Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Review Article

Primary Ciliary Dyskinesia - An Update on the Genetics of Underlying Pathological Mechanisms

Author(s): Barani Karikalan* and Srikumar Chakravarthi

Volume 19, Issue 3, 2023

Published on: 14 June, 2023

Page: [190 - 201] Pages: 12

DOI: 10.2174/1573398X19666230602143458

Price: $65

Abstract

One of the rapidly growing groups of diseases known as ciliopathies is primary ciliary dyskinesia (PCD), a rare hereditary illness of the motile cilia. Different clinical symptoms of primary ciliary dyskinesia include infertility, left-right lateralization abnormalities, and chronic upper and lower respiratory tract disorders. Our knowledge of the genetics underlying primary ciliary dyskinesia has significantly increased in recent years. Involved in the formation, shape, and operation of motile cilia are axonemal, cytoplasmic, and regulatory proteins that are encoded by a rising number of disease-associated genes and pathogenic mutations. We now have a better grasp of the clinical signs and symptoms of motile ciliopathies because of advances in our understanding of cilia genetics and the function of the proteins expressed. These developments have altered how we approach primary ciliary dyskinesia diagnostic testing. The clinical characteristics of primary ciliary dyskinesia, the evolution of diagnostics, and the discovery of previously unknown genotype-phenotype connections in primary ciliary dyskinesia will all be covered in this review paper.

Graphical Abstract

[1]
Horani A, Ferkol TW. Advances in the genetics of primary ciliary dyskinesia. Chest 2018; 154(3): 645-52.
[http://dx.doi.org/10.1016/j.chest.2018.05.007] [PMID: 29800551]
[2]
Horani A, Ferkol TW. Understanding primary ciliary dyskinesia and other ciliopathies. J Pediatr 2021; 230: 15-22.e1.
[http://dx.doi.org/10.1016/j.jpeds.2020.11.040] [PMID: 33242470]
[3]
De Santi MM, Magni A, Valletta EA, Gardi C, Lungarella G. Hydrocephalus, bronchiectasis, and ciliary aplasia. Arch Dis Child 1990; 65(5): 543-4.
[http://dx.doi.org/10.1136/adc.65.5.543] [PMID: 2357097]
[4]
Leigh MW, Horani A, Kinghorn B, O’Connor MG, Zariwala MA, Knowles MR. Primary ciliary dyskinesia (PCD): A genetic disorder of motile cilia. Transl Sci Rare Dis 2019; 4(1-2): 51-75.
[http://dx.doi.org/10.3233/TRD-190036] [PMID: 31572664]
[5]
Knowles MR, Ostrowski LE, Loges NT, et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet 2013; 93(4): 711-20.
[http://dx.doi.org/10.1016/j.ajhg.2013.07.025] [PMID: 24055112]
[6]
Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med 2013; 188(8): 913-22.
[http://dx.doi.org/10.1164/rccm.201301-0059CI] [PMID: 23796196]
[7]
Horani A, Brody SL, Ferkol TW, et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One 2013; 8(8): e72299.
[http://dx.doi.org/10.1371/journal.pone.0072299] [PMID: 23991085]
[8]
Knowles MR, Leigh MW, Carson JL, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax 2012; 67(5): 433-41.
[http://dx.doi.org/10.1136/thoraxjnl-2011-200301] [PMID: 22184204]
[9]
Ferkol TW, Leigh MW. Ciliopathies: The central role of cilia in a spectrum of pediatric disorders. J Pediatr 2012; 160(3): 366-71.
[http://dx.doi.org/10.1016/j.jpeds.2011.11.024] [PMID: 22177992]
[10]
Loges NT, Olbrich H, Becker-Heck A, et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet 2009; 85(6): 883-9.
[http://dx.doi.org/10.1016/j.ajhg.2009.10.018] [PMID: 19944400]
[11]
Mitchison HM, Schmidts M, Loges NT, et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet 2012; 44(4): 381-389-S1-S2.
[http://dx.doi.org/10.1038/ng.1106] [PMID: 22387996]
[12]
Omran H, Kobayashi D, Olbrich H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008; 456(7222): 611-6.
[http://dx.doi.org/10.1038/nature07471] [PMID: 19052621]
[13]
Horani A, Druley TE, Zariwala MA, et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet 2012; 91(4): 685-93.
[http://dx.doi.org/10.1016/j.ajhg.2012.08.022] [PMID: 23040496]
[14]
Knowles MR, Leigh MW, Ostrowski LE, et al. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet 2013; 92(1): 99-106.
[http://dx.doi.org/10.1016/j.ajhg.2012.11.003] [PMID: 23261302]
[15]
Onoufriadis A, Paff T, Antony D, et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 2013; 92(1): 88-98.
[http://dx.doi.org/10.1016/j.ajhg.2012.11.002] [PMID: 23261303]
[16]
Pifferi M, Michelucci A, Conidi ME, et al. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J 2010; 35(6): 1413-6.
[http://dx.doi.org/10.1183/09031936.00186209] [PMID: 20513915]
[17]
Guichard C, Harricane MC, Lafitte JJ, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 2001; 68(4): 1030-5.
[http://dx.doi.org/10.1086/319511] [PMID: 11231901]
[18]
Pennarun G, Escudier E, Chapelin C, et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 1999; 65(6): 1508-19.
[http://dx.doi.org/10.1086/302683] [PMID: 10577904]
[19]
Olbrich H, Häffner K, Kispert A, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry. Nat Genet 2002; 30(2): 143-4.
[http://dx.doi.org/10.1038/ng817] [PMID: 11788826]
[20]
Zariwala MA, Leigh MW, Ceppa F, et al. Mutations of DNAI1 in primary ciliary dyskinesia: Evidence of founder effect in a common mutation. Am J Respir Crit Care Med 2006; 174(8): 858-66.
[http://dx.doi.org/10.1164/rccm.200603-370OC] [PMID: 16858015]
[21]
Omran H, Häffner K, Völkel A, et al. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 2000; 23(5): 696-702.
[http://dx.doi.org/10.1165/ajrcmb.23.5.4257] [PMID: 11062149]
[22]
Horváth J, Fliegauf M, Olbrich H, et al. Identification and analysis of axonemal dynein light chain 1 in primary ciliary dyskinesia patients. Am J Respir Cell Mol Biol 2005; 33(1): 41-7.
[http://dx.doi.org/10.1165/rcmb.2004-0335OC] [PMID: 15845866]
[23]
Loges NT, Olbrich H, Fenske L, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 2008; 83(5): 547-58.
[http://dx.doi.org/10.1016/j.ajhg.2008.10.001] [PMID: 18950741]
[24]
Duriez B, Duquesnoy P, Escudier E, et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci USA 2007; 104(9): 3336-41.
[http://dx.doi.org/10.1073/pnas.0611405104] [PMID: 17360648]
[25]
Bower R, Tritschler D, VanderWaal K, et al. The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 2013; 24(8): 1134-52.
[http://dx.doi.org/10.1091/mbc.e12-11-0801] [PMID: 23427265]
[26]
Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 2009; 187(6): 921-33.
[http://dx.doi.org/10.1083/jcb.200908067] [PMID: 20008568]
[27]
Merveille AC, Davis EE, Becker-Heck A, et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 2011; 43(1): 72-8.
[http://dx.doi.org/10.1038/ng.726] [PMID: 21131972]
[28]
Becker-Heck A, Zohn IE, Okabe N, et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 2011; 43(1): 79-84.
[http://dx.doi.org/10.1038/ng.727] [PMID: 21131974]
[29]
Blanchon S, Legendre M, Copin B, et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J Med Genet 2012; 49(6): 410-6.
[http://dx.doi.org/10.1136/jmedgenet-2012-100867] [PMID: 22693285]
[30]
Antony D, Becker-Heck A, Zariwala MA, et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 2013; 34(3): 462-72.
[http://dx.doi.org/10.1002/humu.22261] [PMID: 23255504]
[31]
Davis SD, Ferkol TW, Rosenfeld M, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 2015; 191(3): 316-24.
[http://dx.doi.org/10.1164/rccm.201409-1672OC] [PMID: 25493340]
[32]
Davis SD, Rosenfeld M, Lee HS, et al. Primary ciliary dyskinesia: Longitudinal study of lung disease by ultrastructure defect and genotype. Am J Respir Crit Care Med 2019; 199(2): 190-8.
[http://dx.doi.org/10.1164/rccm.201803-0548OC] [PMID: 30067075]
[33]
Castleman VH, Romio L, Chodhari R, et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet 2009; 84(2): 197-209.
[http://dx.doi.org/10.1016/j.ajhg.2009.01.011] [PMID: 19200523]
[34]
Jeanson L, Copin B, Papon JF, et al. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am J Hum Genet 2015; 97(1): 153-62.
[http://dx.doi.org/10.1016/j.ajhg.2015.05.004] [PMID: 26073779]
[35]
Olbrich H, Schmidts M, Werner C, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 2012; 91(4): 672-84.
[http://dx.doi.org/10.1016/j.ajhg.2012.08.016] [PMID: 23022101]
[36]
Yang P, Diener DR, Yang C, et al. Radial spoke proteins of Chlamydomonas flagella. J Cell Sci 2006; 119(6): 1165-74.
[http://dx.doi.org/10.1242/jcs.02811] [PMID: 16507594]
[37]
Fowkes ME, Mitchell DR. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol Biol Cell 1998; 9(9): 2337-47.
[http://dx.doi.org/10.1091/mbc.9.9.2337] [PMID: 9725897]
[38]
Piperno G, Mead K. Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci USA 1997; 94(9): 4457-62.
[http://dx.doi.org/10.1073/pnas.94.9.4457] [PMID: 9114011]
[39]
Horani A, Ferkol TW, Shoseyov D, et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One 2013; 8(3): e59436.
[http://dx.doi.org/10.1371/journal.pone.0059436] [PMID: 23527195]
[40]
Kott E, Duquesnoy P, Copin B, et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet 2012; 91(5): 958-64.
[http://dx.doi.org/10.1016/j.ajhg.2012.10.003] [PMID: 23122589]
[41]
Tarkar A, Loges NT, Slagle CE, et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 2013; 45(9): 995-1003.
[http://dx.doi.org/10.1038/ng.2707] [PMID: 23872636]
[42]
Panizzi JR, Becker-Heck A, Castleman VH, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet 2012; 44(6): 714-9.
[http://dx.doi.org/10.1038/ng.2277] [PMID: 22581229]
[43]
Moore DJ, Onoufriadis A, Shoemark A, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet 2013; 93(2): 346-56.
[http://dx.doi.org/10.1016/j.ajhg.2013.07.009] [PMID: 23891471]
[44]
Zariwala MA, Gee HY, Kurkowiak M, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet 2013; 93(2): 336-45.
[http://dx.doi.org/10.1016/j.ajhg.2013.06.007] [PMID: 23891469]
[45]
Austin-Tse C, Halbritter J, Zariwala MA, et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet 2013; 93(4): 672-86.
[http://dx.doi.org/10.1016/j.ajhg.2013.08.015] [PMID: 24094744]
[46]
Höben IM, Hjeij R, Olbrich H, et al. Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet 2018; 102(5): 973-84.
[http://dx.doi.org/10.1016/j.ajhg.2018.03.025] [PMID: 29727693]
[47]
Olcese C, Patel MP, Shoemark A, et al. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 2017; 8(1): 14279.
[http://dx.doi.org/10.1038/ncomms14279] [PMID: 28176794]
[48]
Paff T, Loges NT, Aprea I, et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet 2017; 100(1): 160-8.
[http://dx.doi.org/10.1016/j.ajhg.2016.11.019] [PMID: 28041644]
[49]
Horani A, Ustione A, Huang T, et al. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci USA 2018; 115(6): E1221-8.
[http://dx.doi.org/10.1073/pnas.1715915115] [PMID: 29358401]
[50]
Mali GR, Yeyati PL, Mizuno S, et al. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. eLife 2018; 7: e34389.
[http://dx.doi.org/10.7554/eLife.34389] [PMID: 29916806]
[51]
Chen Y, Zhao M, Wang S, et al. A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer. J Cancer Res Clin Oncol 2009; 135(9): 1265-76.
[http://dx.doi.org/10.1007/s00432-009-0568-6] [PMID: 19277710]
[52]
Pal M, Morgan M, Phelps SEL, et al. Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure 2014; 22(6): 805-18.
[http://dx.doi.org/10.1016/j.str.2014.04.001] [PMID: 24794838]
[53]
Boon M, Wallmeier J, Ma L, et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 2014; 5(1): 4418.
[http://dx.doi.org/10.1038/ncomms5418] [PMID: 25048963]
[54]
Wallmeier J, Al-Mutairi DA, Chen CT, et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 2014; 46(6): 646-51.
[http://dx.doi.org/10.1038/ng.2961] [PMID: 24747639]
[55]
Santi MM, Gardi C, Barlocco G, Canciani M, Mastella G, Lungarella G. Cilia-lacking respiratory cells in ciliary aplasia. Biol Cell 1988; 64(1): 67-70.
[http://dx.doi.org/10.1016/0248-4900(88)90094-9] [PMID: 3224218]
[56]
Matwijiw I, Thliveris JA, Faiman C. Aplasia of nasal cilia with situs inversus, azoospermia and normal sperm flagella: A unique variant of the immotile cilia syndrome. J Urol 1987; 137(3): 522-4.
[http://dx.doi.org/10.1016/S0022-5347(17)44097-3] [PMID: 3820392]
[57]
Richard S, Nezelof C, Pfister A, de Blic J, Scheinmann P, Paupe J. Congenital ciliary aplasia in two siblings. A primitive disregulation of ciliogenesis? Pathol Res Pract 1989; 185(2): 181-3.
[http://dx.doi.org/10.1016/S0344-0338(89)80248-1] [PMID: 2798216]
[58]
Nachury MV. The molecular machines that traffic signaling receptors into and out of cilia. Curr Opin Cell Biol 2018; 51: 124-31.
[http://dx.doi.org/10.1016/j.ceb.2018.03.004] [PMID: 29579578]
[59]
Horani A, Ferkol TW. Primary ciliary dyskinesia and associated sensory ciliopathies. Expert Rev Respir Med 2016; 10(5): 569-76.
[http://dx.doi.org/10.1586/17476348.2016.1165612] [PMID: 26967669]
[60]
Hong DH, Pawlyk B, Sokolov M, et al. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 2003; 44(6): 2413-21.
[http://dx.doi.org/10.1167/iovs.02-1206] [PMID: 12766038]
[61]
Moore A, Escudier E, Roger G, et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 2005; 43(4): 326-33.
[http://dx.doi.org/10.1136/jmg.2005.034868] [PMID: 16055928]
[62]
Ferrante MI, Zullo A, Barra A, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet 2006; 38(1): 112-7.
[http://dx.doi.org/10.1038/ng1684] [PMID: 16311594]
[63]
Budny B, Chen W, Omran H, et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral–facial–digital type I syndrome. Hum Genet 2006; 120(2): 171-8.
[http://dx.doi.org/10.1007/s00439-006-0210-5] [PMID: 16783569]
[64]
Coren ME, Meeks M, Morrison I, Buchdahl RM, Bush A. Primary ciliary dyskinesia: Age at diagnosis and symptom history. Acta Paediatr 2002; 91(6): 667-9.
[http://dx.doi.org/10.1111/j.1651-2227.2002.tb03299.x] [PMID: 12162599]
[65]
Noone PG, Leigh MW, Sannuti A, et al. Primary ciliary dyskinesia: Diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169(4): 459-67.
[http://dx.doi.org/10.1164/rccm.200303-365OC] [PMID: 14656747]
[66]
Hossain T, Kappelman MD, Perez-Atayde AR, Young GJ, Huttner KM, Christou H. Primary ciliary dyskinesia as a cause of neonatal respiratory distress: Implications for the neonatologist. J Perinatol 2003; 23(8): 684-7.
[http://dx.doi.org/10.1038/sj.jp.7210987] [PMID: 14647169]
[67]
Ferkol T, Leigh M. Primary ciliary dyskinesia and newborn respiratory distress. Semin Perinatol 2006; 30(6): 335-40.
[http://dx.doi.org/10.1053/j.semperi.2005.11.001] [PMID: 17142159]
[68]
Pittman JE, LaFave C, Ferkol T, et al. Characteristics of primary ciliary dyskinesia in children under five years of age. Am J Respir Crit Care Med 2023; 207: A1213.
[69]
Kennedy MP, Omran H, Leigh MW, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007; 115(22): 2814-21.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.649038] [PMID: 17515466]
[70]
Livraghi A, Randell SH. Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol Pathol 2007; 35(1): 116-29.
[http://dx.doi.org/10.1080/01926230601060025] [PMID: 17325980]
[71]
Hellinckx J, Demedts M, Boeck KD. Primary ciliary dyskinesia: Evolution of pulmonary function. Eur J Pediatr 1998; 157(5): 422-6.
[http://dx.doi.org/10.1007/s004310050843] [PMID: 9625342]
[72]
Santamaria F, Montella S, Tiddens HAWM, et al. Structural and functional lung disease in primary ciliary dyskinesia. Chest 2008; 134(2): 351-7.
[http://dx.doi.org/10.1378/chest.07-2812] [PMID: 18403663]
[73]
Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J 1997; 10(10): 2376-9.
[http://dx.doi.org/10.1183/09031936.97.10102376] [PMID: 9387968]
[74]
Marthin JK, Petersen N, Skovgaard LT, Nielsen KG. Lung function in patients with primary ciliary dyskinesia: A cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med 2010; 181(11): 1262-8.
[http://dx.doi.org/10.1164/rccm.200811-1731OC] [PMID: 20167855]
[75]
Jain K, Padley SPG, Goldstraw EJ, et al. Primary ciliary dyskinesia in the paediatric population: Range and severity of radiological findings in a cohort of patients receiving tertiary care. Clin Radiol 2007; 62(10): 986-93.
[http://dx.doi.org/10.1016/j.crad.2007.04.015] [PMID: 17765464]
[76]
Kennedy MP, Noone PG, Leigh MW, et al. High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol 2007; 188(5): 1232-8.
[http://dx.doi.org/10.2214/AJR.06.0965] [PMID: 17449765]
[77]
Zihlif N, Paraskakis E, Lex C, Van De Pohl LA, Bush A. Correlation between cough frequency and airway inflammation in children with primary ciliary dyskinesia. Pediatr Pulmonol 2005; 39(6): 551-7.
[http://dx.doi.org/10.1002/ppul.20202] [PMID: 15806596]
[78]
Bush A, Payne D, Pike S, Jenkins G, Henke MO, Rubin BK. Mucus properties in children with primary ciliary dyskinesia: Comparison with cystic fibrosis. Chest 2006; 129(1): 118-23.
[http://dx.doi.org/10.1378/chest.129.1.118] [PMID: 16424421]
[79]
Hilliard TN, Regamey N, Shute JK, et al. Airway remodelling in children with cystic fibrosis. Thorax 2007; 62(12): 1074-80.
[http://dx.doi.org/10.1136/thx.2006.074641] [PMID: 17526676]
[80]
Barbato A, Frischer T, Kuehni CE, et al. Primary ciliary dyskinesia: A consensus statement on diagnostic and treatment approaches in children. Eur Respir J 2009; 34(6): 1264-76.
[http://dx.doi.org/10.1183/09031936.00176608] [PMID: 19948909]
[81]
Campbell RG, Birman CS, Morgan L. Management of otitis media with effusion in children with primary ciliary dyskinesia: A literature review. Int J Pediatr Otorhinolaryngol 2009; 73(12): 1630-8.
[http://dx.doi.org/10.1016/j.ijporl.2009.08.024] [PMID: 19796826]
[82]
Majithia A, Fong J, Hariri M, Harcourt J. Hearing outcomes in children with primary ciliary dyskinesia—a longitudinal study. Int J Pediatr Otorhinolaryngol 2005; 69(8): 1061-4.
[http://dx.doi.org/10.1016/j.ijporl.2005.02.013] [PMID: 16005347]
[83]
Hadfield PJ, Rowe-Jones JM, Bush A, Mackay IS. Treatment of otitis media with effusion in children with primary ciliary dyskinesia. Clin Otolaryngol Allied Sci 1997; 22(4): 302-6.
[http://dx.doi.org/10.1046/j.1365-2273.1997.00020.x] [PMID: 9298603]
[84]
Baroody FM. Mucociliary transport in chronic rhinosinusitis. Clin Allergy Immunol 2007; 20: 103-19.
[PMID: 17534048]
[85]
Min YG, Shin JS, Choi SH, Chi JG, Yoon CJ. Primary ciliary dyskinesia: Ultrastructural defects and clinical features. Rhinology 1995; 33(4): 189-93.
[PMID: 8919209]
[86]
Parsons DS, Greene BA. A treatment for primary ciliary dyskinesia: Efficacy of functional endoscopic sinus surgery. Laryngoscope 1993; 103(11 Pt 1): 1269-72.
[http://dx.doi.org/10.1288/00005537-199311000-00010] [PMID: 8231581]
[87]
Loges NT, Antony D, Maver A, et al. Recessive DNAH9 Loss-of-function mutations cause laterality defects and subtle respiratory ciliary-beating defects. Am J Hum Genet 2018; 103(6): 995-1008.
[http://dx.doi.org/10.1016/j.ajhg.2018.10.020] [PMID: 30471718]
[88]
Knowles MR, Ostrowski LE, Leigh MW, et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 2014; 189(6): 707-17.
[http://dx.doi.org/10.1164/rccm.201311-2047OC] [PMID: 24568568]
[89]
Brennan SK, Ferkol TW, Davis SD. Emerging genotype-phenotype relationships in primary ciliary dyskinesia. Int J Mol Sci 2021; 22(15): 8272.
[http://dx.doi.org/10.3390/ijms22158272] [PMID: 34361034]
[90]
Abdelhamed Z, Vuong SM, Hill L, et al. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development 2018; 145(1): dev154500.
[http://dx.doi.org/10.1242/dev.154500] [PMID: 29317443]
[91]
Ohata S, Nakatani J, Herranz-Pérez V, et al. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron 2014; 83(3): 558-71.
[http://dx.doi.org/10.1016/j.neuron.2014.06.022] [PMID: 25043421]
[92]
Zou W, Lv Y, Liu Z, Xia P, Li H, Jiao J. Loss of Rsph9 causes neonatal hydrocephalus with abnormal development of motile cilia in mice. Sci Rep 2020; 10(1): 12435.
[http://dx.doi.org/10.1038/s41598-020-69447-4] [PMID: 32709945]
[93]
Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: Diagnosis and treatment. Curr Neurol Neurosci Rep 2008; 8(5): 371-6.
[http://dx.doi.org/10.1007/s11910-008-0058-2] [PMID: 18713572]
[94]
Lee L. Riding the wave of ependymal cilia: Genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 2013; 91(9): 1117-32.
[http://dx.doi.org/10.1002/jnr.23238] [PMID: 23686703]
[95]
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2021; 110: 19-33.
[http://dx.doi.org/10.1016/j.semcdb.2020.11.007] [PMID: 33279404]
[96]
Backman K, Mears WE, Waheeb A, et al. A splice site and copy number variant responsible for TTC25-related primary ciliary dyskinesia. Eur J Med Genet 2021; 64(5): 104193.
[http://dx.doi.org/10.1016/j.ejmg.2021.104193] [PMID: 33746037]
[97]
Shoemark A, Harman K. Primary ciliary dyskinesia. Semin Respir Crit Care Med 2021; 42(4): 537-48.
[http://dx.doi.org/10.1055/s-0041-1730919] [PMID: 34261178]
[98]
Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77(11): 2029-48.
[http://dx.doi.org/10.1007/s00018-019-03389-7] [PMID: 31781811]
[99]
Liu C, Lv M, He X, et al. Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet 2020; 57(1): 31-7.
[http://dx.doi.org/10.1136/jmedgenet-2019-106011] [PMID: 31048344]
[100]
Liu W, Sha Y, Li Y, et al. Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet 2019; 56(10): 678-84.
[http://dx.doi.org/10.1136/jmedgenet-2018-105952] [PMID: 31151990]
[101]
Coutton C, Martinez G, Kherraf ZE, et al. Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet 2019; 104(2): 331-40.
[http://dx.doi.org/10.1016/j.ajhg.2018.12.013] [PMID: 30686508]
[102]
Dong FN, Amiri-Yekta A, Martinez G, et al. Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse. Am J Hum Genet 2018; 102(4): 636-48.
[http://dx.doi.org/10.1016/j.ajhg.2018.03.007] [PMID: 29606301]
[103]
He X, Li W, Wu H, et al. Novel homozygous CFAP69 mutations in humans and mice cause severe asthenoteratospermia with multiple morphological abnormalities of the sperm flagella. J Med Genet 2019; 56(2): 96-103.
[http://dx.doi.org/10.1136/jmedgenet-2018-105486] [PMID: 30415212]
[104]
Lorès P, Coutton C, El Khouri E, et al. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet 2018; 27(7): 1196-211.
[http://dx.doi.org/10.1093/hmg/ddy034] [PMID: 29365104]
[105]
Mata M, Lluch-Estellés J, Armengot M, Sarrión I, Carda C, Cortijo J. New adenylate kinase 7 (AK7) mutation in primary ciliary dyskinesia. Am J Rhinol Allergy 2012; 26(4): 260-4.
[http://dx.doi.org/10.2500/ajra.2012.26.3784] [PMID: 22801010]
[106]
Milara J, Armengot M, Mata M, Morcillo EJ, Cortijo J. Role of adenylate kinase type 7 expression on cilia motility: Possible link in primary ciliary dyskinesia. Am J Rhinol Allergy 2010; 24(3): 181-5.
[http://dx.doi.org/10.2500/ajra.2010.24.3468] [PMID: 20537283]
[107]
Vanaken GJ, Bassinet L, Boon M, et al. Infertility in an adult cohort with primary ciliary dyskinesia: Phenotype–gene association. Eur Respir J 2017; 50(5): 1700314.
[http://dx.doi.org/10.1183/13993003.00314-2017] [PMID: 29122913]
[108]
Abbasi F, Miyata H, Shimada K, et al. RSPH6A is required for sperm flagellum formation and male fertility in mice. J Cell Sci 2018; 131(19): jcs221648.
[http://dx.doi.org/10.1242/jcs.221648] [PMID: 30185526]
[109]
Aprea I, Raidt J, Höben IM, et al. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17(2): e1009306.
[http://dx.doi.org/10.1371/journal.pgen.1009306] [PMID: 33635866]
[110]
Thomas L, Bouhouche K, Whitfield M, et al. TTC12 Loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assembly mechanisms in motile cilia versus flagella. Am J Hum Genet 2020; 106(2): 153-69.
[http://dx.doi.org/10.1016/j.ajhg.2019.12.010] [PMID: 31978331]
[111]
Fliegauf M, Olbrich H, Horvath J, et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 2005; 171(12): 1343-9.
[http://dx.doi.org/10.1164/rccm.200411-1583OC] [PMID: 15750039]
[112]
Schwabe GC, Hoffmann K, Loges NT, et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat 2008; 29(2): 289-98.
[http://dx.doi.org/10.1002/humu.20656] [PMID: 18022865]
[113]
Wang X, Jin H, Han F, et al. Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin Genet 2017; 91(2): 313-21.
[http://dx.doi.org/10.1111/cge.12857] [PMID: 27573432]
[114]
Amiri-Yekta A, Coutton C, Kherraf ZE, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod 2016; 31(12): 2872-80.
[http://dx.doi.org/10.1093/humrep/dew262] [PMID: 27798045]
[115]
Imtiaz F, Allam R, Ramzan K, Al-Sayed M. Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet 2015; 16(1): 14.
[http://dx.doi.org/10.1186/s12881-015-0162-5] [PMID: 25927852]
[116]
Ben Khelifa M, Coutton C, Zouari R, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 2014; 94(1): 95-104.
[http://dx.doi.org/10.1016/j.ajhg.2013.11.017] [PMID: 24360805]
[117]
Li Y, Sha Y, Wang X, et al. DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet 2019; 95(5): 590-600.
[http://dx.doi.org/10.1111/cge.13525] [PMID: 30811583]
[118]
Liu C, Miyata H, Gao Y, et al. Bi-allelic DNAH8 variants lead to multiple morphological abnormalities of the sperm flagella and primary male infertility. Am J Hum Genet 2020; 107(2): 330-41.
[http://dx.doi.org/10.1016/j.ajhg.2020.06.004] [PMID: 32619401]
[119]
Yang Y, Jiang C, Zhang X, et al. Loss‐of‐function mutation inDNAH8 induces asthenoteratospermia associated with multiple morphological abnormalities of the sperm flagella. Clin Genet 2020; 98(4): 396-401.
[http://dx.doi.org/10.1111/cge.13815] [PMID: 32681648]
[120]
Zhou Z, Mao X, Chen B, et al. A novel splicing variant in DNAH8 causes asthenozoospermia. J Assist Reprod Genet 2021; 38(6): 1545-50.
[http://dx.doi.org/10.1007/s10815-021-02116-1] [PMID: 33611675]
[121]
Weng M, Sha Y, Zeng Y, et al. Mutations in DNAH8 contribute to multiple morphological abnormalities of sperm flagella and male infertility. Acta Biochim Biophys Sin 2021; 53(4): 472-80.
[http://dx.doi.org/10.1093/abbs/gmab013] [PMID: 33704367]
[122]
Zhang B, Ma H, Khan T, et al. A DNAH17 missense variant causes flagella destabilization and asthenozoospermia. J Exp Med 2020; 217(2): e20182365.
[http://dx.doi.org/10.1084/jem.20182365] [PMID: 31658987]
[123]
Sha Y, Wei X, Ding L, et al. DNAH17 is associated with asthenozoospermia and multiple morphological abnormalities of sperm flagella. Ann Hum Genet 2020; 84(3): 271-9.
[http://dx.doi.org/10.1111/ahg.12369] [PMID: 31841227]
[124]
Zhang B, Khan I, Liu C, et al. Novel loss‐of‐function variants inDNAH17 cause multiple morphological abnormalities of the sperm flagella in humans and mice. Clin Genet 2021; 99(1): 176-86.
[http://dx.doi.org/10.1111/cge.13866] [PMID: 33070343]
[125]
Tang D, Sha Y, Gao Y, et al. Novel variants in DNAH9 lead to nonsyndromic severe asthenozoospermia. Reprod Biol Endocrinol 2021; 19(1): 27.
[http://dx.doi.org/10.1186/s12958-021-00709-0] [PMID: 33610189]
[126]
Fassad MR, Shoemark A, Legendre M, et al. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am J Hum Genet 2018; 103(6): 984-94.
[http://dx.doi.org/10.1016/j.ajhg.2018.10.016] [PMID: 30471717]
[127]
Terré B, Lewis M, Gil-Gómez G, et al. Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1, MCIDAS or CCNO deficient mice. Development 2019; 146(8): dev.162628.
[http://dx.doi.org/10.1242/dev.162628] [PMID: 30936178]
[128]
Chen X, Bonfiglio R, Banerji S, Jackson DG, Salustri A, Richter RP. Micromechanical analysis of the hyaluronan-rich matrix surrounding the oocyte reveals a uniquely soft and elastic composition. Biophys J 2016; 110(12): 2779-89.
[http://dx.doi.org/10.1016/j.bpj.2016.03.023] [PMID: 27332136]
[129]
Yuan S, Wang Z, Peng H, et al. Oviductal motile cilia are essential for oocyte pickup but dispensable for sperm and embryo transport. Proc Natl Acad Sci USA 2021; 118(22): e2102940118.
[http://dx.doi.org/10.1073/pnas.2102940118] [PMID: 34039711]
[130]
Suarez SS, Wolfner MF. Cilia take the egg on a magic carpet ride. Proc Natl Acad Sci USA 2021; 118(27): e2108887118.
[http://dx.doi.org/10.1073/pnas.2108887118] [PMID: 34162738]
[131]
Afzelius BA. A human syndrome caused by immotile cilia. Science 1976; 193(4250): 317-9.
[http://dx.doi.org/10.1126/science.1084576] [PMID: 1084576]
[132]
Essner JJ, Vogan KJ, Wagner MK, Tabin CJ, Yost HJ, Brueckner M. Conserved function for embryonic nodal cilia. Nature 2002; 418(6893): 37-8.
[http://dx.doi.org/10.1038/418037a] [PMID: 12097899]
[133]
Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998; 95(6): 829-37.
[http://dx.doi.org/10.1016/S0092-8674(00)81705-5] [PMID: 9865700]
[134]
Icardo JM, Sanchez de Vega MJ. Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation 1991; 84(6): 2547-58.
[http://dx.doi.org/10.1161/01.CIR.84.6.2547] [PMID: 1959204]
[135]
Ibañez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002; 11(6): 715-21.
[http://dx.doi.org/10.1093/hmg/11.6.715] [PMID: 11912187]
[136]
Brueckner M. Heterotaxia, congenital heart disease, and primary ciliary dyskinesia. Circulation 2007; 115(22): 2793-5.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.699256] [PMID: 17548739]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy