Generic placeholder image

Recent Advances in Inflammation & Allergy Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-2708
ISSN (Online): 2772-2716

Editorial

Bile Acids and SARS-CoV-2: Ursodeoxycholic Acid as a Potential Treatment of COVID-19

Author(s): Stefano Fiorucci*, Ginevra Urbani and Eleonora Distrutti

Volume 17, Issue 1, 2023

Published on: 09 June, 2023

Page: [2 - 6] Pages: 5

DOI: 10.2174/2772270817666230601124326

Price: $65

[1]
Murakami N, Hayden R, Hills T, et al. Therapeutic advances in COVID-19. Nat Rev Nephrol 2023; 19(1): 38-52.
[http://dx.doi.org/10.1038/s41581-022-00642-4] [PMID: 36253508]
[2]
Gavriatopoulou M, Korompoki E, Fotiou D, et al. Organ-specific manifestations of COVID-19 infection. Clin Exp Med 2020; 20(4): 493-506.
[http://dx.doi.org/10.1007/s10238-020-00648-x] [PMID: 32720223]
[3]
Welte T, Ambrose LJ, Sibbring GC, Sheikh S, Müllerová H, Sabir I. Current evidence for COVID-19 therapies: A systematic literature review. Eur Respir Rev: An Off J Eur Respir Soc 2021; 30(159)
[4]
Zhou Q, Zhao S, Gan L, et al. Use of non-steroidal anti-inflammatory drugs and adverse outcomes during the COVID-19 pandemic: A systematic review and meta-analysis. EClinicalMedicine 2022; 46: 101373.
[http://dx.doi.org/10.1016/j.eclinm.2022.101373] [PMID: 35434582]
[5]
Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med 2021; 9(12): 1407-18.
[http://dx.doi.org/10.1016/S2213-2600(21)00331-3] [PMID: 34480861]
[6]
Godino C, Scotti A, Maugeri N, et al. Antithrombotic therapy in patients with COVID-19? -Rationale and Evidence-. Int J Cardiol 2021; 324: 261-6.
[http://dx.doi.org/10.1016/j.ijcard.2020.09.064] [PMID: 33002521]
[7]
Pitre T, Van Alstine R, Chick G, Leung G, Mikhail D, Cusano E. Antiviral drug treatment for nonsevere COVID-19: A systematic review and network meta-analysis. CMAJ 2022; 194(28): E969-80.
[8]
Liu STH, Lin HM, Baine I, et al. Convalescent plasma treatment of severe COVID-19: A propensity score–matched control study. Nat Med 2020; 26(11): 1708-13.
[http://dx.doi.org/10.1038/s41591-020-1088-9] [PMID: 32934372]
[9]
Krause PR, Fleming TR, Longini IM, et al. SARS-CoV-2 Variants and Vaccines. N Engl J Med 2021; 385(2): 179-86.
[http://dx.doi.org/10.1056/NEJMsr2105280] [PMID: 34161052]
[10]
Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control Covid-19. N Engl J Med 2020; 382(22): 2158-60.
[http://dx.doi.org/10.1056/NEJMe2009758] [PMID: 32329972]
[11]
Bruno G, Giotta M, Perelli S, De Vita G, Bartolomeo N, Buccoliero GB. Early access to oral antivirals in high-risk outpatients: Good weapons to fight COVID-19. Viruses 2022; 14(11): 2514.
[http://dx.doi.org/10.3390/v14112514] [PMID: 36423123]
[12]
Gong X, Kang S, Guo X, Li Y, Gao H, Yuan Y. Associated risk factors with disease severity and antiviral drug therapy in patients with COVID-19. BMC Infect Dis 2021; 21(1): 549.
[http://dx.doi.org/10.1186/s12879-021-06282-6] [PMID: 34112084]
[13]
Nadkarni GN, Lala A, Bagiella E, et al. Anticoagulation, bleeding, mortality, and pathology in hospitalized patients with COVID-19. J Am Coll Cardiol 2020; 76(16): 1815-26. https://www.sciencedirect.com/science/article/pii/S0735109720364081
[http://dx.doi.org/10.1016/j.jacc.2020.08.041] [PMID: 32860872]
[14]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[15]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-80.
[16]
Nugent MA. The future of the COVID-19 pandemic: How good (or bad) can the SARS-CoV2 spike protein get? Cells 2022; 11(5): 855. https://www.mdpi.com/2073-4409/11/5/855
[http://dx.doi.org/10.3390/cells11050855] [PMID: 35269476]
[17]
Biagioli M, Marchianò S, Roselli R, et al. GLP-1 Mediates Regulation of Colonic ACE2 Expression by the Bile Acid Receptor GPBAR1 in Inflammation. Cells 2022; 11(7): 1187.
[http://dx.doi.org/10.3390/cells11071187] [PMID: 35406751]
[18]
Akerib DS, Alsum S, Aquino C, Araújo HM, Bai X, Bailey AJ. A role for proteinase-activated receptor-1 in inflammatory bowel diseases. Gastroenterology 2012; 10(2): 21303. www.ncbi.nlm.nih.gov/pubmed/19864602
[19]
Fiorucci S, Carino A, Baldoni M, Santucci L, Costanzi E, Graziosi L. Bile acid signaling in inflammatory bowel diseases. Dig Dis Sci 2020; 66(3): 674-93.
[20]
Irani AH, Steyn-Ross DA, Steyn-Ross ML, Voss L, Sleigh J. The molecular dynamics of possible inhibitors for SARS-CoV-2. J Biomol Struct Dyn 2022; 40(20): 10023-32.
[http://dx.doi.org/10.1080/07391102.2021.1942215] [PMID: 34229582]
[21]
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76: 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037] [PMID: 32336612]
[22]
Carino A, Moraca F, Fiorillo B, et al. Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Front Chem 2020; 8: 572885. http://www.frontiersin.org/article/10.3389/fchem.2020.572885
[http://dx.doi.org/10.3389/fchem.2020.572885] [PMID: 33195060]
[23]
Fiorillo B, Marchianò S, Moraca F, et al. Discovery of Bile Acid Derivatives as Potent ACE2 Activators by Virtual Screening and Essential Dynamics. J Chem Inf Model 2022; 62(1): 196-209.
[http://dx.doi.org/10.1021/acs.jcim.1c01126] [PMID: 34914393]
[24]
Biagioli M, Marchianò S, Roselli R, Di Giorgio C, Bellini R, Bordoni M. Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochem Pharmacol 2021; 188: 114564.
[http://dx.doi.org/10.1016/j.bcp.2021.114564]
[25]
Biagioli M, Carino A, Cipriani S, Francisci D, Marchianò S, Scarpelli P. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J Immunol 2017; 199(2): 718-33. www.ncbi.nlm.nih.gov/pubmed/28607110
[26]
Abdulrab S, Al-Maweri S, Halboub E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-associated cytokine storm. Med Hypotheses 2020; 143: 109897.
[27]
Rodal Canales FJ, Pérez-Campos Mayoral L, Hernández-Huerta MT, et al. Interaction of Spike protein and lipid membrane of SARS-CoV-2 with Ursodeoxycholic acid, an in-silico analysis. Sci Rep 2021; 11(1): 22288.
[http://dx.doi.org/10.1038/s41598-021-01705-5] [PMID: 34782703]
[28]
Thuy PX, Bao TDD, Moon EY. Ursodeoxycholic acid ameliorates cell migration retarded by the SARS-CoV-2 spike protein in BEAS-2B human bronchial epithelial cells. Biomed Pharmacother 2022; 150: 113021.
[http://dx.doi.org/10.1016/j.biopha.2022.113021] [PMID: 35658221]
[29]
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2022.
[PMID: 36470304]
[30]
Hadj Hassine I. Covid-19 vaccines and variants of concern: A review. Rev Med Virol 2022; 32(4): e2313.
[http://dx.doi.org/10.1002/rmv.2313] [PMID: 34755408]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy