Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

New Relations between Zagreb Indices and Omega Invariant

Author(s): Aysun Yurttas Gunes*

Volume 21, Issue 3, 2024

Published on: 10 August, 2023

Page: [257 - 262] Pages: 6

DOI: 10.2174/1570179420666230602155447

Price: $65

Abstract

Introduction: In this work, we studied the problem of determining the values of the Zagreb indices of all the realizations of a given degree sequence.

Methods: We first obtained some new relations between the first and second Zagreb indices and the forgotten index sometimes called the third Zagreb index. These relations also include the triangular numbers, order, size, and the biggest vertex degree of a given graph. As the first Zagreb index and the forgotten index of all the realizations of a given degree sequence are fixed, we concentrated on the values of the second Zagreb index and studied several properties including the effect of vertex addition.

Results: In our calculations, we make use of a new graph invariant, called omega invariant, to reach numerical and topological values claimed in the theorems. This invariant is closely related to Euler characteristic and the cyclomatic number of graphs.

Conclusion: Therefore this invariant is used in the calculation of some parameters of the molecular structure under review in terms of vertex degrees, eccentricity, and distance.

Graphical Abstract

[1]
Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: New York, 2012.
[http://dx.doi.org/10.1007/978-1-4614-1939-6]
[2]
Cangul, I.N.; Yurttas Gunes, A.; Togan, M.; Delen, S. Connectedness of graphs and omega invariant. Proceedings Book of MICOPAM, 2019, 2019, 59-62.
[3]
Das, K.C.; Yurttas, A.; Togan, M.; Cevik, A.S.; Cangul, I.N. The multiplicative Zagreb indices of graph operations. J. Inequal. Appl., 2013, 2013(1), 90.
[http://dx.doi.org/10.1186/1029-242X-2013-90]
[4]
Das, KC; Akgunes, N; Togan, M; Yurttas, A; Cangul, IN; Cevik, AS On the first Zagreb index and multiplicative Zagreb coindices of graphs. Analele Stiintifice ale Univ. Ovidius Constanta, Ser., 2016, 24(1), 153-176.
[http://dx.doi.org/10.1515/auom-2016-0008]
[5]
Delen, S.; Naci Cangul, I. A new graph invariant. Turk. J. Anal. Numb. Theory, 2018, 6(1), 30-33.
[http://dx.doi.org/10.12691/tjant-6-1-4]
[6]
Delen, S.; Naci Cangul, I. Effect of edge and vertex addition on Albertson and Bell indices. AIMS Mathematics, 2021, 6(1), 925-937.
[http://dx.doi.org/10.3934/math.2021055]
[7]
Delen, S.; Cangul, I.N. Extremal problems on components and loops in graphs. Acta Math. Sin., 2019, 35(2), 161-171.
[http://dx.doi.org/10.1007/s10114-018-8086-6]
[8]
Delen, S.; Togan, M.; Yurttas, A.; Ana, U.; Cangu, I. The effect of edge and vertex deletion on omega invariant. Appl. Ana. Discrete Math., 2020, 14(3), 685-696.
[http://dx.doi.org/10.2298/AADM190219046D]
[9]
Delen, S.; Togan, M.; Yurttas, A.; Cangul, I.N. New results on edge and vertex deletion in graphs. MICOPAM Proceedings Book; , 2018, pp. 175-179.
[10]
Furtula, B.; Gutman, I. A forgotten topological index. J. Math. Chem., 2015, 53(4), 1184-1190.
[http://dx.doi.org/10.1007/s10910-015-0480-z]
[11]
Gutman, I.; Trinajstic, N. Graph theory and molecular orbitals III, Total. Chem. Phys. Lett., 1972, 17, 535-538.
[http://dx.doi.org/10.1016/0009-2614(72)85099-1]
[12]
Li, X.; Shi, Y.; Gutman, I. Graph Energy; Springer: New York, 2012.
[http://dx.doi.org/10.1007/978-1-4614-4220-2]
[13]
Oz, M.S.; Cangul, I.N. Bounds for matching number of fundamental realizations according to graph invariant omega. Proceed. Jangjeon Mathe. Soc., 2020, 23(1), 23-37.
[14]
Ozden Ayna, H. Omega invariant of the line graphs of tricyclic graphs. J. BAUN Inst. Sci. Technol., 2019, 21(2), 657-665.
[15]
Ranjini, P.S.; Lokesha, V.; Cangül, I.N. On the Zagreb indices of the line graphs of the subdivision graphs. Appl. Math. Comput., 2011, 218(3), 699-702.
[http://dx.doi.org/10.1016/j.amc.2011.03.125]
[16]
Togan, M.; Yurttas, A.; Cevik, A.S.; Cangul, I.N. Effect of edge deletion and addition on zagreb indices of graphs. In: Mathematical Methods in Engineering; Springer, Cham, 2019.
[http://dx.doi.org/10.1007/978-3-319-91065-9_9]
[17]
West, D.B. Introduction to graph theory; Pearson College: USA, 2000.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy