Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

In silico Screening and Validation of Achyranthes aspera as a Potential Inhibitor of BRAF and NRAS in Controlling Thyroid Cancer

Author(s): Ahmad M. Alamri*, Faris A. Alkhilaiwi, Najeeb U. Khan and Munazzah Tasleem*

Volume 23, Issue 19, 2023

Published on: 15 September, 2023

Page: [2111 - 2126] Pages: 16

DOI: 10.2174/1871520623666230607125258

Price: $65

Abstract

Background: Thyroid carcinoma (THCA) is one of the most prevalent endocrine tumors, accounting for 3.4% of all cancers diagnosed annually. Single Nucleotide Polymorphisms (SNPs) are the most prevalent genetic variation associated with thyroid cancer. Understanding thyroid cancer genetics will enhance diagnosis, prognosis, and treatment.

Methods: This TCGA-based study analyzes thyroid cancer-associated highly mutated genes through highly robust in silico techniques. Pathway, gene expression, and survival studies were performed on the top 10 highly mutated genes (BRAF, NRAS, TG, TTN, HRAS, MUC16, ZFHX3, CSMD2, EIFIAX, SPTA1). Novel natural compounds from Achyranthes aspera Linn were discovered to target two highly mutated genes. The natural compounds and synthetic drugs used to treat thyroid cancer were subjected to comparative molecular docking against BRAF and NRAS targets. The ADME characteristics of Achyranthes aspera Linn compounds were also investigated.

Results: The gene expression analysis revealed that the expression of ZFHX3, MCU16, EIF1AX, HRAS, and NRAS was up-regulated in tumor cells while BRAF, TTN, TG, CSMD2, and SPTA1 were down-regulated in tumor cells. In addition, the protein-protein interaction network demonstrated that HRAS, BRAF, NRAS, SPTA1, and TG proteins have strong interactions with each other as compared to other genes. The ADMET analysis shows that seven compounds have druglike properties. These compounds were further studied for molecular docking studies. The compounds MPHY012847, IMPHY005295, and IMPHY000939 show higher binding affinity with BRAF than pimasertib. In addition, IMPHY000939, IMPHY000303, IMPHY012847, and IMPHY005295 showed a better binding affinity with NRAS than Guanosine Triphosphate.

Conclusion: The outcomes of docking experiments conducted on BRAF and NRAS provide insight into natural compounds with pharmacological characteristics. These findings indicate that natural compounds derived from plants as a more promising cancer treatment option. Thus, the results of docking investigations conducted on BRAF and NRAS substantiate the conclusions that the molecule possesses the most suited drug-like qualities. Compared to other compounds, natural compounds are superior, and they are also druggable. This demonstrates that natural plant compounds can be an excellent source of potential anti-cancer agents. The preclinical research will pave the road for a possible anti-cancer agent.

Graphical Abstract

[1]
Thyroid Cancer. StatPearls; StatPearls Publishing: Treasure Island, FL, 2022. Internet
[2]
Vaccarella, S.; Franceschi, S.; Bray, F.; Wild, C.P.; Plummer, M.; Dal Maso, L. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N. Engl. J. Med., 2016, 375(7), 614-617.
[http://dx.doi.org/10.1056/NEJMp1604412] [PMID: 27532827]
[3]
Noone, A.M.; Cronin, K.A.; Altekruse, S.F.; Howlader, N.; Lewis, D.R.; Petkov, V.I.; Penberthy, L. Cancer incidence and survival trends by subtype using data from the surveillance epidemiology and end results program, 1992–2013. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 632-641.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0520] [PMID: 27956436]
[4]
Nikiforova, M.N.; Nikiforov, Y.E. Molecular diagnostics and predictors in thyroid cancer. Thyroid, 2009, 19(12), 1351-1361.
[http://dx.doi.org/10.1089/thy.2009.0240] [PMID: 19895341]
[5]
Fagin, J.A.; Wells, S.A., Jr Biologic and clinical perspectives on thyroid cancer. N. Engl. J. Med., 2016, 375(11), 1054-1067.
[http://dx.doi.org/10.1056/NEJMra1501993] [PMID: 27626519]
[6]
Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; Behera, M.; Bernard, B.; Beroukhim, R.; Bishop, J.A.; Black, A.D.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bowlby, R.; Bristow, C.A.; Brookens, R.; Brooks, D.; Bryant, R.; Buda, E.; Butterfield, Y.S.N.; Carling, T.; Carlsen, R.; Carter, S.L.; Carty, S.E.; Chan, T.A.; Chen, A.Y.; Cherniack, A.D.; Cheung, D.; Chin, L.; Cho, J.; Chu, A.; Chuah, E.; Cibulskis, K.; Ciriello, G.; Clarke, A.; Clayman, G.L.; Cope, L.; Copland, J.A.; Covington, K.; Danilova, L.; Davidsen, T.; Demchok, J.A.; DiCara, D.; Dhalla, N.; Dhir, R.; Dookran, S.S.; Dresdner, G.; Eldridge, J.; Eley, G.; El-Naggar, A.K.; Eng, S.; Fagin, J.A.; Fennell, T.; Ferris, R.L.; Fisher, S.; Frazer, S.; Frick, J.; Gabriel, S.B.; Ganly, I.; Gao, J.; Garraway, L.A.; Gastier-Foster, J.M.; Getz, G.; Gehlenborg, N.; Ghossein, R.; Gibbs, R.A.; Giordano, T.J.; Gomez-Hernandez, K.; Grimsby, J.; Gross, B.; Guin, R.; Hadjipanayis, A.; Harper, H.A.; Hayes, D.N.; Heiman, D.I.; Herman, J.G.; Hoadley, K.A.; Hofree, M.; Holt, R.A.; Hoyle, A.P.; Huang, F.W.; Huang, M.; Hutter, C.M.; Ideker, T.; Iype, L.; Jacobsen, A.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Kasaian, K.; Kebebew, E.; Khuri, F.R.; Kim, J.; Kramer, R.; Kreisberg, R.; Kucherlapati, R.; Kwiatkowski, D.J.; Ladanyi, M.; Lai, P.H.; Laird, P.W.; Lander, E.; Lawrence, M.S.; Lee, D.; Lee, E.; Lee, S.; Lee, W.; Leraas, K.M.; Lichtenberg, T.M.; Lichtenstein, L.; Lin, P.; Ling, S.; Liu, J.; Liu, W.; Liu, Y. LiVolsi, V.A.; Lu, Y.; Ma, Y.; Mahadeshwar, H.S.; Marra, M.A.; Mayo, M.; McFadden, D.G.; Meng, S.; Meyerson, M.; Mieczkowski, P.A.; Miller, M.; Mills, G.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Murray, B.A.; Nikiforov, Y.E.; Noble, M.S.; Ojesina, A.I.; Owonikoko, T.K.; Ozenberger, B.A.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Paull, E.O.; Pedamallu, C.S.; Perou, C.M.; Prins, J.F.; Protopopov, A.; Ramalingam, S.S.; Ramirez, N.C.; Ramirez, R.; Raphael, B.J.; Rathmell, W.K.; Ren, X.; Reynolds, S.M.; Rheinbay, E.; Ringel, M.D.; Rivera, M.; Roach, J.; Robertson, A.G.; Rosenberg, M.W.; Rosenthal, M.; Sadeghi, S.; Saksena, G.; Sander, C.; Santoso, N.; Schein, J.E.; Schultz, N.; Schumacher, S.E.; Seethala, R.R.; Seidman, J.; Senbabaoglu, Y.; Seth, S.; Sharpe, S.; Shaw, K.R.M.; Shen, J.P.; Shen, R.; Sherman, S.; Sheth, M.; Shi, Y.; Shmulevich, I.; Sica, G.L.; Simons, J.V.; Sinha, R.; Sipahimalani, P.; Smallridge, R.C.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Stewart, C.; Stojanov, P.; Stuart, J.M.; Sumer, S.O.; Sun, Y.; Tabak, B.; Tam, A.; Tan, D.; Tang, J.; Tarnuzzer, R.; Taylor, B.S.; Thiessen, N.; Thorne, L.; Thorsson, V.; Tuttle, R.M.; Umbricht, C.B.; Van Den Berg, D.J.; Vandin, F.; Veluvolu, U.; Verhaak, R.G.W.; Vinco, M.; Voet, D.; Walter, V.; Wang, Z.; Waring, S.; Weinberger, P.M.; Weinhold, N.; Weinstein, J.N.; Weisenberger, D.J.; Wheeler, D.; Wilkerson, M.D.; Wilson, J.; Williams, M.; Winer, D.A.; Wise, L.; Wu, J.; Xi, L.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zeiger, M.A.; Zeng, D.; Zenklusen, J.C.; Zhao, N.; Zhang, H.; Zhang, J.; Zhang, J.J.; Zhang, W.; Zmuda, E.; Zou, L. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3), 676-690.
[http://dx.doi.org/10.1016/j.cell.2014.09.050] [PMID: 25417114]
[7]
Kim, J.; Gosnell, J.E.; Roman, S.A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol., 2020, 16(1), 17-29.
[http://dx.doi.org/10.1038/s41574-019-0263-x] [PMID: 31616074]
[8]
Davies, L.; Ouellette, M.; Hunter, M.; Welch, H.G. The increasing incidence of small thyroid cancers: Where are the cases coming from? Laryngoscope, 2010, 120(12), 2446-2451.
[http://dx.doi.org/10.1002/lary.21076] [PMID: 21108428]
[9]
Olson, E.; Wintheiser, G.; Wolfe, K.M.; Droessler, J.; Silberstein, P.T. Epidemiology of thyroid cancer: A review of the national cancer database, 2000-2013. Cureus, 2019, 11(2), e4127.
[http://dx.doi.org/10.7759/cureus.4127] [PMID: 31049276]
[10]
Davies, L.; Welch, H.G. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA, 2006, 295(18), 2164-2167.
[http://dx.doi.org/10.1001/jama.295.18.2164] [PMID: 16684987]
[11]
Morris, L.G.T.; Myssiorek, D. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: A population-based analysis. Am. J. Surg., 2010, 200(4), 454-461.
[http://dx.doi.org/10.1016/j.amjsurg.2009.11.008] [PMID: 20561605]
[12]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther., 2003, 99(1), 1-13.
[http://dx.doi.org/10.1016/S0163-7258(03)00042-1] [PMID: 12804695]
[13]
Savithramma, N.; Yugandhar, P.; Gaddala, B. A review on medicinal plants as a potential source for cancer. Int. J. Pharm. Sci. Rev. Res., 2014, 26, 235-248.
[14]
Akbar, S. Handbook of 200 medicinal plants: A comprehensive review of their traditional medical uses and scientific justifications; Springer, 2020.
[http://dx.doi.org/10.1007/978-3-030-16807-0]
[15]
Chakraborty, A.; Brantner, A.; Mukainaka, T.; Nobukuni, Y.; Kuchide, M.; Konoshima, T.; Tokuda, H.; Nishino, H. Cancer chemopreventive activity of Achyranthes aspera leaves on Epstein–Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett., 2002, 177(1), 1-5.
[http://dx.doi.org/10.1016/S0304-3835(01)00766-2] [PMID: 11809524]
[16]
Subbarayan, P.R.; Sarkar, M.; Impellizzeri, S.; Raymo, F.; Lokeshwar, B.L.; Kumar, P.; Agarwal, R.P.; Ardalan, B. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells. J. Ethnopharmacol., 2010, 131(1), 78-82.
[http://dx.doi.org/10.1016/j.jep.2010.06.002] [PMID: 20541002]
[17]
Anuja, M.N.M.K.; Nithya, R.N.S.A.; Rajamanickam, C.; Madambath, I. Spermatotoxicity of a protein isolated from the root of Achyranthes aspera: A comparative study with gossypol. Contraception, 2010, 82(4), 385-390.
[http://dx.doi.org/10.1016/j.contraception.2010.04.011] [PMID: 20851234]
[18]
Sandhyakumary, K.; Boby, R.G.; Indira, M. Impact of feeding ethanolic extracts of Achyranthes aspera Linn. on reproductive functions in male rats. Indian J. Exp. Biol., 2002, 40(11), 1307-1309.
[PMID: 13677636]
[19]
Bhosale, U.; Pophale, P.; Somani, R.; Yegnanarayan, R. Effect of aqueous extracts of Achyranthes aspera Linn. on experimental animal model for inflammation. Anc. Sci. Life, 2012, 31(4), 202-206.
[http://dx.doi.org/10.4103/0257-7941.107362] [PMID: 23661870]
[20]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. String v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(D1), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[21]
Gonzalez-Del Pino, G.L.; Li, K.; Park, E.; Schmoker, A.M.; Ha, B.H.; Eck, M.J. Allosteric MEK inhibitors act on BRAF/MEK complexes to block MEK activation. Proc. Natl. Acad. Sci. USA, 2021, 118(36), e2107207118.
[http://dx.doi.org/10.1073/pnas.2107207118] [PMID: 34470822]
[22]
Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.P.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep., 2018, 8(1), 4329.
[http://dx.doi.org/10.1038/s41598-018-22631-z] [PMID: 29531263]
[23]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[24]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[25]
Hsu, K.C.; Chen, Y.F.; Lin, S.R.; Yang, J.M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011, 12(S1)(Suppl. 1), S33.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S33] [PMID: 21342564]
[26]
Riesco-Eizaguirre, G.; Santisteban, P. ENDOCRINE TUMOURS: Advances in the molecular pathogenesis of thyroid cancer: lessons from the cancer genome. Eur. J. Endocrinol., 2016, 175(5), R203-R217.
[http://dx.doi.org/10.1530/EJE-16-0202] [PMID: 27666535]
[27]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[28]
Vidinov, K.; Dodova, R.; Mitev, P.; Mitkova, A.; Dimitrova, I.; Shinkov, A.; Ivanova, R.; Mitev, V.; Kaneva, R. Clinicopathological significance of BRAF (V600E), NRAS (Q61K) and TERT (C228T, C250T and SNP Rs2853669) mutations in bulgarian papillary thyroid carcinoma patients. Acta Med. Bulg., 2021, 48(1), 1-8.
[http://dx.doi.org/10.2478/amb-2021-0001]
[29]
Alzahrani, A.S.; Murugan, A.K.; Qasem, E.; Alswailem, M.M.; AlGhamdi, B.; Moria, Y.; Al-Hindi, H. Absence of EIF1AX, PPM1D, and CHEK2 mutations reported in Thyroid Cancer Genome Atlas (TCGA) in a large series of thyroid cancer. Endocrine, 2019, 63(1), 94-100.
[http://dx.doi.org/10.1007/s12020-018-1762-6] [PMID: 30269267]
[30]
Rashid, F.; Bhat, G.; Khan, M.; Tabassum, S.; Bhat, M. Variations in MAP kinase gladiators and risk of differentiated thyroid carcinoma. Mol. Clin. Oncol., 2021, 16(2), 45.
[http://dx.doi.org/10.3892/mco.2021.2478] [PMID: 35003743]
[31]
Masoodi, T.; Siraj, A.K.; Siraj, S.; Azam, S.; Qadri, Z.; Albalawy, W.N.; Parvathareddy, S.K.; Al-Sobhi, S.S.; Al-Dayel, F.; Alkuraya, F.S.; Al-Kuraya, K.S. Whole-exome sequencing of matched primary and metastatic papillary thyroid cancer. Thyroid, 2020, 30(1), 42-56.
[http://dx.doi.org/10.1089/thy.2019.0052] [PMID: 31668133]
[32]
Vasko, V.; Ferrand, M.; Di Cristofaro, J.; Carayon, P.; Henry, J.F.; de Micco, C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab., 2003, 88(6), 2745-2752.
[http://dx.doi.org/10.1210/jc.2002-021186] [PMID: 12788883]
[33]
Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., II; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS point mutations and PAX8-PPAR γ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab., 2003, 88(5), 2318-2326.
[http://dx.doi.org/10.1210/jc.2002-021907] [PMID: 12727991]
[34]
Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.; Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5), 635-647.
[http://dx.doi.org/10.1016/j.cell.2005.01.014] [PMID: 15766527]
[35]
Yang, C. Next-generation sequencing identified somatic alterations that may underlie the etiology of Chinese papillary thyroid carcinoma. Eur. J. Cancer Prev., 2023, 32(3), 264-274.
[36]
Cui, Z.; Luo, Z.; Lin, Z.; Shi, L.; Hong, Y.; Yan, C. Long non‐coding RNA TTN‐AS1 facilitates tumorigenesis of papillary thyroid cancer through modulating the miR‐153‐3p/ZNRF2 axis. J. Gene Med., 2019, 21(5), e3083.
[http://dx.doi.org/10.1002/jgm.3083] [PMID: 30811764]
[37]
Oh, J.H.; Jang, S.J.; Kim, J.; Sohn, I.; Lee, J.Y.; Cho, E.J.; Chun, S.M.; Sung, C.O. Spontaneous mutations in the single TTN gene represent high tumor mutation burden. NPJ Genom. Med., 2020, 5(1), 33.
[http://dx.doi.org/10.1038/s41525-019-0107-6] [PMID: 32821429]
[38]
Han, X.; Chen, J.; Wang, J.; Xu, J.; Liu, Y. TTN mutations predict a poor prognosis in patients with thyroid cancer. Biosci. Rep., 2022, 42(7), BSR20221168.
[http://dx.doi.org/10.1042/BSR20221168] [PMID: 35766333]
[39]
Kahara, T. Thyroglobulin gene mutation with cold nodule on thyroid scintigraphy. Case Rep. Endocrinol., 2012, 2012, 280319.
[http://dx.doi.org/10.1155/2012/280319]
[40]
Lin, J.D. Thyroglobulin and human thyroid cancer. Clin. Chim. Acta, 2008, 388(1-2), 15-21.
[http://dx.doi.org/10.1016/j.cca.2007.11.002] [PMID: 18060877]
[41]
Hishinuma, A.; Fukata, S.; Kakudo, K.; Murata, Y.; Ieiri, T. High incidence of thyroid cancer in long-standing goiters with thyroglobulin mutations. Thyroid, 2005, 15(9), 1079-1084.
[http://dx.doi.org/10.1089/thy.2005.15.1079] [PMID: 16187918]
[42]
Xu, Q.; Song, A.; Xie, Q. The integrated analyses of driver genes identify key biomarkers in thyroid cancer. Technol. Cancer Res. Treat., 2020, 19, 1533033820940440.
[http://dx.doi.org/10.1177/1533033820940440] [PMID: 32812852]
[43]
Xie, Z.; Li, X.; Lun, Y.; He, Y.; Wu, S.; Wang, S.; Sun, J.; He, Y.; Xin, S.; Zhang, J. Papillary thyroid carcinoma with a high tumor mutation burden has a poor prognosis. Int. Immunopharmacol., 2020, 89(Pt B), 107090.
[http://dx.doi.org/10.1016/j.intimp.2020.107090] [PMID: 33091816]
[44]
Aithal, A.; Rauth, S.; Kshirsagar, P.; Shah, A.; Lakshmanan, I.; Junker, W.M.; Jain, M.; Ponnusamy, M.P.; Batra, S.K. MUC16 as a novel target for cancer therapy. Expert Opin. Ther. Targets, 2018, 22(8), 675-686.
[http://dx.doi.org/10.1080/14728222.2018.1498845] [PMID: 29999426]
[45]
Felder, M.; Kapur, A.; Gonzalez-Bosquet, J.; Horibata, S.; Heintz, J.; Albrecht, R.; Fass, L.; Kaur, J.; Hu, K.; Shojaei, H.; Whelan, R.J.; Patankar, M.S. MUC16 (CA125): Tumor biomarker to cancer therapy, a work in progress. Mol. Cancer, 2014, 13(1), 129.
[http://dx.doi.org/10.1186/1476-4598-13-129] [PMID: 24886523]
[46]
Haridas, D.; Ponnusamy, M.P.; Chugh, S.; Lakshmanan, I.; Seshacharyulu, P.; Batra, S.K. MUC16: Molecular analysis and its functional implications in benign and malignant conditions. FASEB J., 2014, 28(10), 4183-4199.
[http://dx.doi.org/10.1096/fj.14-257352] [PMID: 25002120]
[47]
Thériault, C.; Pinard, M.; Comamala, M.; Migneault, M.; Beaudin, J.; Matte, I.; Boivin, M.; Piché, A.; Rancourt, C. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol. Oncol., 2011, 121(3), 434-443.
[http://dx.doi.org/10.1016/j.ygyno.2011.02.020] [PMID: 21421261]
[48]
Xiang, X.; Feng, M.; Felder, M.; Connor, J.P.; Man, Y.; Patankar, M.S.; Ho, M. HN125: A novel immunoadhesin targeting MUC16 with potential for cancer therapy. J. Cancer, 2011, 2, 280-291.
[http://dx.doi.org/10.7150/jca.2.280] [PMID: 21611109]
[49]
Das, S.; Batra, S.K. Understanding the unique attributes of MUC16 (CA125): Potential implications in targeted therapy. Cancer Res., 2015, 75(22), 4669-4674.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1050] [PMID: 26527287]
[50]
Simões-Pereira, J.; Moura, M.M.; Marques, I.J.; Rito, M.; Cabrera, R.A.; Leite, V.; Cavaco, B.M. The role of EIF1AX in thyroid cancer tumourigenesis and progression. J. Endocrinol. Invest., 2019, 42(3), 313-318.
[http://dx.doi.org/10.1007/s40618-018-0919-8] [PMID: 29968046]
[51]
Karunamurthy, A.; Panebianco, F.; Hsiao, S.J.; Vorhauer, J.; Nikiforova, M.N.; Chiosea, S.; Nikiforov, Y.E. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr. Relat. Cancer, 2016, 23(4), 295-301.
[http://dx.doi.org/10.1530/ERC-16-0043] [PMID: 26911375]
[52]
Karslioglu French, E.; Nikitski, A.V.; Yip, L.; Nikiforova, M.N.; Nikiforov, Y.E.; Carty, S.E. Clinicopathological features and outcomes of thyroid nodules with EIF1AX mutations. Endocr. Relat. Cancer, 2022, 29(8), 467-473.
[http://dx.doi.org/10.1530/ERC-22-0041] [PMID: 35609001]
[53]
Cha, Y.J.; Koo, J.S. Next-generation sequencing in thyroid cancer. J. Transl. Med., 2016, 14(1), 322.
[http://dx.doi.org/10.1186/s12967-016-1074-7] [PMID: 27871285]
[54]
Sponziello, M.; Silvestri, G.; Verrienti, A.; Perna, A.; Rosignolo, F.; Brunelli, C.; Pecce, V.; Rossi, E.D.; Lombardi, C.P.; Durante, C.; Filetti, S.; Fadda, G. A novel nonsense EIF1AX mutation identified in a thyroid nodule histologically diagnosed as oncocytic carcinoma. Endocrine, 2018, 62(2), 492-495.
[http://dx.doi.org/10.1007/s12020-018-1611-7] [PMID: 29700698]
[55]
Yang, C.; Xu, W.; Gong, J.; Liu, Z.; Cui, D. Novel somatic alterations underlie Chinese papillary thyroid carcinoma. Cancer Biomark., 2020, 27(4), 445-460.
[http://dx.doi.org/10.3233/CBM-191200] [PMID: 32065787]
[56]
Zhang, H.; Huang, T.; Ren, X.; Fang, X.; Chen, X.; Wei, H.; Sun, W.; Wang, Y. Integrated pan-cancer analysis of CSMD2 as a potential prognostic, diagnostic, and immune biomarker. Front. Genet., 2022, 13, 918486.
[http://dx.doi.org/10.3389/fgene.2022.918486] [PMID: 36061177]
[57]
Yi, Q.; Peng, J.; Xu, Z.; Liang, Q.; Cai, Y.; Peng, B.; He, Q.; Yan, Y. Spectrum of BRAF aberrations and its potential clinical implications: Insights from integrative pan-cancer analysis. Front. Bioeng. Biotechnol., 2022, 10, 806851.
[http://dx.doi.org/10.3389/fbioe.2022.806851] [PMID: 35910024]
[58]
Affinito, O.; Orlandella, F.M.; Luciano, N.; Salvatore, M.; Salvatore, G.; Franzese, M. Evolution of intra-tumoral heterogeneity across different pathological stages in papillary thyroid carcinoma. Cancer Cell Int., 2022, 22(1), 263.
[http://dx.doi.org/10.1186/s12935-022-02680-1] [PMID: 35996174]
[59]
Stanzione, F.; Giangreco, I.; Cole, J.C. Chapter Four - Use of molecular docking computational tools in drug discovery.Progress in Medicinal Chemistry; Witty, D.R; Cox, B., Ed.; Elsevier, 2021, pp. 273-343.
[60]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy