Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Brain-Derived Neurotrophic Factor – The Protective Agent Against Neurological Disorders

Author(s): Prathyusha Koyya, Ram Kumar Manthari* and Santhi Latha Pandrangi

Volume 23, Issue 3, 2024

Published on: 15 June, 2023

Page: [353 - 366] Pages: 14

DOI: 10.2174/1871527322666230607110617

Price: $65

conference banner
Abstract

The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Schizophrenia, and Huntington’s, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.

Graphical Abstract

[1]
Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors 2004; 22(3): 123-31.
[http://dx.doi.org/10.1080/08977190410001723308] [PMID: 15518235]
[2]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[3]
Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001; 24(1): 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[4]
Berlanga-Macías C, Sánchez-López M, Solera-Martínez M, et al. Relationship between exclusive breastfeeding and brain-derived neurotrophic factor in children. PLoS One 2021; 16(3): e0248023.
[http://dx.doi.org/10.1371/journal.pone.0248023] [PMID: 33662047]
[5]
Tanila H. The role of BDNF in Alzheimer's diseaseNeurobiol Dis 2017; 97(B): 114.
[http://dx.doi.org/ 10.1016/j.nbd.2016.05.008]
[6]
Hong CJ, Liou YJ, Tsai SJ. Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Res Bull 2011; 86(5-6): 287-97.
[http://dx.doi.org/10.1016/j.brainresbull.2011.08.019] [PMID: 21924328]
[7]
Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001; 21(17): 6718-31.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06718.2001] [PMID: 11517261]
[8]
Padmakumar S, Jones G, Pawar G, et al. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J Control Release 2021; 331: 176-86.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.027] [PMID: 33484777]
[9]
Shekari A. The effects of agind and alzheimer’s disease on retrograde neurotropin transport in basal forebrain cholinergic neurons. 2021. Available from: http://hdl.handle.net/11375/26985
[10]
Scalzo P, Kümmer A, Bretas TL, Cardoso F, Teixeira AL. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 2010; 257(4): 540-5.
[http://dx.doi.org/10.1007/s00415-009-5357-2] [PMID: 19847468]
[11]
Mughal MR, Baharani A, Chigurupati S, et al. Electroconvulsive shock ameliorates disease processes and extends survival in huntingtin mutant mice. Hum Mol Genet 2011; 20(4): 659-69.
[http://dx.doi.org/10.1093/hmg/ddq512] [PMID: 21106706]
[12]
Sohrabji F, Lewis DK. Estrogen–BDNF interactions: Implications for neurodegenerative diseases. Front Neuroendocrinol 2006; 27(4): 404-14.
[http://dx.doi.org/10.1016/j.yfrne.2006.09.003] [PMID: 17069877]
[13]
Mo Y, Yao H, Lv W, et al. Effects of electroacupuncture at governor vessel acupoints on neurotrophin-3 in rats with experimental spinal cord injury. Neural Plast 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/2371875] [PMID: 27597902]
[14]
Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T. Mouse and ratBDNF gene structure and expression revisited. J Neurosci Res 2007; 85(3): 525-35.
[http://dx.doi.org/10.1002/jnr.21139] [PMID: 17149751]
[15]
Arévalo JC, Deogracias R. Mechanisms controlling the expression and secretion of BDNF. Biomolecules 2023; 13(5): 789.
[http://dx.doi.org/10.3390/biom13050789] [PMID: 37238659]
[16]
Hernández-Echeagaray E. The role of the TrkB-T1 receptor in the neurotrophin-4/5 antagonism of brain-derived neurotrophic factor on corticostriatal synaptic transmission. Neural Regen Res 2020; 15(11): 1973-6.
[http://dx.doi.org/10.4103/1673-5374.282224] [PMID: 32394943]
[17]
Meeker R, Williams K. Dynamic nature of the p75 neurotrophin receptor in response to injury and disease. J Neuroimmune Pharmacol 2014; 9(5): 615-28.
[http://dx.doi.org/10.1007/s11481-014-9566-9] [PMID: 25239528]
[18]
Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006; 361(1473): 1545-64.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[19]
Ibrahim AM, Chauhan L, Bhardwaj A, et al. Brain-derived neurotropic factor in neurodegenerative disorders. Biomedicines 2022; 10(5): 1143.
[http://dx.doi.org/10.3390/biomedicines10051143] [PMID: 35625880]
[20]
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018; 15(12): 731-47.
[http://dx.doi.org/10.1038/s41571-018-0113-0] [PMID: 30333516]
[21]
Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 2003; 72(1): 609-42.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629] [PMID: 12676795]
[22]
Pandit M, Behl T, Sachdeva M, Arora S. Role of brain derived neurotropic factor in obesity. Obes Med 2020; 17: 100189.
[http://dx.doi.org/10.1016/j.obmed.2020.100189]
[23]
Pandya CD, Kutiyanawalla A, Pillai A. BDNF–TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr 2013; 6(1): 22-8.
[http://dx.doi.org/10.1016/j.ajp.2012.08.010] [PMID: 23380313]
[24]
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10(1): 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]
[25]
Li H, Xue X, Li L, et al. Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway. Neurotox Res 2020; 37(4): 996-1008.
[http://dx.doi.org/10.1007/s12640-020-00165-5] [PMID: 31970651]
[26]
Mutti V, Bono F, Tomasoni Z, et al. Structural plasticity of dopaminergic neurons requires the activation of the D3R-nAChR heteromer and the PI3K-ERK1/2/Akt-induced expression of c-Fos and p70S6K signaling pathway. Mol Neurobiol 2022; 59(4): 2129-49.
[http://dx.doi.org/10.1007/s12035-022-02748-z] [PMID: 35044626]
[27]
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19(1): 113.
[http://dx.doi.org/10.1186/s12944-020-01286-8] [PMID: 32466765]
[28]
Zhao S, Shi J, Yu G, et al. Photosensitive tyrosine analogues unravel site-dependent phosphorylation in TrkA initiated MAPK/ERK signaling. Commun Biol 2020; 3(1): 706.
[http://dx.doi.org/10.1038/s42003-020-01396-0] [PMID: 33239753]
[29]
Hisano K, Kawase S, Mimura T, et al. Structurally different lysophosphatidylethanolamine species stimulate neurite outgrowth in cultured cortical neurons via distinct G-protein-coupled receptors and signaling cascades. Biochem Biophys Res Commun 2021; 534: 179-85.
[http://dx.doi.org/10.1016/j.bbrc.2020.11.119] [PMID: 33298313]
[30]
Nasrolahi A, Javaherforooshzadeh F, Jafarzadeh-Gharehziaaddin M, Mahmoudi J, Asl KD, Shabani Z. Therapeutic potential of neurotrophic factors in Alzheimer’s Disease. Mol Biol Rep 2022; 49(3): 2345-57.
[http://dx.doi.org/10.1007/s11033-021-06968-9] [PMID: 34826049]
[31]
Castelli V, Alfonsetti M, d’Angelo M. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2023; 18(6): 1220-8.
[http://dx.doi.org/10.4103/1673-5374.358619] [PMID: 36453397]
[32]
Sullivan AM, O’Keeffe GW. Neurotrophic factor therapy for Parkinson’s disease: past, present and future. Neural Regen Res 2016; 11(2): 205-7.
[http://dx.doi.org/10.4103/1673-5374.177710] [PMID: 27073356]
[33]
Voutilainen MH, Arumäe U, Airavaara M, Saarma M. Therapeutic potential of the endoplasmic reticulum located and secreted CDNF/MANF family of neurotrophic factors in Parkinson’s disease. FEBS Lett 2015; 589(24PartA): 3739-48.
[http://dx.doi.org/ 10.1016/j.febslet.2015.09.031] [PMID: 26450777]
[34]
Barker RA, Björklund A, Gash DM, et al. GDNF and Parkinson’s disease: where next? A summary from a recent workshop. J Parkinsons Dis 2020; 10(3): 875-91.
[http://dx.doi.org/10.3233/JPD-202004] [PMID: 32508331]
[35]
Wang J, Hu WW, Jiang Z, Feng MJ. Advances in treatment of neurodegenerative diseases: Perspectives for combination of stem cells with neurotrophic factors. World J Stem Cells 2020; 12(5): 323-38.
[http://dx.doi.org/10.4252/wjsc.v12.i5.323] [PMID: 32547681]
[36]
Nordvall G, Forsell P, Sandin J. Neurotrophin-targeted therapeutics: A gateway to cognition and more? Drug Discov Today 2022; 27(10): 103318.
[http://dx.doi.org/10.1016/j.drudis.2022.07.003] [PMID: 35850433]
[37]
Goulding SR, Sullivan AM, O’Keeffe GW, Collins LM. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson’s disease. Neural Regen Res 2020; 15(8): 1432-6.
[http://dx.doi.org/10.4103/1673-5374.274327] [PMID: 31997802]
[38]
Jann J, Gascon S, Roux S, Faucheux N. Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions. Int J Mol Sci 2020; 21(20): 7597.
[http://dx.doi.org/10.3390/ijms21207597] [PMID: 33066607]
[39]
Sampath TK, Reddi AH. Discovery of bone morphogenetic proteins – A historical perspective. Bone 2020; 140: 115548.
[http://dx.doi.org/10.1016/j.bone.2020.115548] [PMID: 32730937]
[40]
Haraguchi R, Kitazawa R, Kohara Y, Ikedo A, Imai Y, Kitazawa S. Recent insights into long bone development: Central role of hedgehog signaling pathway in regulating growth plate. Int J Mol Sci 2019; 20(23): 5840.
[http://dx.doi.org/10.3390/ijms20235840] [PMID: 31757091]
[41]
Sanchez-Duffhues G, Williams E, Goumans MJ, Heldin CH, ten Dijke P. Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone 2020; 138: 115472.
[http://dx.doi.org/10.1016/j.bone.2020.115472] [PMID: 32522605]
[42]
Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2013; 2(1): 47-63.
[http://dx.doi.org/10.1002/wdev.86] [PMID: 23799630]
[43]
Hanke T, Wong JF, Berger BT, et al. A highly selective chemical probe for activin receptor-like kinases ALK4 and ALK5. ACS Chem Biol 2020; 15(4): 862-70.
[http://dx.doi.org/10.1021/acschembio.0c00076] [PMID: 32176847]
[44]
Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res 2009; 19(1): 128-39.
[http://dx.doi.org/10.1038/cr.2008.328] [PMID: 19114990]
[45]
Hill CS. Nucleocytoplasmic shuttling of Smad proteins. Cell Res 2009; 19(1): 36-46.
[http://dx.doi.org/10.1038/cr.2008.325] [PMID: 19114992]
[46]
Nickel J, Mueller TD. Specification of BMP Signaling. Cells 2019; 8(12): 1579.
[http://dx.doi.org/10.3390/cells8121579] [PMID: 31817503]
[47]
Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem 2010; 147(1): 35-51.
[http://dx.doi.org/10.1093/jb/mvp148] [PMID: 19762341]
[48]
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2020; 67(Pt 2): 102-16.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.023] [PMID: 31899247]
[49]
Goulding SR. Defining the potential of gene therapy with bone morphogenetic proteins as a novel therapeutic approach in parkinson’s disease. 2021. Available from: https://sword.cit.ie/allthe/28/
[50]
Mueller TD, Nickel J. Promiscuity and specificity in BMP receptor activation. FEBS Lett 2012; 586(14): 1846-59.
[http://dx.doi.org/10.1016/j.febslet.2012.02.043] [PMID: 22710174]
[51]
Renault L, Patiño LC, Magnin F, et al. BMPR1A and BMPR1B missense mutations cause primary ovarian insufficiency. J Clin Endocrinol Metab 2020; 105(4): e1449-57.
[http://dx.doi.org/10.1210/clinem/dgz226] [PMID: 31769494]
[52]
Agnew C, Ayaz P, Kashima R, et al. Structural basis for ALK2/BMPR2 receptor complex signaling through kinase domain oligomerization. Nat Commun 2021; 12(1): 4950.
[http://dx.doi.org/10.1038/s41467-021-25248-5] [PMID: 34400635]
[53]
Schliermann A, Nickel J. Unraveling the connection between fibroblast growth factor and bone morphogenetic protein signaling. Int J Mol Sci 2018; 19(10): 3220.
[http://dx.doi.org/10.3390/ijms19103220] [PMID: 30340367]
[54]
Hegarty SV, Sullivan AM, O’Keeffe GW. Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth. Neurosci Lett 2017; 643: 32-7.
[http://dx.doi.org/10.1016/j.neulet.2017.02.013] [PMID: 28188849]
[55]
Marincola Smith P, Means A, Beauchamp R. Immunomodulatory effects of TGF-β family signaling within intestinal epithelial cells and carcinomas. Gastrointestinal Disorders 2019; 1(2): 290-300.
[http://dx.doi.org/10.3390/gidisord1020024] [PMID: 33834163]
[56]
Anantha J, Goulding SR, Wyatt SL, et al. STRAP and NME1 mediate the neurite growth-promoting effects of the neurotrophic factor GDF5. iScience 2020; 23(9): 101457.
[http://dx.doi.org/10.1016/j.isci.2020.101457] [PMID: 32853992]
[57]
Hegarty SV, O’Keeffe GW, Sullivan AM. Neurotrophic factors: From neurodevelopmental regulators to novel therapies for Parkinson’s disease. Neural Regen Res 2014; 9(19): 1708-11.
[http://dx.doi.org/10.4103/1673-5374.143410] [PMID: 25422631]
[58]
Goulding SR, Sullivan AM, O’Keeffe GW, Collins LM. Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Parkinsonism Relat Disord 2019; 64: 194-201.
[http://dx.doi.org/10.1016/j.parkreldis.2019.04.008] [PMID: 31000327]
[59]
Nikoletopoulou V, Sidiropoulou K, Kallergi E, Dalezios Y, Tavernarakis N. Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab 2017; 26(1): 230-242.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.06.005] [PMID: 28683289]
[60]
Chen SD, Wu CL, Hwang WC, Yang DI. More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. Int J Mol Sci 2017; 18(3): 545.
[http://dx.doi.org/10.3390/ijms18030545] [PMID: 28273832]
[61]
Zhu Z, Yang C, Iyaswamy A, et al. Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int J Mol Sci 2019; 20(3): 728.
[http://dx.doi.org/10.3390/ijms20030728] [PMID: 30744070]
[62]
Pringle ES, Robinson CA, McCormick C. Kaposi’s sarcoma-associated herpesvirus lytic replication interferes with mTORC1 regulation of autophagy and viral protein synthesis. J Virol 2019; 93(21): e00854-19.
[http://dx.doi.org/10.1128/JVI.00854-19] [PMID: 31375594]
[63]
Yin Z, Popelka H, Lei Y, Yang Y, Klionsky DJ. The roles of ubiquitin in mediating autophagy. Cells 2020; 9(9): 2025.
[http://dx.doi.org/10.3390/cells9092025] [PMID: 32887506]
[64]
Wu CL, Chen CH, Hwang CS, Chen SD, Hwang WC, Yang DI. Roles of p62 in BDNF-dependent autophagy suppression and neuroprotection against mitochondrial dysfunction in rat cortical neurons. J Neurochem 2017; 140(6): 845-61.
[http://dx.doi.org/10.1111/jnc.13937] [PMID: 28027414]
[65]
Colardo M, Martella N, Pensabene D, et al. Neurotrophins as key regulators of cell metabolism: Implications for cholesterol homeostasis. Int J Mol Sci 2021; 22(11): 5692.
[http://dx.doi.org/10.3390/ijms22115692] [PMID: 34073639]
[66]
Chottekalapanda RU, Kalik S, Gresack J, et al. AP-1 controls the p11-dependent antidepressant response. Mol Psychiatry 2020; 25(7): 1364-81.
[http://dx.doi.org/10.1038/s41380-020-0767-8] [PMID: 32439846]
[67]
Daniele S, Giacomelli C, Martini C. Brain ageing and neurodegenerative disease: The role of cellular waste management. Biochem Pharmacol 2018; 158: 207-16.
[http://dx.doi.org/10.1016/j.bcp.2018.10.030] [PMID: 30393045]
[68]
Du TT, Zhu G, Chen Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY) 2020; 12(7): 6324-39.
[http://dx.doi.org/10.18632/aging.103026] [PMID: 32267832]
[69]
Liu X, Jaenisch R. Severe peripheral sensory neuron loss and modest motor neuron reduction in mice with combined deficiency of brain-derived neurotrophic factor, neurotrophin 3 and neurotrophin 4/5. Dev Dyn 2000; 218(1): 94-101.
[http://dx.doi.org/10.1002/(SICI)1097-0177(200005)218:1<94:AID-DVDY8>3.0.CO;2-Z] [PMID: 10822262]
[70]
Zagrebelsky M, Tacke C, Korte M. BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res 2020; 382(1): 185-99.
[http://dx.doi.org/10.1007/s00441-020-03226-5] [PMID: 32537724]
[71]
Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol 2001; 11(3): 297-305.
[http://dx.doi.org/10.1016/S0959-4388(00)00211-7] [PMID: 11399427]
[72]
Klöcker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bähr M. Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci 2000; 20(18): 6962-7.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06962.2000] [PMID: 10995840]
[73]
Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 2002; 80(3): 539-47.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00747.x] [PMID: 11905999]
[74]
Rauti R, Cellot G, D’Andrea P, et al. BDNF impact on synaptic dynamics: Extra or intracellular long-term release differently regulates cultured hippocampal synapses. Mol Brain 2020; 13(1): 43.
[http://dx.doi.org/10.1186/s13041-020-00582-9] [PMID: 32183860]
[75]
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 2020; 21(20): 7777.
[http://dx.doi.org/10.3390/ijms21207777] [PMID: 33096634]
[76]
Bathina S, Srinivas N, Das UN. Streptozotocin produces oxidative stress, inflammation and decreases BDNF concentrations to induce apoptosis of RIN5F cells and type 2 diabetes mellitus in Wistar rats. Biochem Biophys Res Commun 2017; 486(2): 406-13.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.054] [PMID: 28315336]
[77]
Parveen R, Kapur P, Kohli S, Agarwal NB. Attenuated brain derived neurotrophic factor and depression in type 2 diabetes mellitus patients: A case-control study. Clin Epidemiol Glob Health 2022; 15: 101016.
[http://dx.doi.org/10.1016/j.cegh.2022.101016]
[78]
Zhang XY, Liang J, Chen DC, et al. Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology (Berl) 2012; 222(2): 277-84.
[http://dx.doi.org/10.1007/s00213-012-2643-y] [PMID: 22274000]
[79]
Wang ZH, Xiang J, Liu X, et al. Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-secretase by upregulating C/EBPβ in alzheimer’s disease. Cell Rep 2019; 28(3): 655-669.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.06.054] [PMID: 31315045]
[80]
Banerjee M, Shenoy RR. Emphasizing roles of BDNF promoters and inducers in Alzheimer’s disease for improving impaired cognition and memory. J Basic Clin Physiol Pharmacol 2023; 34(2): 125-36.
[http://dx.doi.org/10.1515/jbcpp-2021-0182] [PMID: 34751526]
[81]
Numakawa T, Odaka H. Brain-derived neurotrophic factor signaling in the pathophysiology of Alzheimer’s disease: Beneficial effects of flavonoids for neuroprotection. Int J Mol Sci 2021; 22(11): 5719.
[http://dx.doi.org/10.3390/ijms22115719] [PMID: 34071978]
[82]
Ginsberg SD, Malek-Ahmadi MH, Alldred MJ, et al. Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal gene expression are putative predictors of neuritic plaque and neurofibrillary tangle pathology. Neurobiol Dis 2019; 132: 104540.
[http://dx.doi.org/10.1016/j.nbd.2019.104540] [PMID: 31349032]
[83]
Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009; 5(6): 311-22.
[http://dx.doi.org/10.1038/nrneurol.2009.54] [PMID: 19498435]
[84]
Rigamonti D, Sipione S, Goffredo D, Zuccato C, Fossale E, Cattaneo E. Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 2001; 276(18): 14545-8.
[http://dx.doi.org/10.1074/jbc.C100044200] [PMID: 11278258]
[85]
Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 2007; 81(5-6): 294-330.
[http://dx.doi.org/10.1016/j.pneurobio.2007.01.003] [PMID: 17379385]
[86]
Zuccato C, Ciammola A, Rigamonti D, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001; 293(5529): 493-8.
[http://dx.doi.org/10.1126/science.1059581] [PMID: 11408619]
[87]
Balaratnasingam S, Janca A. Brain Derived Neurotrophic Factor: A novel neurotrophin involved in psychiatric and neurological disorders. Pharmacol Ther 2012; 134(1): 116-24.
[http://dx.doi.org/10.1016/j.pharmthera.2012.01.006] [PMID: 22281237]
[88]
Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 10(3): 209-19.
[http://dx.doi.org/10.1038/nrd3366] [PMID: 21358740]
[89]
Sarchielli E, Marini M, Ambrosini S, et al. Multifaceted roles of BDNF and FGF2 in human striatal primordium development. An in vitro study. Exp Neurol 2014; 257: 130-47.
[http://dx.doi.org/10.1016/j.expneurol.2014.04.021] [PMID: 24792640]
[90]
Simmons DA, Rex CS, Palmer L, et al. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci USA 2009; 106(12): 4906-11.
[http://dx.doi.org/10.1073/pnas.0811228106] [PMID: 19264961]
[91]
Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat Rev Neurol 2019; 15(4): 204-23.
[http://dx.doi.org/10.1038/s41582-019-0155-7] [PMID: 30867588]
[92]
Sonne J, Reddy V, Beato MR. Neuroanatomy, Substantia Nigra StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[93]
André VM, Cepeda C, Levine MS. Dopamine and glutamate in Huntington’s disease: A balancing act. CNS Neurosci Ther 2010; 16(3): 163-78.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00134.x] [PMID: 20406248]
[94]
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int J Mol Sci 2020; 21(3): 1170.
[http://dx.doi.org/10.3390/ijms21031170] [PMID: 32050617]
[95]
Bruna B, Lobos P, Herrera-Molina R, Hidalgo C, Paula-Lima A, Adasme T. The signaling pathways underlying BDNF-induced Nrf2 hippocampal nuclear translocation involve ROS, RyR-Mediated Ca2+ signals, ERK and PI3K. Biochem Biophys Res Commun 2018; 505(1): 201-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.080] [PMID: 30243728]
[96]
Singh K, Han K, Tilve S, Wu K, Geller HM, Sack MN. Parkin targets NOD2 to regulate astrocyte endoplasmic reticulum stress and inflammation. Glia 2018; 66(11): 2427-37.
[http://dx.doi.org/10.1002/glia.23482] [PMID: 30378174]
[97]
Wang L, Li J, Di L. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2022; 42(2): 946-82.
[http://dx.doi.org/10.1002/med.21867] [PMID: 34729791]
[98]
Kang SS, Zhang Z, Liu X, et al. TrkB neurotrophic activities are blocked by α-synuclein, triggering dopaminergic cell death in Parkinson’s disease. Proc Natl Acad Sci USA 2017; 114(40): 10773-8.
[http://dx.doi.org/10.1073/pnas.1713969114] [PMID: 28923922]
[99]
Jin W. Regulation of BDNF-TrkB signaling and potential therapeutic strategies for Parkinson’s disease. J Clin Med 2020; 9(1): 257.
[http://dx.doi.org/10.3390/jcm9010257] [PMID: 31963575]
[100]
Ni Y, Yang X, Zheng L, et al. Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol Nutr Food Res 2019; 63(22): 1900603.
[http://dx.doi.org/10.1002/mnfr.201900603] [PMID: 31433910]
[101]
Julienne H, Buhl E, Leslie DS, Hodge JJL. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson’s disease phenotypes. Neurobiol Dis 2017; 104: 15-23.
[http://dx.doi.org/10.1016/j.nbd.2017.04.014] [PMID: 28435104]
[102]
Tomassoni-Ardori F, Fulgenzi G, Becker J, et al. Rbfox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. eLife 2019; 8: e49673.
[http://dx.doi.org/10.7554/eLife.49673] [PMID: 31429825]
[103]
Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 2009; 29(27): 8688-97.
[http://dx.doi.org/10.1523/JNEUROSCI.6078-08.2009] [PMID: 19587275]
[104]
Hernandez CM, Terry AV Jr. Repeated nicotine exposure in rats: Effects on memory function, cholinergic markers and nerve growth factor. Neuroscience 2005; 130(4): 997-1012.
[http://dx.doi.org/10.1016/j.neuroscience.2004.10.006] [PMID: 15652996]
[105]
Mercado NM, Collier TJ, Sortwell CE, Steece-Collier K. BDNF in the aged brain: translational implications for Parkinson’s disease. Austin Neurol Neurosci 2017; 2(2): 1021.
[PMID: 29726549]
[106]
Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev 2017; 35: 222-40.
[http://dx.doi.org/10.1016/j.arr.2016.09.010] [PMID: 27713095]
[107]
Sahu G, Malavade K, Jacob T. Cognitive impairment in schizophrenia: Interplay of BDNF and childhood trauma? A review of literature. Psychiatr Q 2016; 87(3): 559-69.
[http://dx.doi.org/10.1007/s11126-015-9409-8] [PMID: 26603624]
[108]
Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res Rev 2018; 48: 109-21.
[http://dx.doi.org/10.1016/j.arr.2018.10.002] [PMID: 30326283]
[109]
Hashimoto K. Serum brain-derived neurotrophic factor as a predictor of incident dementia. JAMA Neurol 2014; 71(5): 653.
[http://dx.doi.org/10.1001/jamaneurol.2013.6414] [PMID: 24818682]
[110]
Hashimoto K. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: Emerging links between cardiovascular disease and depression. Prog Neurobiol 2013; 100: 15-29.
[http://dx.doi.org/10.1016/j.pneurobio.2012.09.001] [PMID: 23044468]
[111]
Dorszewska J. Cell biology of normal brain aging: Synaptic plasticity–cell death. Aging Clin Exp Res 2013; 25(1): 25-34.
[http://dx.doi.org/10.1007/s40520-013-0004-2] [PMID: 23740630]
[112]
Galle S, Licher S, Milders M, et al. Plasma brain-derived neurotropic factor levels are associated with aging and smoking but not with future dementia in the rotterdam study. J Alzheimers Dis 2021; 80(3): 1139-49.
[http://dx.doi.org/10.3233/JAD-200371] [PMID: 33646145]
[113]
Enette L, Vogel T, Fanon JL, Lang PO. Effect of interval and continuous aerobic training on basal serum and plasma brain-derived neurotrophic factor values in seniors: A systematic review of intervention studies. Rejuvenation Res 2017; 20(6): 473-83.
[http://dx.doi.org/10.1089/rej.2016.1886] [PMID: 28498065]
[114]
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022; 185(1): 62-76.
[http://dx.doi.org/10.1016/j.cell.2021.12.003] [PMID: 34963057]
[115]
Fujisawa M, Takeshita Y, Fujikawa S, et al. Exploring lipophilic compounds that induce BDNF secretion in astrocytes beyond the BBB using a new multi-cultured human in vitro BBB model. J Neuroimmunol 2022; 362: 577783.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577783] [PMID: 34902709]
[116]
Chen C, Dong Y, Liu F, et al. A study of antidepressant effect and mechanism on intranasal delivery of BDNF-HA2TAT/AAV to rats with post-stroke depression. Neuropsychiatr Dis Treat 2020; 16: 637-49.
[http://dx.doi.org/10.2147/NDT.S227598] [PMID: 32184603]
[117]
Pardridge WM. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci 2020; 11: 373.
[http://dx.doi.org/10.3389/fnagi.2019.00373] [PMID: 31998120]
[118]
D’Souza A, Dave KM, Stetler RAS, Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021; 171: 332-51.
[http://dx.doi.org/10.1016/j.addr.2021.01.015] [PMID: 33497734]
[119]
Padmakumar S, Taha MS, Kadakia E, Bleier BS, Amiji MM. Delivery of neurotrophic factors in the treatment of age-related chronic neurodegenerative diseases. Expert Opin Drug Deliv 2020; 17(3): 323-40.
[http://dx.doi.org/10.1080/17425247.2020.1727443] [PMID: 32027807]
[120]
Gravesteijn E, Mensink RP, Plat J. Effects of nutritional interventions on BDNF concentrations in humans: A systematic review. Nutr Neurosci 2022; 25(7): 1425-36.
[http://dx.doi.org/10.1080/1028415X.2020.1865758] [PMID: 33427118]
[121]
Mohammadi A, Amooeian VG, Rashidi E. Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to schizophrenia, Parkinson’s and Alzheimer’s diseases. Curr Gene Ther 2018; 18(1): 45-63.
[http://dx.doi.org/10.2174/1566523218666180302163029] [PMID: 29512462]
[122]
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138(2): 155-75.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.004] [PMID: 23348013]
[123]
Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006; 59(3): 459-66.
[http://dx.doi.org/10.1002/ana.20737] [PMID: 16429411]
[124]
Hovland DN Jr, Boyd RB, Butt MT, et al. Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF in rhesus monkeys. Toxicol Pathol 2007; 35(7): 1013-29.
[http://dx.doi.org/10.1177/01926230701481899] [PMID: 18098052]
[125]
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394: 107955.
[http://dx.doi.org/10.1016/j.heares.2020.107955] [PMID: 32331858]
[126]
Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: A gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 2010; 61(1): 14-26.
[http://dx.doi.org/10.1016/j.phrs.2009.10.002] [PMID: 19840853]
[127]
Jang SW, Liu X, Yepes M, et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA 2010; 107(6): 2687-92.
[http://dx.doi.org/10.1073/pnas.0913572107] [PMID: 20133810]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy