Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Prediction of the Molecular Mechanism of Corni Fructus-Epimedii Folium- Rehmanniae Radix Praeparata in the Treatment of Postmenopausal Osteoporosis based on Network Pharmacology and Molecular Docking

Author(s): Yu Zhou, Xin Li, Jinchao Wang, Rong He, Liqi Ng, Dapeng Li, Jeremy Mortimer, Swastina Nath Varma, Jinhua Hu, Qing Zhao, Zeyu Peng, Chaozong Liu* and Songchuan Su*

Volume 20, Issue 2, 2024

Published on: 15 June, 2023

Page: [87 - 103] Pages: 17

DOI: 10.2174/1573409919666230605123129

Price: $65

Abstract

Introduction: In this study, core drugs of clinical postmenopausal osteoporosis were retrieved using data mining, the drug molecular action target was predicted through network pharmacology, the key nodes of interaction were identified by combining postmenopausal osteoporosis-related targets, and the pharmacological mechanism of Traditional Chinese Medicine (TCM) against postmenopausal osteoporosis and other action mechanisms was explored.

Methods: TCMISS V2.5 was used to collect TCM prescriptions of postmenopausal osteoporosis from databases, including Zhiwang, Wanfang, PubMed, etc., for selecting the highest confidence drugs. TCMSP and SwissTargetPrediction databases were selected to screen the main active ingredients of the highest confidence drugs and their targets. Relevant targets for postmenopausal osteoporosis were retrieved from GeneCards and GEO databases, PPI network diagrams construction and selection of core nodes in the network, GO and KEGG enrichment analysis, and molecular docking validation.

Results: Correlation analysis identified core drug pairs as 'Corni Fructus-Epimedii Folium- Rehmanniae Radix Praeparata' (SZY-YYH-SDH). After TCMSP co-screening and de-weighting, 36 major active ingredients and 305 potential targets were selected. PPI network graph was built from the 153 disease targets and 24 TCM disease intersection targets obtained. GO, KEGG enrichment results showed that the intersectional targets were enriched in the PI3K-Akt signalling pathway, etc. The target organs were mainly distributed in the thyroid, liver, CD33+_Myeloid, etc. Molecular docking results showed that the core active ingredients of the 'SZY-YYH-SDH' were able to bind to the pair core nodes and PTEN and EGFR.

Conclusion: The results showed that 'SZY-YYH-SDH' can provide the basis for clinical application and treat postmenopausal osteoporosis through multi-component, multi-pathway, and multitarget effects.

[1]
Yang, K.; Cao, F.; Xue, Y.; Tao, L.; Zhu, Y. Three classes of antioxidant defense systems and the development of postmenopausal osteoporosis. Front. Physiol., 2022, 13, 840293.
[http://dx.doi.org/10.3389/fphys.2022.840293] [PMID: 35309045]
[2]
Yu, B.; Wang, C.Y. Osteoporosis and periodontal diseases – An update on their association and mechanistic links. Periodontol. 2000, 2022, 89(1), 99-113.
[http://dx.doi.org/10.1111/prd.12422] [PMID: 35244945]
[3]
Hsu, E.; Pacifici, R. From osteoimmunology to osteomicrobiology: How the microbiota and the immune system regulate bone. Calcif. Tissue Int., 2018, 102(5), 512-521.
[http://dx.doi.org/10.1007/s00223-017-0321-0] [PMID: 29018933]
[4]
Liu, P.; Wang, W.; Li, Z.; Li, Y.; Yu, X.; Tu, J.; Zhang, Z. Ferroptosis: A new regulatory mechanism in osteoporosis. Oxid. Med. Cell. Longev., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/2634431] [PMID: 35082963]
[5]
Hamad, M.; Bajbouj, K.; Taneera, J. The case for an estrogen-iron axis in health and disease. Experimental and clinical endocrinology & diabetes: Official journal, german society of endocrinology. Exp. Clin. Endocrinol. Diabetes, 2020, 128(4), 270-277.
[http://dx.doi.org/10.1055/a-0885-1677] [PMID: 30978727]
[6]
Kanis, J. A.; Cooper, C.; Rizzoli, R.; Reginster, J. Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis Int., 2019, 30(1), 3-44.
[http://dx.doi.org/10.1007/s00198-018-4704-5]
[7]
Wu, W.T.; Li, Y.J.; Feng, A.Z.; Li, L.; Huang, T.; Xu, A.D.; Lyu, J. Data mining in clinical big data: The frequently used databases, steps, and methodological models. Mil. Med. Res., 2021, 8(1), 44.
[http://dx.doi.org/10.1186/s40779-021-00338-z] [PMID: 34380547]
[8]
Yang, J.; Li, Y.; Liu, Q.; Li, L.; Feng, A.; Wang, T.; Zheng, S.; Xu, A.; Lyu, J. Brief introduction of medical database and data mining technology in big data era. J. Evid. Based Med., 2020, 13(1), 57-69.
[http://dx.doi.org/10.1111/jebm.12373] [PMID: 32086994]
[9]
Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80.
[http://dx.doi.org/10.1007/s11655-019-3064-0] [PMID: 30941682]
[10]
Kaur, T.; Madgulkar, A.; Bhalekar, M.; Asgaonkar, K. Molecular docking in formulation and development. Curr. Drug Discov. Technol., 2019, 16(1), 30-39.
[http://dx.doi.org/10.2174/1570163815666180219112421] [PMID: 29468973]
[11]
Tang, S.H.; Shen, D.; Yang, H.J. Analysis on composition rules of chinese patent drugs treating pain-related diseases based on data mining method. Chin. J Integr. Med., 2019, 25(11), 861-866.
[http://dx.doi.org/10.1007/s11655-017-2957-z]
[12]
Chen, R.B.; Yang, Y.D.; Sun, K.; Liu, S.; Guo, W.; Zhang, J.X.; Li, Y. Potential mechanism of Ziyin Tongluo Formula in the treatment of postmenopausal osteoporosis: Based on network pharmacology and ovariectomized rat model. Chin. Med., 2021, 16(1), 88.
[http://dx.doi.org/10.1186/s13020-021-00503-5] [PMID: 34530875]
[13]
Yuan, Z.; Min, J.; Zhao, Y.; Cheng, Q.; Wang, K.; Lin, S.; Luo, J.; Liu, H. Quercetin rescued TNF-alpha-induced impairments in bone marrow-derived mesenchymal stem cell osteogenesis and improved osteoporosis in rats. Am. J. Transl. Res., 2018, 10(12), 4313-4321.
[PMID: 30662673]
[14]
Aziz, N.; Kim, M.Y.; Cho, J.Y. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo and in silico studies. J. Ethnopharmacol., 2018, 225, 342-358.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[15]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612]
[16]
Kim, T.H.; Jung, J.W.; Ha, B.G.; Hong, J.M.; Park, E.K.; Kim, H.J.; Kim, S.Y. The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J. Nutr. Biochem., 2011, 22(1), 8-15.
[http://dx.doi.org/10.1016/j.jnutbio.2009.11.002] [PMID: 20233653]
[17]
Morgan, L.V.; Petry, F.; Scatolin, M.; de Oliveira, P.V.; Alves, B.O.; Zilli, G.A.L.; Volfe, C.R.B.; Oltramari, A.R.; de Oliveira, D.; Scapinello, J.; Müller, L.G. Investigation of the anti-inflammatory effects of stigmasterol in mice: Insight into its mechanism of action. Behav. Pharmacol., 2021, 32(8), 640-651.
[http://dx.doi.org/10.1097/FBP.0000000000000658] [PMID: 34657071]
[18]
Sampath, S.J.P.; Rath, S.N.; Kotikalapudi, N.; Venkatesan, V. Beneficial effects of secretome derived from mesenchymal stem cells with stigmasterol to negate IL-1β-induced inflammation in-vitro using rat chondrocytes-OA management. Inflammopharmacology, 2021, 29(6), 1701-1717.
[http://dx.doi.org/10.1007/s10787-021-00874-z] [PMID: 34546477]
[19]
Sharma, N.; Tan, M.A.; An, S.S.A. Phytosterols: Potential metabolic modulators in neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(22), 12255.
[http://dx.doi.org/10.3390/ijms222212255] [PMID: 34830148]
[20]
Marahatha, R.; Gyawali, K.; Sharma, K.; Gyawali, N.; Tandan, P.; Adhikari, A.; Timilsina, G.; Bhattarai, S.; Lamichhane, G.; Acharya, A.; Pathak, I.; Devkota, H.P.; Parajuli, N. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and thera-peutic potentials. Phytother. Res., 2021, 35(9), 5103-5124.
[http://dx.doi.org/10.1002/ptr.7138] [PMID: 33957012]
[21]
Wang, T.; Li, S.; Yi, C.; Wang, X.; Han, X. Protective role of β-Sitosterol in glucocorticoid-induced osteoporosis in rats via the RANKL/OPG pathway. Altern. Ther. Health Med., 2022, 28(7), 18-25.
[PMID: 35648689]
[22]
Yoon, H.S.; Park, C. Chrysoeriol ameliorates COX-2 expression through NF-κB, AP-1 and MAPK regulation via the TLR4/MyD88 signaling pathway in LPS-stimulated murine macrophages. Exp. Ther. Med., 2021, 22(1), 718.
[http://dx.doi.org/10.3892/etm.2021.10150] [PMID: 34007327]
[23]
Tai, B.H.; Cuong, N.M.; Huong, T.T.; Choi, E.M.; Kim, J.A.; Kim, Y.H. Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells. J. Asian Nat. Prod. Res., 2009, 11(9), 817-823.
[http://dx.doi.org/10.1080/10286020903117317] [PMID: 20183330]
[24]
Buettmann, E. G.; McKenzie, J.A.; Migotsky, N.; Sykes, D.A.; Hu, P.; Yoneda, S.; Silva, M.J. VEGFA from early osteoblast lineage cells (Osterix+) is required in mice for fracture healing. J Bone Miner. Res., 2019, 34(9), 1690-1706.
[http://dx.doi.org/10.1002/jbmr.3755]
[25]
Yu, T.; You, X.; Zhou, H.; He, W.; Li, Z.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; Xiong, Y.; Yang, Y. MiR-16-5p regulates postmenopausal osteoporosis by directly targeting VEGFA. Aging, 2020, 12(10), 9500-9514.
[http://dx.doi.org/10.18632/aging.103223] [PMID: 32427128]
[26]
Rajandran, S.N.; Ma, C.A.; Tan, J.R.; Liu, J.; Wong, S.B.S.; Leung, Y.Y. Exploring the association of innate immunity biomarkers with MRI features in both early and late stages osteoarthritis. Front. Med., 2020, 7, 554669.
[http://dx.doi.org/10.3389/fmed.2020.554669] [PMID: 33282885]
[27]
Sun, G.; Ba, C.L.; Gao, R.; Liu, W.; Ji, Q. Association of IL-6, IL-8, MMP-13 gene polymorphisms with knee osteoarthritis susceptibility in the Chinese Han population. Biosci. Rep., 2019, 39(2), BSR20181346.
[http://dx.doi.org/10.1042/BSR20181346] [PMID: 30635366]
[28]
Christiansen, B.A.; Bhatti, S.; Goudarzi, R.; Emami, S. Management of osteoarthritis with avocado/soybean unsaponifiables. Cartilage, 2015, 6(1), 30-44.
[http://dx.doi.org/10.1177/1947603514554992] [PMID: 25621100]
[29]
Yu, T.; You, X.; Zhou, H.; Kang, A.; He, W.; Li, Z.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; Xiong, Y.; Yang, Y. p53 plays a central role in the development of osteoporosis. Aging, 2020, 12(11), 10473-10487.
[http://dx.doi.org/10.18632/aging.103271] [PMID: 32484789]
[30]
Arranz, A.; Doxaki, C.; Vergadi, E.; Martinez de la Torre, Y.; Vaporidi, K.; Lagoudaki, E.D.; Ieronymaki, E.; Androulidaki, A.; Venihaki, M.; Margioris, A.N.; Stathopoulos, E.N.; Tsichlis, P.N.; Tsatsanis, C. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9517-9522.
[http://dx.doi.org/10.1073/pnas.1119038109] [PMID: 22647600]
[31]
Wang, Z.; Qi, G.; Li, Z.; Cui, X.; Guo, S.; Zhang, Y.; Cai, P.; Wang, X. Effects of urolithin A on osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand via bone morphogenic protein 2. Bioengineered, 2022, 13(3), 5064-5078.
[http://dx.doi.org/10.1080/21655979.2022.2036893] [PMID: 35164658]
[32]
Mukherjee, A.; Rotwein, P. Selective signaling by Akt1 controls osteoblast differentiation and osteoblast-mediated osteoclast development. Mol. Cell. Biol., 2012, 32(2), 490-500.
[http://dx.doi.org/10.1128/MCB.06361-11] [PMID: 22064480]
[33]
Wang, Y.; Liu, L.; Qu, Z.; Wang, D.; Huang, W.; Kong, L.; Yan, L. Tanshinone ameliorates glucocorticoid-induced bone loss via activation of AKT1 signaling pathway. Front. Cell Dev. Biol., 2022, 10, 878433.
[http://dx.doi.org/10.3389/fcell.2022.878433] [PMID: 35419360]
[34]
Jia, H.; Ma, X.; Tong, W.; Doyran, B.; Sun, Z.; Wang, L.; Zhang, X.; Zhou, Y.; Badar, F.; Chandra, A.; Lu, X.L.; Xia, Y.; Han, L.; Enomoto-Iwamoto, M.; Qin, L. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Proc. Natl. Acad. Sci., 2016, 113(50), 14360-14365.
[http://dx.doi.org/10.1073/pnas.1608938113] [PMID: 27911782]
[35]
Filardo, E.J.; Quinn, J.A.; Bland, K.I.; Frackelton, A.R., Jr Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol., 2000, 14(10), 1649-1660.
[http://dx.doi.org/10.1210/mend.14.10.0532] [PMID: 11043579]
[36]
Zhang, X.; Tamasi, J.; Lu, X.; Zhu, J.; Chen, H.; Tian, X.; Lee, T.C.; Threadgill, D.W.; Kream, B.E.; Kang, Y.; Partridge, N.C.; Qin, L. Epidermal growth factor receptor plays an anabolic role in bone metabolism in vivo. J Bone Miner Res., 2011, 26(5), 1022-34.
[http://dx.doi.org/10.1002/jbmr.295]
[37]
Chandra, A.; Lan, S.; Zhu, J.; Siclari, V.A.; Qin, L. Epidermal growth factor receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (EGR2) expression. J. Biol. Chem., 2013, 288(28), 20488-20498.
[http://dx.doi.org/10.1074/jbc.M112.447250] [PMID: 23720781]
[38]
Yang, F.; Lin, Z.W.; Huang, T.Y.; Chen, T.T.; Cui, J.; Li, M.Y.; Hua, Y.Q. Ligustilide, a major bioactive component of Angelica sinensis, promotes bone formation via the GPR30/EGFR pathway. Sci. Rep., 2019, 9(1), 6991.
[http://dx.doi.org/10.1038/s41598-019-43518-7] [PMID: 31061445]
[39]
Vanden Berghe, W.; Plaisance, S.; Boone, E.; De Bosscher, K.; Schmitz, M.L.; Fiers, W.; Haegeman, G. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J. Biol. Chem., 1998, 273(6), 3285-3290.
[http://dx.doi.org/10.1074/jbc.273.6.3285] [PMID: 9452444]
[40]
Shuai, Y.; Jiang, Z.; Yuan, Q.; Tu, S.; Zeng, F. Deciphering the underlying mechanism of eucommiae cortex against osteoporotic fracture by network pharmacology. Evid. Based Complement. Alternat. Med., 2020, 2020, 7049812.
[http://dx.doi.org/10.1155/2020/7049812]
[41]
Xiao, L.; Zhong, M.; Huang, Y.; Zhu, J.; Tang, W.; Li, D.; Shi, J.; Lu, A.; Yang, H.; Geng, D.; Li, H.; Wang, Z. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROSdependent MAPK/NF-κB signaling pathways. Aging, 2020, 12(21), 21706-21729.
[http://dx.doi.org/10.18632/aging.103976] [PMID: 33176281]
[42]
Ghafouri-Fard, S.; Abak, A.; Shoorei, H.; Mohaqiq, M.; Majidpoor, J.; Sayad, A.; Taheri, M. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother., 2021, 133, 110986.
[http://dx.doi.org/10.1016/j.biopha.2020.110986]
[43]
Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009] [PMID: 31323288]
[44]
Guo, K.; Wang, T.; Luo, E.; Leng, X.; Yao, B. Use of network pharmacology and molecular docking technology to analyze the mechanism of action of velvet antler in the treatment of postmenopausal osteoporosis. Evid Based Complement Alternat Med., 2021, 2012, 7144529.
[http://dx.doi.org/10.1155/2021/7144529]
[45]
Wu, C.M.; Chen, P.C.; Li, T.M.; Fong, Y.C.; Tang, C.H. Si-Wu-tang extract stimulates bone formation through PI3K/Akt/NF-κB signaling pathways in osteoblasts. BMC Complement. Altern. Med., 2013, 13(1), 277.
[http://dx.doi.org/10.1186/1472-6882-13-277] [PMID: 24156308]
[46]
Gong, W.; Chen, X.; Shi, T.; Shao, X.; An, X.; Qin, J.; Chen, X.; Jiang, Q.; Guo, B. Network pharmacology-based strategy for the investigation of the anti-osteoporosis effects and underlying mechanism of zhuangguguanjie formulation. Front. Pharmacol., 2021, 12, 727808.
[http://dx.doi.org/10.3389/fphar.2021.727808] [PMID: 34658868]
[47]
Qin, L.; Liu, W.; Cao, H.; Xiao, G. Molecular mechanosensors in osteocytes. Bone Res., 2020, 8(1), 23.
[http://dx.doi.org/10.1038/s41413-020-0099-y] [PMID: 32550039]
[48]
Zintzaras, E.; Doxani, C.; Koufakis, T.; Kastanis, A.; Rodopoulou, P.; Karachalios, T. Synopsis and meta-analysis of genetic association studies in osteoporosis for the focal adhesion family genes: The CUMAGAS-OSTEOporosis information system. BMC Med., 2011, 9(1), 9.
[http://dx.doi.org/10.1186/1741-7015-9-9] [PMID: 21269451]
[49]
Yang, M.; Li, C.J.; Sun, X.; Guo, Q.; Xiao, Y.; Su, T.; Tu, M.L.; Peng, H.; Lu, Q.; Liu, Q.; He, H.B.; Jiang, T.J.; Lei, M.X.; Wan, M.; Cao, X.; Luo, X.H. MiR-497∼195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat. Commun., 2017, 8(1), 16003.
[http://dx.doi.org/10.1038/ncomms16003] [PMID: 28685750]
[50]
Duncan Bassett, J.H.; Williams, G.R. The molecular actions of thyroid hormone in bone. Trends Endocrinol. Metab., 2003, 14(8), 356-364.
[http://dx.doi.org/10.1016/S1043-2760(03)00144-9] [PMID: 14516933]
[51]
Kim, H.Y.; Mohan, S. Role and mechanisms of actions of thyroid hormone on the skeletal development. Bone Res., 2013, 1(2), 146-161.
[http://dx.doi.org/10.4248/BR201302004] [PMID: 26273499]
[52]
Baliram, R.; Sun, L.; Cao, J.; Li, J.; Latif, R.; Huber, A.K.; Yuen, T.; Blair, H.C.; Zaidi, M.; Davies, T.F. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Invest., 2012, 122(10), 3737-3741.
[http://dx.doi.org/10.1172/JCI63948] [PMID: 22996689]
[53]
Wu, D.; Cline-Smith, A.; Shashkova, E.; Perla, A.; Katyal, A.; Aurora, R. T-cell mediated inflammation in postmenopausal osteoporosis. Front. Immunol., 2021, 12, 687551.
[http://dx.doi.org/10.3389/fimmu.2021.687551] [PMID: 34276675]
[54]
Faltas, C.L.; LeBron, K.A.; Holz, M.K. Unconventional estrogen signaling in health and disease. Endocrinology, 2020, 161(4), bqaa030.
[http://dx.doi.org/10.1210/endocr/bqaa030] [PMID: 32128594]
[55]
Fischer, V.; Haffner-Luntzer, M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin. Cell Dev. Biol., 2022, 123, 14-21.
[http://dx.doi.org/10.1016/j.semcdb.2021.05.014] [PMID: 34024716]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy