Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Wikstroemia: A Review on its Phytochemistry and Pharmacology

Author(s): Duong Quang Huan, Nguyen Quang Hop and Ninh The Son*

Volume 25, Issue 5, 2024

Published on: 05 July, 2023

Page: [563 - 598] Pages: 36

DOI: 10.2174/1389201024666230606122116

Price: $65

Abstract

Background: Wikstroemia (the family Thymelaeaceae) consists of medicinal plants which established great value in traditional medicines for many years. For instance, W. indica is always recommended for treatments of syphilis, arthritis, whooping cough, and cancer. No systematic review of bioactive compounds from this genus has been recorded to date.

Objectives: The objective of the current study is to review phytochemical investigations and pharmacological effects of Wikstroemia plant extracts and isolates.

Methods: By searching on the internet, the relevant data about Wikstroemia medicinal plants were retrieved from internationally renowned scientific databases, such as Web of Science, Google Scholar, Sci-Finder, Pubmed, and so on.

Results: More than 290 structurally diverse metabolites were separated and identified from this genus. They include terpenoids, lignans, flavonoids, coumarins, mono-phenols, diarylpentanoids, fatty acids, phytosterols, anthraquinones, and others. Pharmacological records indicated that Wikstroemia plant crude extracts and their isolated compounds bring out various beneficial effects, such as anticancer, antiinflammatory, anti-aging, anti-viral, antimicrobacterial, antimalarial, neuroprotective, and hepatoprotective activities.

Conclusion: Wikstroemia has been regarded as a worthy genus with numerous phytochemicals and various pharmacological potentials. Modern pharmacological studies have successfully provided evidence for traditional uses. Nonetheless, their action mechanisms need to be further investigated. Although various secondary metabolites were identified from Wikstroemia plants, the current pharmacological research mainly concentrated on terpenoids, lignans, flavonoids, and coumarins.

Graphical Abstract

[1]
Li, Y.M.; Zhu, L.; Jiang, J.G.; Yang, L.; Wang, D.Y. Bioactive components and pharmacological action of Wikstroemia indica (L.) C. A. mey and its clinical application. Curr. Pharm. Biotechnol., 2009, 10(8), 743-752.
[http://dx.doi.org/10.2174/138920109789978748] [PMID: 19939213]
[2]
Fan, Q.; Jiang, Y.P.; Zhu, D.Q.; Xu, W.; Huang, W.Q.; Huang, X.J.; Shao, M. Phenols from the rhizome of Wikstroemia indica. Biochem. Syst. Ecol., 2018, 78, 59-62.
[http://dx.doi.org/10.1016/j.bse.2018.04.004]
[3]
Jegal, J.; Park, N.J.; Kim, T.Y.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Effect of topically applied Wikstroemia dolichantha Diels on the development of atopic dermatitis-like skin symptoms in mice. Nutrients, 2019, 11(4), 914.
[http://dx.doi.org/10.3390/nu11040914] [PMID: 31018627]
[4]
Chen, Y.; Fu, W.W.; Sun, L.X.; Wang, Q.; Qi, W.; Yu, H. A new coumarin from Wikstroemia indica (L.) C. A. Mey. Chin. Chem. Lett., 2009, 20(5), 592-594.
[http://dx.doi.org/10.1016/j.cclet.2009.01.002]
[5]
Guo, J.; Zhang, J.; Shu, P.; Kong, L.; Hao, X.; Xue, Y.; Luo, Z.; Li, Y.; Li, G.; Yao, G.; Zhang, Y. Two new diterpenoids from the buds of wikstroemia chamaedaphne. Molecules, 2012, 17(6), 6424-6433.
[http://dx.doi.org/10.3390/molecules17066424] [PMID: 22643353]
[6]
Jegal, J.; Kim, T.Y.; Park, N.J.; Jo, B.G.; Jo, G.A.; Choi, H.S.; Kim, S.N.; Yang, M.H. Inhibitory effects of luteolin 7-methyl ether isolated from Wikstroemia ganpi on Tnf-A/Ifn-Γ mixture-induced inflammation in human keratinocyte. Nutrients, 2021, 13(12), 4387.
[http://dx.doi.org/10.3390/nu13124387] [PMID: 34959939]
[7]
Dagang, W.; Sorg, B.; Adolf, W.; Opferkuch, H.J.; Seip, E.H.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and euphorbiaceae occurring and utilized in yunnan (Southwest China) 4. tigliane type diterpene esters (phorbol–12,13-diesters) fromWikstroemia canescens. Phytother. Res., 1993, 7(2), 194-196.
[http://dx.doi.org/10.1002/ptr.2650070220]
[8]
Dagang, W.; Sorg, B.; Adolf, W.; Seip, E.H.; Hecker, E.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and euphorbiaceae occurring and utilized in yunnan (southwest china) 3. two new daphnane type 9,13,14-orthoesters fromwikstroemia mekongenia. Phytother. Res., 1993, 7(1), 72-75.
[http://dx.doi.org/10.1002/ptr.2650070117]
[9]
Kato, M.; He, Y.M.; Dibwe, D.F.; Li, F.; Awale, S.; Kadota, S.; Tezuka, Y. New guaian-type sesquiterpene from wikstroemia indica. Nat. Prod. Commun, 2014, 9(1), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900101] [PMID: 24660446]
[10]
Lin, R-W.; Tsai, I-L.; Duh, C-Y.; Lee, K-H.; Chen, I.S. New lignans and cytotoxic constituents from wikstroemia lanceolata. Planta Med., 2004, 70(3), 234-238.
[http://dx.doi.org/10.1055/s-2004-815540] [PMID: 15114500]
[11]
Shi, P.; Liu, Z.; Cen, R.; Mao, C.; Han, N.; Yin, J. Three new compounds from the dried root bark of Wikstroemia indica and their cytotoxicity against hela cells. Nat. Prod. Res., 2022, 36(21), 5476-5483.
[http://dx.doi.org/10.1080/14786419.2021.2016749] [PMID: 34965788]
[12]
Wang, L.Y.; Unehara, T.; Kitanaka, S. Anti-inflammatory activity of new guaiane type sesquiterpene from Wikstroemia indica. Chem. Pharm. Bull., 2005, 53(1), 137-139.
[http://dx.doi.org/10.1248/cpb.53.137] [PMID: 15635251]
[13]
Wang, L.Y.; Unehara, N.; Kitanaka, S. Lignans from the roots of Wikstroemia indica and their DPPH radical scavenging and nitric oxide inhibitory activities. Chem. Pharm. Bull., 2005, 53(10), 1348-1351.
[http://dx.doi.org/10.1248/cpb.53.1348] [PMID: 16205001]
[14]
Wang, N.; Nako, S.; Ueda, K.; Niwa, M. Phenolic constituents of Wikstroemia retusa. Planta Med., 1992, 58(6), 573.
[http://dx.doi.org/10.1055/s-2006-961557] [PMID: 17226525]
[15]
Zhou, D.; Otsuki, K.; Zhang, M.; Chen, G.; Bai, Z.S.; Yu, H.; Kikuchi, T.; Huang, L.; Chen, C.H.; Li, W.; Li, N. Anti-HIV Tigliane-type diterpenoids from the aerial parts of Wikstroemia lichiangensis. J. Nat. Prod., 2022, 85(6), 1658-1664.
[http://dx.doi.org/10.1021/acs.jnatprod.1c01195] [PMID: 35698995]
[16]
Guo, J.; Tian, J.; Yao, G.; Zhu, H.; Xue, Y.; Luo, Z.; Zhang, J.; Zhang, Y.; Zhang, Y. Three new 1α-alkyldaphnane-type diterpenoids from the flower buds of Wikstroemia chamaedaphne. Fitoterapia, 2015, 106, 242-246.
[http://dx.doi.org/10.1016/j.fitote.2015.09.017] [PMID: 26393897]
[17]
Kim, T.Y.; Park, N.J.; Jegal, J.; Choi, S.; Lee, S.W.; Hang, J.; Kim, S.N.; Yang, M.H. Chamaejasmine isolated from Wikstroemia dolichantha Diels Suppresses 2,4-Dinitrofluoro-benzene-induced atopic dermatitis in skh-1 hairless mice. Biomolecules, 2019, 9(11), 697.
[http://dx.doi.org/10.3390/biom9110697] [PMID: 31694198]
[18]
Kim, T.Y.; Park, N.J.; Jo, B.G.; Paik, J.H.; Choi, S.; Kim, S.N.; Yang, M.H. 7-O-methylluteolin suppresses the 2,4-dinitrochlorobenzene-induced Nrf2/HO-1 pathway and atopic dermatitis-like lesions. Antioxidants, 2022, 11(7), 1344.
[http://dx.doi.org/10.3390/antiox11071344] [PMID: 35883835]
[19]
Liu, Z.; Dong, M.; Chang, H.; Han, N.; Yin, J. Guaiane type of sesquiterpene with no inhibitory activity from the root of Wikstroemia indica. Bioorg. Chem., 2020, 99, 103785.
[http://dx.doi.org/10.1016/j.bioorg.2020.103785] [PMID: 32222617]
[20]
Liu, Y.Y.; Liu, Y.P.; Wang, X.P.; Qiao, Z.H.; Yu, X.M.; Zhu, Y.Z.; Xie, L.; Qiang, L.; Fu, Y.H. Bioactive daphnane diterpenes from Wikstroemia chuii with their potential anti-inflammatory effects and anti-hiv activities. Bioorg. Chem., 2020, 105, 104388.
[http://dx.doi.org/10.1016/j.bioorg.2020.104388] [PMID: 33130343]
[21]
Lu, C.L.; Zhu, L.; Piao, J.H.; Jiang, J.G. Chemical compositions extracted from Wikstroemia indica and their multiple activities. Pharm. Biol., 2012, 50(2), 225-231.
[http://dx.doi.org/10.3109/13880209.2011.596207] [PMID: 22235889]
[22]
Nunome, S.; Ishiyama, A.; Kobayashi, M.; Otoguro, K.; Kiyohara, H.; Yamada, H.; Omura, S. In Vitro antimalarial activity of biflavonoids from Wikstroemia indica. Planta Med., 2004, 70(1), 76-78.
[http://dx.doi.org/10.1055/s-2004-815462] [PMID: 14765300]
[23]
Otsuki, K.; Zhang, M.; Yamamoto, A.; Tsuji, M.; Tejima, M.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Lee, K.H.; Li, N.; Li, W.; Koike, K. Anti-HIV tigliane diterpenoids from Wikstroemia scytophylla. J. Nat. Prod., 2020, 83(12), 3584-3590.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00700] [PMID: 33172265]
[24]
Otsuki, K.; Zhang, M.; Kikuchi, T.; Tsuji, M.; Tejima, M.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Lee, K.H.; Li, N.; Koike, K.; Li, W. Identification of anti-hiv macrocyclic daphnane orthoesters from wikstroemia ligustrina by lc–ms analysis and phytochemical investigation. J. Nat. Med., 2021, 75(4), 1058-1066.
[http://dx.doi.org/10.1007/s11418-021-01551-9] [PMID: 34287744]
[25]
Abe, F.; Iwase, Y.; Yamauchi, T.; Kinjo, K.; Yaga, S. Daphnane diterpenoids from the bark of Wikstroemia retusa. Phytochemistry, 1997, 44(4), 643-647.
[http://dx.doi.org/10.1016/S0031-9422(96)00602-4]
[26]
Abe, F.; Iwase, Y.; Yamauchi, T.; Kinjo, K.; Yaga, S.; Ishii, M.; Iwahana, M. Minor daphnane-type diterpenoids from Wikstroemia retusa. Phytochemistry, 1998, 47(5), 833-837.
[http://dx.doi.org/10.1016/S0031-9422(97)00529-3] [PMID: 9542174]
[27]
Jiang, H.; Ma, Q.; Huang, S.; Liang, W.; Wang, P.; Hu, J.; Zhou, J.; Zhao, Y. A new guaiane-type sesquiterpene with 15 known compounds from wikstroemia scytophylla Diels. Chin. J. Chem., 2012, 30(6), 1335-1338.
[http://dx.doi.org/10.1002/cjoc.201200011]
[28]
Ingert, N.; Bombarda, I.; Herbette, G.; Faure, R.; Moretti, C.; Raharivelomanana, P. Oleodaphnoic acid and coriaceol, two new natural products from the stem bark of Wikstroemia coriacea. Molecules, 2013, 18(3), 2988-2996.
[http://dx.doi.org/10.3390/molecules18032988] [PMID: 23462531]
[29]
Jiang, H.Z.; Ma, Q.Y.; Huang, S.Z.; Liang, W.J.; Wang, P.C.; Zhao, Y.X. A new tigliane-type diterpene ester from wikstroemia scytophylla. Chem. Nat. Compd., 2012, 48(4), 587-590.
[http://dx.doi.org/10.1007/s10600-012-0318-x]
[30]
Jolad, S.D.; Hoffmann, J.J.; Timmermann, B.N.; Schram, K.H.; Cole, J.R.; Bates, R.B.; Klenck, R.E.; Tempesta, M.S. Daphnane diterpenes from wikstroemia monticola: Wikstrotoxins A-D, Huratoxin, and excoecariatoxin. J. Nat. Prod., 1983, 46(5), 675-680.
[http://dx.doi.org/10.1021/np50029a015]
[31]
Khong, A.; Forestieri, R.; Williams, D.E.; Patrick, B.O.; Olmstead, A.; Svinti, V.; Schaeffer, E.; Jean, F.; Roberge, M.; Andersen, R.J.; Jan, E. A daphnane diterpenoid isolated from wikstroemia polyantha induces an inflammatory response and modulates miRNA activity. PLoS One, 2012, 7(6), e39621.
[http://dx.doi.org/10.1371/journal.pone.0039621] [PMID: 22761847]
[32]
Li, S.F.; Jiao, Y.Y.; Zhang, Z.Q.; Chao, J.B.; Jia, J.; Shi, X.L.; Zhang, L.W. Diterpenes from buds of wikstroemia chamaedaphne showing antihepatitis B virus activities. Phytochemistry, 2018 Jul;151, 17-25.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.021]
[33]
Li, S.F.; Liang, X.; Wu, X.K.; Gao, X.; Zhang, L.W. Discovering the mechanisms of wikstroelide E as a Potential HIV-latency-reversing agent by transcriptome profiling. J. Nat. Prod., 2021, 84(4), 1022-1033.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01039] [PMID: 33721994]
[34]
Li, S.F.; Wang, X.Y.; Li, G.L.; Jiao, Y.Y.; Wang, W.H.; Wu, X.K.; Zhang, L.W. Potential HIV latency-reversing agents with stat1-activating activity from the leaves of wikstroemia chamaedaphne. Phytochemistry, 2022, 203, 113395.
[http://dx.doi.org/10.1016/j.phytochem.2022.113395] [PMID: 36027969]
[35]
Liao, S.G.; Wu, Y.; Yue, J.M. Lignans fromWikstroemia hainanensis. Helv. Chim. Acta, 2006, 89(1), 73-80.
[http://dx.doi.org/10.1002/hlca.200690014]
[36]
Yaga, S.; Kokinjo, K.; Ayashi, H.; Kamatsuo, N.; Abe, F.; Yamauchi, T. Diterpenoids with the daphnane skeleton from wikstroemla retusa. Phytochemistry, 1993, 32(1), 141-143.
[37]
Yun, Y.S.; Nakano, T.; Fukaya, H.; Hitotsuyanagi, Y.; Nakamura, M.; Umetsu, M.; Matsushita, N.; Miyake, K.; Fuchino, H.; Kawahara, N.; Moriya, F.; Ito, A.; Takahashi, Y.; Inoue, H. Retusone a, a guaiane-type sesquiterpene dimer from wikstroemia retusa and its inhibitory effects on histone acetyltransferase hbo1 expression. Molecules, 2022, 27(9), 2909.
[http://dx.doi.org/10.3390/molecules27092909] [PMID: 35566260]
[38]
Zhang, M.; Otsuki, K.; Kikuchi, T.; Bai, Z.S.; Zhou, D.; Huang, L.; Chen, C.H.; Morris-Natschke, S.; Lee, K.H.; Li, N.; Koike, K.; Li, W. Lc-ms identification, isolation, and structural elucidation of antihiv tigliane diterpenoids from wikstroemia lamatsoensis. J. Nat. Prod., 2021, 84, 2366-2373.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00570] [PMID: 34445872]
[39]
Awale, S.; Kato, M.; Dibwe, D.F.; Li, F.; Miyoshi, C.; Esumi, H.; Kadota, S.; Tezuka, Y. Antiausterity activity of arctigenin enantiomers: Importance of (2R,3R)-absolute configuration. Nat. Prod. Commun., 2014, 9(1), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900123] [PMID: 24660468]
[40]
Chang, H.; Wang, Y.; Gao, X.; Song, Z.; Awale, S.; Han, N.; Liu, Z.; Yin, J. Lignans from the root of wikstroemia indica and their cytotoxic activity against panc-1 human pancreatic cancer cells. Fitoterapia, 2017, 121, 31-37.
[http://dx.doi.org/10.1016/j.fitote.2017.06.012] [PMID: 28629933]
[41]
Duh, C.Y.; Phoebe, C.H., Jr; Pezzuto, J.M.; Kinghorn, A.D.; Farnsworth, N.R. Plant anticancer agents, XLII. cytotoxic constituents from wikstroemia elliptica. J. Nat. Prod., 1986, 49(4), 706-709.
[http://dx.doi.org/10.1021/np50046a031] [PMID: 3783168]
[42]
Feng, G.; Chen, Y.; Li, W.; Li, L.; Wu, Z.; Wu, Z.; Hai, Y.; Zhang, S.; Zheng, C.; Liu, C.; He, X. Exploring the Q-marker of “sweat soaking method” processed radix wikstroemia indica: Based on the “effect-toxicity-chemicals” study. Phytomedicine, 2018, 45, 49-58.
[http://dx.doi.org/10.1016/j.phymed.2018.03.063] [PMID: 29691116]
[43]
Hu, K.; Kobayashi, H.; Dong, A.; Iwasaki, S.; Yao, X. Antifungal, antimitotic and anti-hiv-1 agents from the roots of wikstroemia indica. Planta Med., 2000, 66(6), 564-567.
[http://dx.doi.org/10.1055/s-2000-8601] [PMID: 10985087]
[44]
Jegal, J.; Park, N.J.; Lee, S.Y.; Jo, B.G.; Bong, S.K.; Kim, S.N.; Yang, M.H. Quercitrin, the main compound in wikstroemia indica, mitigates skin lesions in a mouse model of 2,4-dinitrochlorobenzene-induced contact hypersensitivity. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/4307161] [PMID: 32695208]
[45]
Kato, A.; Hashimoto, Y.; Kidokor, M. (+)-nortrachelogenin, a new pharmacologically lignan from wikstroemia indica. J. Nat. Prod., 1979, 42(2), 159-162.
[http://dx.doi.org/10.1021/np50002a004]
[46]
Lee, K.H.; Tagahara, K.; Suzuki, H.; Wu, R.Y.; Haruna, M.; Hall, I.H.; Huang, H.C.; Ito, K.; Iida, T.; Lai, J.S. Antitumor agents. 49 tricin, kaempferol-3-o-beta-d-glucopyranoside and (+)-nortrachelogenin, antileukemic principles from wikstroemia indica. J. Nat. Prod., 1981, 44(5), 530-535.
[http://dx.doi.org/10.1021/np50017a003] [PMID: 7320737]
[47]
Jiang, H-Z.; Lei, J-P.; Yuan, J-J.; Pi, S-H.; Wang, R.; Tan, R.; Ma, C-Y.; Zhang, T. Flavones and lignans from the stems of wikstroemia scytophylla diels. Pharmacogn. Mag., 2017, 13(51), 488-491.
[http://dx.doi.org/10.4103/pm.pm_275_16] [PMID: 28839377]
[48]
Ma, Q.Y.; Chen, Y.L.; Huang, S.Z.; Kong, F.D.; Dai, H.F.; Hua, Y.; Zhao, Y.X. Two new lignans from wikstroemia dolichantha. Chem. Nat. Compd., 2018, 54(1), 22-25.
[http://dx.doi.org/10.1007/s10600-018-2250-1]
[49]
Shao, M.; Huang, X-J.; Sun, X-G.; Wang, Y.; Yang, Y.; Wang, Q-R.; Fan, Q.; Ye, W-C. Phenolic constituents from rhizome of wikstroemia indica and their anti-tumor activity. Nat Prod Res Dev, 2014, 26, 851-855.
[50]
Sun, L.X.; Chen, Y.; Liu, L.X.; Jia, Y.R.; Li, Y.C.; Ma, E.L. Cytotoxic constituents from wikstroemia indica. Chem. Nat. Compd., 2012, 48(3), 493-497.
[http://dx.doi.org/10.1007/s10600-012-0287-0]
[51]
Suzuki, H.; Lee, K.H.; Haruna, M.; Iida, T.; Ito, K.; Huang, H.C. (+)-Arctigenin, a lignan from Wikstroemia indica. Phytochemistry, 1982, 21(7), 1824-1825.
[http://dx.doi.org/10.1016/S0031-9422(82)85082-6]
[52]
Tandon, S.; Rastogi, R.P. Wikstromol, a new lignan from wikstroemia viridiflora. Phytochemistry, 1976, 15(11), 1789-1791.
[http://dx.doi.org/10.1016/S0031-9422(00)97493-4]
[53]
Thuy, T.V.; Tuan, D.A.; Tuyen, N.V.; Anh, B.K.; Puyvelde, L.V. Initial study on the chemical composition of wikstroemia indica (wikstroemia indica C.A. Mey, thymelaceae). Vietnam J. Chem., 2007, 45(3), 310-314.
[http://dx.doi.org/10.15625/4760]
[54]
Wang, G.C.; Zhang, X.L.; Wang, Y.F.; Li, G.Q.; Ye, W.C.; Li, Y.L. Four new dilignans from the roots of wikstroemia indica. Chem. Pharm. Bull., 2012, 60(7), 920-923.
[http://dx.doi.org/10.1248/cpb.c12-00132] [PMID: 22790828]
[55]
Wu, M.; Su, X.; Wu, Y.; Luo, Y.; Guo, Y.; Xue, Y. Glycosylated coumarins, flavonoids, lignans and phenylpropanoids from wikstroemia nutans and their biological activities. Beilstein J. Org. Chem., 2022, 18, 200-207.
[http://dx.doi.org/10.3762/bjoc.18.23] [PMID: 35280953]
[56]
Baba, K.; Taniguchi, M.; Kozawa, M. Three biflavonoids from wikstroemia sikokiana. Phytochemistry, 1994, 37(3), 879-883.
[http://dx.doi.org/10.1016/S0031-9422(00)90376-5]
[57]
Chen, L.Y.; Chen, I.S.; Peng, C.F. Structural elucidation and bioactivity of biflavonoids from the stems of wikstroemia taiwanensis. Int. J. Mol. Sci., 2012, 13(1), 1029-1038.
[http://dx.doi.org/10.3390/ijms13011029] [PMID: 22312302]
[58]
Geng, L-D.; Zhang, C.; Xiao, Y.Q. [Studies on the chemical constituents in stem rind of wikstroemia indica]. Zhongguo Zhongyao Zazhi, 2006, 31(10), 817-819.
[PMID: 17048664]
[59]
Geng, L-D.; Zhang, C.; Xiao, Y.Q. [A new dicoumarin from stem bark of wikstroemia indica]. Zhongguo Zhongyao Zazhi, 2006, 31(1), 43-45.
[PMID: 16548167]
[60]
Huang, W.H.; Zhou, G.X.; Wang, G.C.; Chung, H.Y.; Ye, W.C.; Li, Y.L. A new biflavonoid with antiviral activity from the roots of wikstroemia indica. J. Asian Nat. Prod. Res., 2012, 14(4), 401-406.
[http://dx.doi.org/10.1080/10286020.2011.653963] [PMID: 22375879]
[61]
Li, J.; Lu, L.Y.; Zeng, L.H.; Zhang, C.; Hu, J.L.; Li, X.R.; Sikokianin, D. Sikokianin d, a new c-3/c-3”-biflavanone from the roots of wikstroemia indica. Molecules, 2012, 17(7), 7792-7797.
[http://dx.doi.org/10.3390/molecules17077792] [PMID: 22735781]
[62]
Niwa, M.; Jiang, P.F.; Hirata, Y. Two new c-3/c-3”-biflavanones from wikstroemia sikokiana. Chem. Pharm. Bull., 1986, 34(9), 3631-3634.
[http://dx.doi.org/10.1248/cpb.34.3631]
[63]
Niwa, M.; Jiang, P.F.; Hirata, Y. Constituents of wikstroemia sikokiana. II Absolute configurations of 1,5-diphenylpentane-1,3-diols. Chem. Pharm. Bull., 1987, 35(1), 108-111.
[http://dx.doi.org/10.1248/cpb.35.108]
[64]
Shao, M.; Huang, X.J.; Liu, J.S.; Han, W.L.; Cai, H.B.; Tang, Q.F.; Fan, Q. A new cytotoxic biflavonoid from the rhizome of wikstroemia indica. Nat. Prod. Res., 2016, 30(12), 1417-1422.
[http://dx.doi.org/10.1080/14786419.2015.1062379] [PMID: 26252201]
[65]
Shao, M.; Lou, D.; Yang, J.; Lin, M.; Deng, X.; Fan, Q. Curcumin and wikstroflavone B, a new biflavonoid isolated from Wikstroemia indica, synergistically suppress the proliferation and metastasis of nasopharyngeal carcinoma cells via blocking FAK/STAT3 signaling pathway. Phytomedicine, 2020, 79, 153341.
[http://dx.doi.org/10.1016/j.phymed.2020.153341] [PMID: 32992086]
[66]
Ko, Y.C.; Feng, H.T.; Lee, R.J.; Lee, M.R. The determination of flavonoids in wikstroemia indica c. a. mey. by liquid chromatography with photo-diode array detection and negative electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2013, 27(1), 59-67.
[http://dx.doi.org/10.1002/rcm.6423] [PMID: 23239317]
[67]
Wang, Q.; Jiang, Y.; Luo, C.; Wang, R.; Liu, S.; Huang, X.; Shao, M. Cytotoxic oligophenols from the rhizome of wikstroemia indica. Bioorg. Med. Chem. Lett., 2018, 28(4), 626-629.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.036] [PMID: 29395979]
[68]
Yao, H.; Zhang, W.; Wu, H.; Yang, M.; Wei, P.; Ma, H.; Duan, J.; Zhang, C.; Li, Y. Sikokianin a from wikstroemia indica protects PC12 cells against OGD/R-induced injury via inhibiting oxidative stress and activating Nrf2. Nat. Prod. Res., 2019, 33(23), 3450-3453.
[http://dx.doi.org/10.1080/14786419.2018.1480019] [PMID: 29806503]
[69]
Zhang, X.; Wang, G.; Huang, W.; Ye, W.; Li, Y. Biflavonoids from the roots of wikstroemia indica. Nat. Prod. Commun., 2011, 6(8), 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600815] [PMID: 21922911]
[70]
Yao, H.; Yuan, Z.; Wei, G.; Chen, C.; Duan, J.; Li, Y.; Wang, Y.; Zhang, C.; Liu, Y. Thevetiaflavone from wikstroemia indica ameliorates PC12 cells injury induced by OGD/R via improving ROS-mediated mitochondrial dysfunction. Mol. Med. Rep., 2017, 16(6), 9197-9202.
[http://dx.doi.org/10.3892/mmr.2017.7712] [PMID: 28990067]
[71]
Tandon, S.; Rastogi, R.P. Wikstrosin, a tricoumarin from wikstroemia viridiflora. Phytochemistry, 1977, 16(12), 1991-1993.
[http://dx.doi.org/10.1016/0031-9422(77)80110-6]
[72]
Ho, W.S.; Xue, J.Y.; Sun, S.S.M.; Ooi, V.E.C.; Li, Y.L. Antiviral activity of daphnoretin isolated from wikstroemia indica. Phytother. Res., 2010, 24(5), 657-661.
[http://dx.doi.org/10.1002/ptr.2935] [PMID: 19610034]
[73]
Niwa, M.; Iwadare, Y.; Wu, Y.C.; Hirata, Y. Two new phenylpropanoid glycosides from wikstroemia sikokiana. Chem. Pharm. Bull., 1988, 36(3), 1158-1161.
[http://dx.doi.org/10.1248/cpb.36.1158]
[74]
Liu, Z.; Dong, M.; Qiu, X.; Han, N.; Yin, J. Diarylpentanones from the root of wikstroemia indica and their cytotoxic activity against human lung A549 cells. Nat. Prod. Res., 2021, 35(19), 3346-3349.
[http://dx.doi.org/10.1080/14786419.2019.1698577] [PMID: 34590506]
[75]
Zhang, M.; Otsuki, K.; Kato, S.; Ikuma, Y.; Kikuchi, T.; Li, N.; Koike, K.; Li, W. A feruloylated acylglycerol isolated from wikstroemia pilosa and its distribution in ten plants of wikstroemia species. J. Nat. Med., 2022, 76(3), 680-685.
[http://dx.doi.org/10.1007/s11418-022-01621-6] [PMID: 35352284]
[76]
Son, N.T. The genus Walsura: A rich resource of bioactive limonoids, triterpenoids, and other types of compounds. Prog. Chem. Org. Nat. Prod., 2022, 118, 131-177.
[http://dx.doi.org/10.1007/978-3-030-92030-2_4] [PMID: 35416519]
[77]
Son, N.T.; Linh, N.T.T.; Tra, N.T.; Ha, N.T.T.; Anh, L.T.T.; Cham, B.T.; Anh, D.T.T.; Van Tuyen, N. Genus styrax: A resource of bioactive compounds. Studies in Natural Products Chemistry, 2021, 69, 299-347.
[http://dx.doi.org/10.1016/B978-0-12-819487-4.00008-2]
[78]
Son, N.T.; Manh Ha, N. Siamese, indian, and brazilian rosewoods: A review on phytochemistry, applications, and pharmacology. Nat. Prod. Commun., 2022, 17(4), 1934578X2210969.
[http://dx.doi.org/10.1177/1934578X221096962]
[79]
Quang Hop, N. The Son, N. Botanical description, traditional uses, phytochemistry, and pharmacology of the gnus artabotrys: A review. Chem. Biodivers., 2022, 19(11), e202200725.
[http://dx.doi.org/10.1002/cbdv.202200725] [PMID: 36222471]
[80]
Hop, N.Q.; Son, N.T. enus Knema: An extensive review on traditional uses, phytochemistry, and pharmacology. Curr. Pharm. Biotechnol., 2023 Feb 1;
[http://dx.doi.org/10.2174/1389201024666230201115303]
[81]
Thuy, P.T.; Son, N.T. Thermodynamic and kinetic studies on antioxidant capacity of amentoflavone: A DFT (density functional theory) computational approach. Free Radic. Res., 2022, 56(7-8), 526-535.
[http://dx.doi.org/10.1080/10715762.2022.2146584] [PMID: 36370431]
[82]
Yao, H.; Zhang, X.; Zhang, N.; Li, J.; Li, Y.; Wei, Q. Wikstromol from Wikstroemia indica induces apoptosis and suppresses migration of MDA-MB-231 cells via inhibiting PI3K/Akt pathway. J. Nat. Med., 2021, 75(1), 178-185.
[http://dx.doi.org/10.1007/s11418-020-01447-0] [PMID: 32865667]
[83]
Yang, Z-Y.; Guo, W.; Wu, D-Y.; Du, Z-M. Study on extraction, isolation and anti-tumor activity of daphnoretin from wikstroemia indica. Nai Prod Res Dev, 2008, 20, 522-526.
[84]
Xie, Q.; Fan, X.; Han, Y.; Wu, B.X.; Zhu, B. Daphnoretin Arrests the Cell Cycle and Induces Apoptosis in Human Breast Cancer Cells. J. Nat. Prod., 2022, 85(10), 2332-2339.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00504] [PMID: 36154031]
[85]
Gu, S.; He, J. Daphnoretin induces cell cycle arrest and apoptosis in human osteosarcoma (HOS) cells. Molecules, 2012, 17(1), 598-612.
[http://dx.doi.org/10.3390/molecules17010598] [PMID: 22231496]
[86]
Huang, Y.C.; Huang, C.P.; Lin, C.P.; Yang, K.C.; Lei, Y.J.; Wang, H.P.; Kuo, Y.H.; Chen, Y.J. Naturally occurring bicoumarin compound daphnoretin inhibits growth and induces megakaryocytic differentiation in human chronic myeloid leukemia cells. Cells, 2022, 11(20), 3252.
[http://dx.doi.org/10.3390/cells11203252] [PMID: 36291120]
[87]
Gao, Y.; Liu, F.; Fang, L.; Cai, R.; Zong, C.; Qi, Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in lps-activated macrophages. PLoS One, 2014, 9(5), e96741.
[http://dx.doi.org/10.1371/journal.pone.0096741] [PMID: 24800851]
[88]
Ni, Y.L.; Shen, H.T.; Chen, S.P.; Kuan, Y.H. Protective effect of genkwanin against lipopolysaccharide-induced acute lung injury in mice with p38 mitogen-activated protein kinase and nuclear factor-κb pathway inhibition. J. Funct. Foods, 2022, 98, 105271.
[http://dx.doi.org/10.1016/j.jff.2022.105271]
[89]
Chen, C.A.; Liu, C.K.; Hsu, M.L.; Chi, C.W.; Ko, C.C.; Chen, J.S.; Lai, C.T.; Chang, H.H.; Lee, T.Y.; Lai, Y.L.; Chen, Y.J. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-jun n-terminal kinase. Int. Immunopharmacol., 2017, 51, 25-30.
[http://dx.doi.org/10.1016/j.intimp.2017.07.021] [PMID: 28772243]
[90]
Jegal, J.; Park, N.J.; Jo, B.G.; Kim, T.Y.; Bong, S.K.; Choi, S.; Paik, J.H.; Kim, J.W.; Kim, S.N.; Yang, M.H. Wikstroemiaganpi extract improved atopic dermatitis-like skin lesions via suppression of interleukin-4 in 2,4-dinitrochlorobenzene-induced skh-1 hairless mice. Molecules, 2021, 26(7), 2016.
[http://dx.doi.org/10.3390/molecules26072016] [PMID: 33916154]
[91]
Lee, S.Y.; Park, N.J.; Jegal, J.; Jo, B.G.; Choi, S.; Lee, S.W.; Uddin, M.S.; Kim, S.N.; Yang, M.H. Suppression of dncb-induced atopic skin lesions in mice by wikstroemia indica extract. Nutrients, 2020, 12(1), 173.
[http://dx.doi.org/10.3390/nu12010173] [PMID: 31936273]
[92]
Chen, C.; Qu, F.; Wang, J.; Xia, X.; Wang, J.; Chen, Z.; Ma, X.; Wei, S.; Zhang, Y.; Li, J.; Gong, M.; Wang, R.; Liu, H.; Yang, Z.; Li, Y.; Zhao, Y.; Xiao, X. Antibacterial effect of different extracts from wikstroemia indica on escherichia coli based on microcalorimetry coupled with agar dilution method. J. Therm. Anal. Calorim., 2016, 123(2), 1583-1590.
[http://dx.doi.org/10.1007/s10973-015-4999-9]
[93]
Rahman, M.; Rahman, M.K.; Chowdhury, M.A.; Islam, M.F.; Barua, S. Antidiarrheal and thrombolytic effects of methanol extract of wikstroemia indica (L.) C. A. Mey leaves. International Journal of Green Pharmacy, 2015, 9(1), 8-13.
[http://dx.doi.org/10.4103/0973-8258.150914]
[94]
Li, Q.; Zhang, P.; Cai, Y. Genkwanin suppresses mpp +-induced cytotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in a cellular model of Parkinson’s disease. Neurotoxicology, 2021, 87, 62-69.
[http://dx.doi.org/10.1016/j.neuro.2021.08.018] [PMID: 34481870]
[95]
Ko, F.N.; Chang, Y.L.; Kuo, Y.H.; Lin, Y.L.; Teng, C.M. Daphnoretin, a new protein kinase C activator isolated from Wikstroemia indica C.A. Mey. Biochem. J., 1993, 295(1), 321-327.
[http://dx.doi.org/10.1042/bj2950321] [PMID: 8216237]
[96]
Wang, J.P.; Raung, S.L.; Kuo, Y.H.; Teng, C.M. Daphnoretin-induced respiratory burst in rat neutrophils is, probably, mainly through protein kinase C activation. Eur. J. Pharmacol., 1995, 288(3), 341-348.
[http://dx.doi.org/10.1016/0922-4106(95)90047-0] [PMID: 7774678]
[97]
Duong, N.T.; Vinh, P.D.; Thuong, P.T.; Hoai, N.T.; Thanh, L.N.; Bach, T.T.; Nam, N.H.; Anh, N.H. Xanthine oxidase inhibitors from archidendron clypearia (jack.) i.c. nielsen: Results from systematic screening of vietnamese medicinal plants. Asian Pac. J. Trop. Med., 2017, 10(6), 549-556.
[http://dx.doi.org/10.1016/j.apjtm.2017.06.002] [PMID: 28756918]
[98]
Luyen, N.D.; Huong, L.M.; Ha, N.T.T.; Tra, N.T.; Anh, L.T.T.; Tuyen, N.V.; Posta, K.; Son, N.T.; Pham-The, H. The H.P. chemical profile and biological activities of fungal strains isolated from piper nigrum roots: Experimental and computational approaches. Chem. Biodivers., 2023, 20(2), e202200456.
[http://dx.doi.org/10.1002/cbdv.202200456] [PMID: 36564341]
[99]
Zhou, Z.R.; Feng, G.; Li, L.L.; Li, W.; Wu, Z.G.; Zheng, C.Q.; Xu, Q.; Ren, C.C.; Peng, L.Z. 1H-NMR-based metabolic profiling of rat urine to assess the toxicity-attenuating effect of the sweat-soaking method on radix wikstroemia indica. Exp. Ther. Med., 2022, 24(1), 465.
[http://dx.doi.org/10.3892/etm.2022.11392] [PMID: 35747156]
[100]
Huang, W.; Li, Y.; Wang, H.; Su, M.; Jiang, Z.; Ooi, V.E.C.; Chung, H.Y. Toxicological study of a chinese herbal medicine, wikstroemia indica. Nat. Prod. Commun., 2009, 4(9), 1934578X0900400.
[http://dx.doi.org/10.1177/1934578X0900400914] [PMID: 19831034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy