: 30983955]
[29]
Wanrooy BJ, Kumar KP, Wen SW, Qin CX, Ritchie RH, Wong CHY. Distinct contributions of hyperglycemia and high-fat feeding in metabolic syndrome-induced neuroinflammation. J Neuroinflammation 2018; 15(1): 293.
[http://dx.doi.org/10.1186/s12974-018-1329-8] [PMID: 30348168]
[30]
Gomes JAS, Silva JF, Marçal AP, et al. High-refined carbohydrate diet consumption induces neuroinflammation and anxiety-like behavior in mice. J Nutr Biochem 2020; 77: 108317.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108317] [PMID: 32004874]
[31]
Cui X, Abduljalil A, Manor BD, Peng CK, Novak V. Multi-scale glycemic variability: A link to gray matter atrophy and cognitive decline in type 2 diabetes. PLoS One 2014; 9(1): e86284.
[http://dx.doi.org/10.1371/journal.pone.0086284] [PMID: 24475100]
[32]
Zhao S, Han T, Pei X, et al. The association of diet carbohydrates consumption with cognitive function among US older adults modification by daily fasting duration. Front Aging Neurosci 2022; 14: 991007.
[http://dx.doi.org/10.3389/fnagi.2022.991007] [PMID: 36225887]
[33]
Sato H, Tsukamoto-Yasui M, Takado Y, et al. Protein deficiency-induced behavioral abnormalities and neurotransmitter loss in aged mice are ameliorated by essential amino acids. Front Nutr 2020; 7: 23.
[http://dx.doi.org/10.3389/fnut.2020.00023] [PMID: 32219097]
[34]
Suzuki H, Yamashiro D, Ogawa S, et al. Intake of seven essential amino acids improves cognitive function and psychological and social function in middle-aged and older adults: A double-blind, randomized, placebo-controlled trial. Front Nutr 2020; 7: 586166.
[http://dx.doi.org/10.3389/fnut.2020.586166] [PMID: 33324669]
[35]
Roberts RO, Roberts LA, Geda YE, et al. Relative intake of macronutrients impacts risk of mild cognitive impairment or dementia. J Alzheimers Dis 2012; 32(2): 329-39.
[http://dx.doi.org/10.3233/JAD-2012-120862] [PMID: 22810099]
[36]
Fernando WMADB, Rainey-Smith SR, Gardener SL, et al. Associations of dietary protein and fiber intake with brain and blood amyloid-β. J Alzheimers Dis 2018; 61(4): 1589-98.
[http://dx.doi.org/10.3233/JAD-170742] [PMID: 29376865]
[37]
Bok E, Jo M, Lee S, Lee BR, Kim J, Kim HJ. Dietary restriction and neuroinflammation: A potential mechanistic link. Int J Mol Sci 2019; 20(3): 464.
[http://dx.doi.org/10.3390/ijms20030464] [PMID: 30678217]
[38]
Patel NV, Gordon MN, Connor KE, et al. Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models. Neurobiol Aging 2005; 26(7): 995-1000.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.014] [PMID: 15748777]
[39]
Wu P, Shen Q, Dong S, Xu Z, Tsien JZ, Hu Y. Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice. Neurobiol Aging 2008; 29(10): 1502-11.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.03.028] [PMID: 17499883]
[40]
Brownlow ML, Joly-Amado A, Azam S, et al. Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav Brain Res 2014; 271: 79-88.
[http://dx.doi.org/10.1016/j.bbr.2014.06.001] [PMID: 24925454]
[41]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4(1): 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[42]
Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 2018; 12: 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[43]
Wang Q, Lu M, Zhu X, et al. The role of microglia immunometabolism in neurodegeneration: Focus on molecular determinants and metabolic intermediates of metabolic reprogramming. Biomed Pharmacother 2022; 153: 113412.
[http://dx.doi.org/10.1016/j.biopha.2022.113412] [PMID: 36076537]
[44]
Tondo G, Iaccarino L, Caminiti SP, et al. The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer’s disease. Alzheimers Res Ther 2020; 12(1): 50.
[http://dx.doi.org/10.1186/s13195-020-00619-0] [PMID: 32354345]
[45]
Fan Z, Aman Y, Ahmed I, et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement 2015; 11(6): 608-21.e7.
[http://dx.doi.org/10.1016/j.jalz.2014.06.016] [PMID: 25239737]
[46]
Yokokura M, Mori N, Yagi S, et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2011; 38(2): 343-51.
[http://dx.doi.org/10.1007/s00259-010-1612-0] [PMID: 20844871]
[47]
Tondo G, Boccalini C, Caminiti SP, et al. Brain metabolism and microglia activation in mild cognitive impairment: A combined [18F] FDG and [11C]-(R)-PK11195 PET study. J Alzheimers Dis 2021; 80(1): 433-45.
[http://dx.doi.org/10.3233/JAD-201351] [PMID: 33579848]
[48]
Trichopoulou A, Martínez-González MA, Tong TYN, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med 2014; 12(1): 112.
[http://dx.doi.org/10.1186/1741-7015-12-112] [PMID: 25055810]
[49]
Gardener H, Caunca MR. Mediterranean diet in preventing neurodegenerative diseases. Curr Nutr Rep 2018; 7(1): 10-20.
[http://dx.doi.org/10.1007/s13668-018-0222-5] [PMID: 29892785]
[50]
Stefaniak O. Dobrzyńska M, Drzymała-Czyż S, Przysławski J. Diet in the Prevention of Alzheimer’s Disease: Current Knowledge and Future Research Requirements. Nutrients 2022; 14(21): 4564.
[http://dx.doi.org/10.3390/nu14214564] [PMID: 36364826]
[51]
Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol 2019; 175(10): 724-41.
[http://dx.doi.org/10.1016/j.neurol.2019.08.005] [PMID: 31521398]
[52]
Romagnolo DF, Selmin OI. Mediterranean diet and prevention of chronic diseases. Nutr Today 2017; 52(5): 208-22.
[http://dx.doi.org/10.1097/NT.0000000000000228] [PMID: 29051674]
[53]
Rigacci S, Stefani M. Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int J Mol Sci 2016; 17(6): 843.
[http://dx.doi.org/10.3390/ijms17060843] [PMID: 27258251]
[54]
Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 2006; 59(6): 912-21.
[http://dx.doi.org/10.1002/ana.20854] [PMID: 16622828]
[55]
McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective diets are associated with better cognitive function: The health and retirement study. J Am Geriatr Soc 2017; 65(8): 1857-62.
[http://dx.doi.org/10.1111/jgs.14922] [PMID: 28440854]
[56]
Anastasiou C, Yannakoulia M, Kontogianni M, et al. Mediterranean lifestyle in relation to cognitive health: Results from the HELIAD study. Nutrients 2018; 10(10): 1557.
[http://dx.doi.org/10.3390/nu10101557] [PMID: 30347812]
[57]
Tsivgoulis G, Judd S, Letter AJ, et al. Adherence to a Mediterranean diet and risk of incident cognitive impairment. Neurology 2013; 80(18): 1684-92.
[http://dx.doi.org/10.1212/WNL.0b013e3182904f69] [PMID: 23628929]
[58]
Katsiardanis K, Diamantaras AA, Dessypris N, et al. Cognitive impairment and dietary habits among elders: The Velestino Study. J Med Food 2013; 16(4): 343-50.
[http://dx.doi.org/10.1089/jmf.2012.0225] [PMID: 23514229]
[59]
McDonald TJW, Cervenka MC. Ketogenic diets for adult neurological disorders. Neurotherapeutics 2018; 15(4): 1018-31.
[http://dx.doi.org/10.1007/s13311-018-0666-8] [PMID: 30225789]
[60]
Gu Y, Luchsinger JA, Stern Y, Scarmeas N. Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. J Alzheimers Dis 2010; 22(2): 483-92.
[http://dx.doi.org/10.3233/JAD-2010-100897] [PMID: 20847399]
[61]
Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis 2006; 16(8): 559-68.
[http://dx.doi.org/10.1016/j.numecd.2005.08.006] [PMID: 17126772]
[62]
Anastasiou CA, Yannakoulia M, Kosmidis MH, et al. Mediterranean diet and cognitive health: Initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS One 2017; 12(8): e0182048.
[http://dx.doi.org/10.1371/journal.pone.0182048] [PMID: 28763509]
[63]
Andreu-Reinón ME, Chirlaque MD, Gavrila D, et al. Mediterranean diet and risk of dementia and Alzheimer’s disease in the EPIC-Spain dementia cohort study. Nutrients 2021; 13(2): 700.
[http://dx.doi.org/10.3390/nu13020700] [PMID: 33671575]
[64]
Trichopoulou A, Kyrozis A, Rossi M, et al. Mediterranean diet and cognitive decline over time in an elderly Mediterranean population. Eur J Nutr 2015; 54(8): 1311-21.
[http://dx.doi.org/10.1007/s00394-014-0811-z] [PMID: 25482573]
[65]
Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement 2015; 11(9): 1015-22.
[http://dx.doi.org/10.1016/j.jalz.2015.04.011] [PMID: 26086182]
[66]
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 2015; 11(9): 1007-14.
[http://dx.doi.org/10.1016/j.jalz.2014.11.009] [PMID: 25681666]
[67]
Dhana K, James BD, Agarwal P, et al. MIND diet, common brain pathologies, and cognition in community-dwelling older adults. J Alzheimers Dis 2021; 83(2): 683-92.
[http://dx.doi.org/10.3233/JAD-210107] [PMID: 34334393]
[68]
Charisis S, Ntanasi E, Yannakoulia M, et al. Mediterranean diet and risk for dementia and cognitive decline in a Mediterranean population. J Am Geriatr Soc 2021; 69(6): 1548-59.
[http://dx.doi.org/10.1111/jgs.17072] [PMID: 33724444]
[69]
Mantzorou M, Vadikolias K, Pavlidou E, et al. Mediterranean diet adherence is associated with better cognitive status and less depressive symptoms in a Greek elderly population. Aging Clin Exp Res 2021; 33(4): 1033-40.
[http://dx.doi.org/10.1007/s40520-020-01608-x] [PMID: 32488472]
[70]
Galbete C, Toledo E, Toledo JB, et al. Mediterranean diet and cognitive function: The sun project. J Nutr Health Aging 2015; 19(3): 305-12.
[http://dx.doi.org/10.1007/s12603-015-0441-z] [PMID: 25732216]
[71]
Fostinelli S, Ferrari C, De Amicis R, Giustizieri V, Leone A, Bertoli S, et al. The impact of nutrition on cognitive performance in a frail elderly population living in northern Italy. J Am Nutr Assoc 2022; pp. 1-11.
[72]
Tangney CC, Kwasny MJ, Li H, Wilson RS, Evans DA, Morris MC. Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. Am J Clin Nutr 2011; 93(3): 601-7.
[http://dx.doi.org/10.3945/ajcn.110.007369] [PMID: 21177796]
[73]
Vlachos GS, Yannakoulia M, Anastasiou CA, et al. The role of Mediterranean diet in the course of subjective cognitive decline in the elderly population of Greece: Results from a prospective cohort study. Br J Nutr 2022; 128(11): 2219-29.
[http://dx.doi.org/10.1017/S0007114521005109] [PMID: 34937581]
[74]
Bhushan A, Fondell E, Ascherio A, Yuan C, Grodstein F, Willett W. Adherence to Mediterranean diet and subjective cognitive function in men. Eur J Epidemiol 2018; 33(2): 223-34.
[http://dx.doi.org/10.1007/s10654-017-0330-3] [PMID: 29147948]
[75]
Allcock L, Mantzioris E, Villani A. Adherence to a Mediterranean Diet is associated with physical and cognitive health: A cross-sectional analysis of community-dwelling older Australians. Front Public Health 2022; 10: 1017078.
[http://dx.doi.org/10.3389/fpubh.2022.1017078] [PMID: 36466491]
[76]
Tanaka T, Talegawkar S, Jin Y, Colpo M, Ferrucci L, Bandinelli S. Adherence to a mediterranean diet protects from cognitive decline in the invecchiare in Chianti study of aging. Nutrients 2018; 10(12): 2007.
[http://dx.doi.org/10.3390/nu10122007] [PMID: 30572567]
[77]
Keenan TD, Agrón E, Mares JA, et al. Adherence to a Mediterranean diet and cognitive function in the Age‐Related Eye Disease Studies 1 & 2. Alzheimers Dement 2020; 16(6): 831-42.
[http://dx.doi.org/10.1002/alz.12077] [PMID: 32285590]
[78]
Lutski M, Weinstein G, Ben-Zvi S, Goldbourt U, Tanne D. Adherence to Mediterranean diet and subsequent cognitive decline in men with cardiovascular disease. Nutr Neurosci 2022; 25(1): 91-9.
[http://dx.doi.org/10.1080/1028415X.2020.1715049] [PMID: 31965911]
[79]
Qin B, Adair LS, Plassman BL, et al. Dietary patterns and cognitive decline among Chinese older adults. Epidemiology 2015; 26(5): 758-68.
[http://dx.doi.org/10.1097/EDE.0000000000000338] [PMID: 26133024]
[80]
Ye X, Scott T, Gao X, Maras JE, Bakun PJ, Tucker KL. Mediterranean diet, healthy eating index 2005, and cognitive function in middle-aged and older Puerto Rican adults. J Acad Nutr Diet 2013; 113(2): 276-281.e3, 3.
[http://dx.doi.org/10.1016/j.jand.2012.10.014] [PMID: 23351632]
[81]
Boumenna T, Scott TM, Lee JS, et al. MIND diet and cognitive function in Puerto Rican older adults. J Gerontol A Biol Sci Med Sci 2022; 77(3): 605-13.
[http://dx.doi.org/10.1093/gerona/glab261] [PMID: 34551094]
[82]
Olsson E, Karlström B, Kilander L, Byberg L, Cederholm T, Sjögren P. Dietary patterns and cognitive dysfunction in a 12-year follow-up study of 70 year old men. J Alzheimers Dis 2014; 43(1): 109-19.
[http://dx.doi.org/10.3233/JAD-140867] [PMID: 25062901]
[83]
Kesse-Guyot E, Andreeva VA, Lassale C, et al. Mediterranean diet and cognitive function: A French study. Am J Clin Nutr 2013; 97(2): 369-76.
[http://dx.doi.org/10.3945/ajcn.112.047993] [PMID: 23283500]
[84]
Samieri C, Grodstein F, Rosner BA, et al. Mediterranean diet and cognitive function in older age. Epidemiology 2013; 24(4): 490-9.
[http://dx.doi.org/10.1097/EDE.0b013e318294a065] [PMID: 23676264]
[85]
Knight A, Bryan J, Wilson C, Hodgson J, Davis C, Murphy K. The Mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: The MedLey Study. Nutrients 2016; 8(9): 579.
[http://dx.doi.org/10.3390/nu8090579] [PMID: 27657119]
[86]
Wade AT, Elias MF, Murphy KJ. Adherence to a Mediterranean diet is associated with cognitive function in an older non-Mediterranean sample: findings from the Maine-Syracuse Longitudinal Study. Nutr Neurosci 2021; 24(7): 542-53.
[http://dx.doi.org/10.1080/1028415X.2019.1655201] [PMID: 31432770]
[87]
Chen X, Liu Z, Sachdev PS, Kochan NA, O’Leary F, Brodaty H. Association of dietary patterns with cognitive function and cognitive decline in sydney memory and ageing study: A longitudinal analysis. J Acad Nutr Diet 2022; 122(5): 949-960.e15.
[http://dx.doi.org/10.1016/j.jand.2021.10.018] [PMID: 34688967]
[88]
Cherbuin N, Anstey KJ. The Mediterranean diet is not related to cognitive change in a large prospective investigation: The PATH Through Life study. Am J Geriatr Psychiatry 2012; 20(7): 635-9.
[http://dx.doi.org/10.1097/JGP.0b013e31823032a9] [PMID: 21937919]
[89]
Glans I, Sonestedt E, Nägga K, Gustavsson A-M, González-Padilla E, Borne Y, et al. Association between dietary habits in midlife with dementia incidence over a 20-year period. Neurology 2022.
[PMID: 36224029]
[90]
de Crom TOE, Mooldijk SS, Ikram MK, Ikram MA, Voortman T. MIND diet and the risk of dementia: A population-based study. Alzheimers Res Ther 2022; 14(1): 8.
[http://dx.doi.org/10.1186/s13195-022-00957-1] [PMID: 35022067]
[91]
Tangney CC, Li H, Wang Y, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology 2014; 83(16): 1410-6.
[http://dx.doi.org/10.1212/WNL.0000000000000884] [PMID: 25230996]
[92]
Martínez-Lapiscina EH, Clavero P, Toledo E, et al. Virgin olive oil supplementation and long-term cognition: The Predimed-Navarra randomized, trial. J Nutr Health Aging 2013; 17(6): 544-52.
[http://dx.doi.org/10.1007/s12603-013-0027-6] [PMID: 23732551]
[93]
Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern Med 2015; 175(7): 1094-103.
[http://dx.doi.org/10.1001/jamainternmed.2015.1668] [PMID: 25961184]
[94]
Scarmeas N, Luchsinger JA, Mayeux R, Stern Y. Mediterranean diet and Alzheimer disease mortality. Neurology 2007; 69(11): 1084-93.
[http://dx.doi.org/10.1212/01.wnl.0000277320.50685.7c] [PMID: 17846408]
[95]
Berti V, Walters M, Sterling J, et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 2018; 90(20): e1789-98.
[http://dx.doi.org/10.1212/WNL.0000000000005527] [PMID: 29653991]
[96]
Hill E, Szoeke C, Dennerstein L, Campbell S, Clifton P. Adherence to the Mediterranean diet is not related to beta-amyloid deposition: Data from the women’s healthy ageing project. J Prev Alzheimers Dis 2018; 5(2): 137-41.
[PMID: 29616707]
[97]
Rainey-Smith SR, Gu Y, Gardener SL, et al. Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: Data from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Transl Psychiatry 2018; 8(1): 238.
[http://dx.doi.org/10.1038/s41398-018-0293-5] [PMID: 30375373]
[98]
Gu Y, Brickman AM, Stern Y, et al. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 2015; 85(20): 1744-51.
[http://dx.doi.org/10.1212/WNL.0000000000002121] [PMID: 26491085]
[99]
Mosconi L, Murray J, Tsui WH, et al. Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. J Prev Alzheimers Dis 2014; 1(1): 1-10.
[http://dx.doi.org/10.14283/jpad.2014.17] [PMID: 25237654]
[100]
Ballarini T, Melo van Lent D, Brunner J, et al. Mediterranean diet, Alzheimer disease biomarkers, and brain atrophy in old age. Neurology 2021; 96(24): e2920-32.
[http://dx.doi.org/10.1212/WNL.0000000000012067] [PMID: 33952652]
[101]
Melo van Lent D, O’Donnell A, Beiser AS, et al. Mind diet adherence and cognitive performance in the Framingham heart study. J Alzheimers Dis 2021; 82(2): 827-39.
[http://dx.doi.org/10.3233/JAD-201238] [PMID: 34092629]
[102]
Gaynor AM, Varangis E, Song S, et al. Diet moderates the effect of resting state functional connectivity on cognitive function. Sci Rep 2022; 12(1): 16080.
[http://dx.doi.org/10.1038/s41598-022-20047-4] [PMID: 36167961]
[103]
Karstens AJ, Tussing-Humphreys L, Zhan L, et al. Associations of the Mediterranean diet with cognitive and neuroimaging phenotypes of dementia in healthy older adults. Am J Clin Nutr 2019; 109(2): 361-8.
[http://dx.doi.org/10.1093/ajcn/nqy275] [PMID: 30698630]
[104]
Hoscheidt S, Sanderlin AH, Baker LD, et al. Mediterranean and Western diet effects on Alzheimer’s disease biomarkers, cerebral perfusion, and cognition in mid‐life: A randomized trial. Alzheimers Dement 2022; 18(3): 457-68.
[http://dx.doi.org/10.1002/alz.12421] [PMID: 34310044]
[105]
Taylor MK, Sullivan DK, Mahnken JD, Burns JM, Swerdlow RH. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement (N Y) 2018; 4(1): 28-36.
[http://dx.doi.org/10.1016/j.trci.2017.11.002] [PMID: 29955649]
[106]
Brandt J, Buchholz A, Henry-Barron B, Vizthum D, Avramopoulos D, Cervenka MC. Preliminary report on the feasibility and efficacy of the modified atkins diet for treatment of mild cognitive impairment and early Alzheimer’s disease. J Alzheimers Dis 2019; 68(3): 969-81.
[http://dx.doi.org/10.3233/JAD-180995] [PMID: 30856112]
[107]
Phillips MCL, Deprez LM, Mortimer GMN, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimers Res Ther 2021; 13(1): 51.
[http://dx.doi.org/10.1186/s13195-021-00783-x] [PMID: 33622392]
[108]
Neth BJ, Mintz A, Whitlow C, et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: A pilot study. Neurobiol Aging 2020; 86: 54-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.09.015] [PMID: 31757576]
[109]
Sanderlin AH, Hayden KM, Baker LD, Craft S. Ketogenic dietary lifestyle intervention effects on sleep, cognition, and behavior in mild cognitive impairment: Study design. Alzheimers Dement (N Y) 2022; 8(1): e12343.
[http://dx.doi.org/10.1002/trc2.12343] [PMID: 36177445]
[110]
Iacovides S, Goble D, Paterson B, Meiring RM. Three consecutive weeks of nutritional ketosis has no effect on cognitive function, sleep, and mood compared with a high-carbohydrate, low-fat diet in healthy individuals: A randomized, crossover, controlled trial. Am J Clin Nutr 2019; 110(2): 349-57.
[http://dx.doi.org/10.1093/ajcn/nqz073] [PMID: 31098615]
[111]
Brinkley TE, Leng I, Register TC, et al. Changes in adiposity and cerebrospinal fluid biomarkers following a modified mediterranean ketogenic diet in older adults at risk for Alzheimer’s Disease. Front Neurosci 2022; 16: 906539.
[http://dx.doi.org/10.3389/fnins.2022.906539] [PMID: 35720727]
[112]
Zmora N, Suez J, Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 2019; 16(1): 35-56.
[http://dx.doi.org/10.1038/s41575-018-0061-2] [PMID: 30262901]
[113]
Mazzini L, Fabiola De Marchi MD, Niccolai E, Mandrioli J, Amedei A. Gastrointestinal Status and Microbiota Shaping in Amyotrophic Lateral Sclerosis: A New Frontier for Targeting? Amyotrophic Lateral Sclerosis.Brisbane (AU): Exon Publications. 2021; Chapter 8: p. 141-58.
[http://dx.doi.org/10.36255/exonpublications.amyotrophiclateralsclerosis.microbiota.2021]
[114]
Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer’s disease: What we know and what remains to be explored. Mol Neurodegener 2023; 18(1): 9.
[http://dx.doi.org/10.1186/s13024-023-00595-7] [PMID: 36721148]
[115]
Aho VTE, Houser MC, Pereira PAB, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener 2021; 16(1): 6.
[http://dx.doi.org/10.1186/s13024-021-00427-6] [PMID: 33557896]
[116]
Qian Y, Yang X, Xu S, et al. Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav Immun 2018; 70: 194-202.
[http://dx.doi.org/10.1016/j.bbi.2018.02.016] [PMID: 29501802]
[117]
Lin CH, Chen CC, Chiang HL, et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 2019; 16(1): 129.
[http://dx.doi.org/10.1186/s12974-019-1528-y] [PMID: 31248424]
[118]
Di Gioia D, Bozzi Cionci N, Baffoni L, et al. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Med 2020; 18(1): 153.
[http://dx.doi.org/10.1186/s12916-020-01607-9] [PMID: 32546239]
[119]
Nicholson K, Bjornevik K, Abu-Ali G, Chan J, Cortese M, Dedi B, et al. The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener 2020; 22(3-4): 186-94.
[120]
Murray ER, Kemp M, Nguyen TT. The microbiota–gut–brain axis in Alzheimer’s Disease: A review of taxonomic alterations and potential avenues for interventions. Arch Clin Neuropsychol 2022; 37(3): 595-607.
[http://dx.doi.org/10.1093/arclin/acac008] [PMID: 35202456]
[121]
Ling Z, Zhu M, Yan X, et al. Structural and functional dysbiosis of fecal microbiota in Chinese patients with Alzheimer’s disease. Front Cell Dev Biol 2021; 8: 634069.
[http://dx.doi.org/10.3389/fcell.2020.634069] [PMID: 33614635]
[122]
Solch RJ, Aigbogun JO, Voyiadjis AG, et al. Mediterranean diet adherence, gut microbiota, and Alzheimer’s or Parkinson’s disease risk: A systematic review. J Neurol Sci 2022; 434: 120166.
[http://dx.doi.org/10.1016/j.jns.2022.120166] [PMID: 35144237]
[123]
Verhaar BJH, Hendriksen HMA, de Leeuw FA, et al. Gut microbiota composition is related to AD pathology. Front Immunol 2022; 12: 794519.
[http://dx.doi.org/10.3389/fimmu.2021.794519] [PMID: 35173707]
[124]
Park SH, Lee JH, Shin J, et al. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: A case report. Curr Med Res Opin 2021; 37(10): 1739-44.
[http://dx.doi.org/10.1080/03007995.2021.1957807] [PMID: 34289768]
[125]
Hazan S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report. J Int Med Res 2020; 48(6)
[http://dx.doi.org/10.1177/0300060520925930] [PMID: 32600151]
[126]
Kim CS, Cha L, Sim M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci 2021; 76(1): 32-40.
[http://dx.doi.org/10.1093/gerona/glaa090] [PMID: 32300799]
[127]
Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM. Probiotic supplementation in patients with Alzheimer’s dementia-an explorative intervention study. Curr Alzheimer Res 2018; 15(12): 1106-13.
[http://dx.doi.org/10.2174/1389200219666180813144834] [PMID: 30101706]
[128]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[129]
Cassani E, Barichella M, Ferri V, et al. Dietary habits in Parkinson’s disease: Adherence to Mediterranean diet. Parkinsonism Relat Disord 2017; 42: 40-6.
[http://dx.doi.org/10.1016/j.parkreldis.2017.06.007] [PMID: 28647435]
[130]
Alcalay RN, Gu Y, Mejia-Santana H, Cote L, Marder KS, Scarmeas N. The association between Mediterranean diet adherence and Parkinson’s disease. Mov Disord 2012; 27(6): 771-4.
[http://dx.doi.org/10.1002/mds.24918] [PMID: 22314772]
[131]
Maraki MI, Yannakoulia M, Stamelou M, et al. Mediterranean diet adherence is related to reduced probability of prodromal Parkinson’s disease. Mov Disord 2019; 34(1): 48-57.
[http://dx.doi.org/10.1002/mds.27489] [PMID: 30306634]
[132]
Gao X, Chen H, Fung TT, et al. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr 2007; 86(5): 1486-94.
[http://dx.doi.org/10.1093/ajcn/86.5.1486] [PMID: 17991663]
[133]
Paknahad Z, Sheklabadi E, Derakhshan Y, Bagherniya M, Chitsaz A. The effect of the Mediterranean diet on cognitive function in patients with Parkinson’s disease: A randomized clinical controlled trial. Complement Ther Med 2020; 50: 102366.
[http://dx.doi.org/10.1016/j.ctim.2020.102366] [PMID: 32444045]
[134]
Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet 2022; 400(10360): 1363-80.
[http://dx.doi.org/10.1016/S0140-6736(22)01272-7] [PMID: 36116464]
[135]
De Marchi F, Munitic I, Amedei A, et al. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127: 958-78.
[http://dx.doi.org/10.1016/j.neubiorev.2021.06.027] [PMID: 34153344]
[136]
Nieves JW, Gennings C, Factor-Litvak P, et al. Association between dietary intake and function in amyotrophic lateral sclerosis. JAMA Neurol 2016; 73(12): 1425-32.
[http://dx.doi.org/10.1001/jamaneurol.2016.3401] [PMID: 27775751]
[137]
Okamoto K, Kihira T, Kobashi G, et al. Fruit and vegetable intake and risk of amyotrophic lateral sclerosis in Japan. Neuroepidemiology 2009; 32(4): 251-6.
[http://dx.doi.org/10.1159/000201563] [PMID: 19209004]
[138]
Jin Y, Oh K, Oh S, Baek H, Kim SH, Park Y. Dietary intake of fruits and beta-carotene is negatively associated with amyotrophic lateral sclerosis risk in Koreans: A case-control study. Nutr Neurosci 2014; 17(3): 104-8.
[http://dx.doi.org/10.1179/1476830513Y.0000000071] [PMID: 23710627]
[139]
De Marchi F, Collo A, Scognamiglio A, et al. Study protocol on the safety and feasibility of a normocaloric ketogenic diet in people with amyotrophic lateral sclerosis. Nutrition 2022; 94: 111525.
[http://dx.doi.org/10.1016/j.nut.2021.111525] [PMID: 34864433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy