Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Dysregulation of Transfer RNA-derived Small RNAs that Regulate Cell Activity and its Related Signaling Pathways in Human Cancers

Author(s): Tianyi Huang, Juan Du, Chujia Chen, Zhen Zheng, Shuai Fang* and Kaitai Liu*

Volume 23, Issue 4, 2023

Published on: 08 June, 2023

Page: [291 - 303] Pages: 13

DOI: 10.2174/1566523223666230601102506

Price: $65

Abstract

tsRNAs are small noncoding RNAs that originate from tRNA cleavage and play important regulatory roles in gene expression, translation, transcription, and epigenetic modification. The dysregulation of tsRNAs in cancer disrupts gene expression and perturbs various cellular activities, including cell proliferation, apoptosis, migration, and invasion. Moreover, tsRNAs may influence cancer development by regulating related cell signaling pathways. In this review, we first examine the origins and classification of tsRNAs and their effects on tumor cell activity. To highlight the latest research progress of tsRNAs and signaling pathways, we summarize the possible mechanisms of tsRNAs in specific tumor-related signaling pathways, including the Wnt, TGFb1, MAPK, PI3K-AKT, Notch, and MDM2/p53 signaling pathways, that have been identified in recent research.

Graphical Abstract

[1]
Xiao L, Wang J, Ju S, Cui M, Jing R. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J Med Genet 2022; 59(7): 623-31.
[http://dx.doi.org/10.1136/jmedgenet-2021-108327] [PMID: 35145038]
[2]
Li S, Xu Z, Sheng J. tRNA-Derived small RNA: A novel regulatory small non-coding RNA. Genes 2018; 9(5): 246.
[http://dx.doi.org/10.3390/genes9050246] [PMID: 29748504]
[3]
Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46(10): 790-804.
[http://dx.doi.org/10.1016/j.tibs.2021.05.001] [PMID: 34053843]
[4]
Dou S, Wang Y, Lu J. Metazoan tsRNAs: Biogenesis, evolution and regulatory functions. Noncoding RNA 2019; 5(1): 18.
[http://dx.doi.org/10.3390/ncrna5010018] [PMID: 30781726]
[5]
Kim HK. Transfer RNA-derived small non-coding RNA: Dual regulator of protein synthesis. Mol Cells 2019; 42(10): 687-92.
[PMID: 31656062]
[6]
Li J, Zhu L, Cheng J, Peng Y. Transfer RNA-derived small RNA: A rising star in oncology. Semin Cancer Biol 2021; 75: 29-37.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.024] [PMID: 34029740]
[7]
Hu F, Niu Y, Mao X, et al. tsRNA-5001a promotes proliferation of lung adenocarcinoma cells and is associated with postoperative re-currence in lung adenocarcinoma patients. Transl Lung Cancer Res 2021; 10(10): 3957-72.
[http://dx.doi.org/10.21037/tlcr-21-829] [PMID: 34858784]
[8]
Pan L, Huang X, Liu ZX, et al. Inflammatory cytokine–regulated tRNA-derived fragment tRF-21 suppresses pancreatic ductal adenocar-cinoma progression. J Clin Invest 2021; 131(22): e148130.
[http://dx.doi.org/10.1172/JCI148130] [PMID: 34779408]
[9]
Xi J, Zeng Z, Li X, Zhang X, Xu J. Expression and diagnostic value of tRNA-derived fragments secreted by extracellular vesicles in hy-popharyngeal carcinoma. OncoTargets Ther 2021; 14: 4189-99.
[http://dx.doi.org/10.2147/OTT.S320176] [PMID: 34285510]
[10]
Gu X, Ma S, Liang B, Ju S. Serum hsa_tsr016141 as a kind of tRNA-derived fragments is a novel biomarker in gastric cancer. Front Oncol 2021; 11: 679366.
[http://dx.doi.org/10.3389/fonc.2021.679366] [PMID: 34055648]
[11]
Huang Y, Zhang H, Gu X, et al. Elucidating the role of serum tRF-31-U5YKFN8DYDZDD as a novel diagnostic biomarker in Gastric Cancer (GC). Front Oncol 2021; 11: 723753.
[http://dx.doi.org/10.3389/fonc.2021.723753] [PMID: 34497770]
[12]
Mafi A, Rahmati A, Babaei Aghdam Z, et al. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27(1): 65.
[http://dx.doi.org/10.1186/s11658-022-00354-4] [PMID: 35922753]
[13]
Xia L, Tan S, Zhou Y, et al. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther 2018; 11: 2063-73.
[http://dx.doi.org/10.2147/OTT.S161109] [PMID: 29695914]
[14]
Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99: 141-9.
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[15]
Szkandera J, Kiesslich T, Haybaeck J, Gerger A, Pichler M. Hedgehog signaling pathway in ovarian cancer. Int J Mol Sci 2013; 14(1): 1179-96.
[http://dx.doi.org/10.3390/ijms14011179] [PMID: 23303278]
[16]
Moghadam AR, Patrad E, Tafsiri E, et al. Ral signaling pathway in health and cancer. Cancer Med 2017; 6(12): 2998-3013.
[http://dx.doi.org/10.1002/cam4.1105] [PMID: 29047224]
[17]
Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. J Cell Physiol 2021; 236(8): 5512-32.
[http://dx.doi.org/10.1002/jcp.30276] [PMID: 33580511]
[18]
Mo D, He F, Zheng J, Chen H, Tang L, Yan F. tRNA-derived fragment tRF-17-79MP9PP attenuates cell invasion and migration via THBS1/TGF-β1/Smad3 axis in breast cancer. Front Oncol 2021; 11: 656078.
[http://dx.doi.org/10.3389/fonc.2021.656078] [PMID: 33912465]
[19]
Mo D, Jiang P, Yang Y, et al. A tRNA fragment, 5′-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett 2019; 457: 60-73.
[http://dx.doi.org/10.1016/j.canlet.2019.05.007] [PMID: 31078732]
[20]
Li X, Liu X, Zhao D, et al. tRNA-derived small RNAs: Novel regulators of cancer hallmarks and targets of clinical application. Cell Death Discov 2021; 7(1): 249.
[http://dx.doi.org/10.1038/s41420-021-00647-1] [PMID: 34537813]
[21]
Pan Q, Han T, Li G. Novel insights into the roles of tRNA-derived small RNAs. RNA Biol 2021; 18(12): 2157-67.
[http://dx.doi.org/10.1080/15476286.2021.1922009] [PMID: 33998370]
[22]
Zhu L, Ge J, Li T, Shen Y, Guo J. tRNA-derived fragments and tRNA halves: The new players in cancers. Cancer Lett 2019; 452: 31-7.
[http://dx.doi.org/10.1016/j.canlet.2019.03.012] [PMID: 30905816]
[23]
Xu WL, Yang Y, Wang YD, Qu LH, Zheng LL. Computational approaches to tRNA-derived small RNAs. Noncoding RNA 2017; 3(1): 2.
[http://dx.doi.org/10.3390/ncrna3010002] [PMID: 29657274]
[24]
Zhu P, Yu J, Zhou P. Role of tRNA-derived fragments in cancer: Novel diagnostic and therapeutic targets tRFs in cancer. Am J Cancer Res 2020; 10(2): 393-402.
[PMID: 32195016]
[25]
Wen J, Huang Z, Li Q, Chen X, Qin H, Zhao Y. Research progress on the tsRNA classification, function, and application in gynecological malignant tumors. Cell Death Discov 2021; 7(1): 388.
[http://dx.doi.org/10.1038/s41420-021-00789-2] [PMID: 34907180]
[26]
Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 2018; 24(8): 1093-105.
[http://dx.doi.org/10.1261/rna.066126.118] [PMID: 29844106]
[27]
Krishna S, Raghavan S, DasGupta R, Palakodeti D. tRNA-derived fragments (tRFs): Establishing their turf in post-transcriptional gene regulation. Cell Mol Life Sci 2021; 78(6): 2607-19.
[http://dx.doi.org/10.1007/s00018-020-03720-7] [PMID: 33388834]
[28]
Wang B, Yan L, Xu Q, Zhong X. The role of Transfer RNA-Derived Small RNAs (tsRNAs) in digestive system tumors. J Cancer 2020; 11(24): 7237-45.
[http://dx.doi.org/10.7150/jca.46055] [PMID: 33193887]
[29]
Fu Y, Lee I, Lee YS, Bao X. Small non-coding Transfer RNA-Derived RNA Fragments (tRFs): Their biogenesis, function and implication in human diseases. Genomics Inform 2015; 13(4): 94-101.
[http://dx.doi.org/10.5808/GI.2015.13.4.94] [PMID: 26865839]
[30]
Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010; 16(4): 673-95.
[http://dx.doi.org/10.1261/rna.2000810] [PMID: 20181738]
[31]
Hu Y, Cai A, Xu J, et al. An emerging role of the 5′ termini of mature tRNAs in human diseases: Current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868(2): 166314.
[http://dx.doi.org/10.1016/j.bbadis.2021.166314] [PMID: 34863896]
[32]
Shao Y, Sun Q, Liu X, Wang P, Wu R, Ma Z. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem Biol Drug Des 2017; 90(5): 730-8.
[http://dx.doi.org/10.1111/cbdd.12994] [PMID: 28378898]
[33]
Yang W, Gao K, Qian Y, et al. A novel tRNA-derived fragment AS-tDR-007333 promotes the malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 axes. J Hematol Oncol 2022; 15(1): 53.
[http://dx.doi.org/10.1186/s13045-022-01270-y] [PMID: 35526007]
[34]
Fan H, Liu H, Lv Y, Song Y. AS-tDR-007872: A novel tRNA-derived small RNA acts an important role in non-small-cell lung cancer. Comput Math Methods Med 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/3475955] [PMID: 35756407]
[35]
Wang J, Liu X, Cui W, et al. Plasma tRNA-derived small RNAs signature as a predictive and prognostic biomarker in lung adenocarci-noma. Cancer Cell Int 2022; 22(1): 59.
[http://dx.doi.org/10.1186/s12935-022-02481-6] [PMID: 35115004]
[36]
Cui H, Li H, Wu H, et al. A novel 3’tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis 2022; 13(5): 471.
[http://dx.doi.org/10.1038/s41419-022-04930-6] [PMID: 35585048]
[37]
Tong L, Zhang W, Qu B, et al. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer. Front Oncol 2021; 10: 570916.
[http://dx.doi.org/10.3389/fonc.2020.570916] [PMID: 33665159]
[38]
Zhang F, Shi J, Wu Z, et al. A 3′-tRNA-derived fragment enhances cell proliferation, migration and invasion in gastric cancer by targeting FBXO47. Arch Biochem Biophys 2020; 690: 108467.
[http://dx.doi.org/10.1016/j.abb.2020.108467] [PMID: 32592804]
[39]
Xu W, Zheng J, Wang X, et al. tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to sup-press the proliferation of gastric carcinoma. Cell Commun Signal 2022; 20(1): 68.
[http://dx.doi.org/10.1186/s12964-022-00857-9] [PMID: 35590368]
[40]
Xu W, Zhou B, Wang J, et al. tRNA-derived fragment tRF-Glu-TTC-027 regulates the progression of gastric carcinoma via MAPK Signal-ing pathway. Front Oncol 2021; 11: 733763.
[http://dx.doi.org/10.3389/fonc.2021.733763] [PMID: 34497772]
[41]
Shen Y, Yu X, Ruan Y, et al. Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor. Int J Med Sci 2021; 18(7): 1570-9.
[http://dx.doi.org/10.7150/ijms.53220] [PMID: 33746573]
[42]
Dong X, Fan X, He X, et al. Comprehensively identifying the key tRNA-derived fragments and investigating their function in gastric cancer processes. OncoTargets Ther 2020; 13: 10931-43.
[http://dx.doi.org/10.2147/OTT.S266130] [PMID: 33149609]
[43]
Zheng J, Li C, Zhu Z, et al. A 5`-tRNA derived fragment namedtiRNA-Val-CAC-001 works as a suppressor in gastric cancer. Cancer Manag Res 2022; 14: 2323-37.
[http://dx.doi.org/10.2147/CMAR.S363629] [PMID: 35958946]
[44]
Shen Y, Xie Y, Yu X, et al. Clinical diagnostic values of transfer RNA-derived fragment tRF-19-3L7L73JD and its effects on the growth of gastric cancer cells. J Cancer 2021; 12(11): 3230-8.
[http://dx.doi.org/10.7150/jca.51567] [PMID: 33976732]
[45]
Zhu L, Li Z, Yu X, et al. The tRNA-derived fragment 5026a inhibits the proliferation of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Stem Cell Res Ther 2021; 12(1): 418.
[http://dx.doi.org/10.1186/s13287-021-02497-1] [PMID: 34294122]
[46]
Zhou Y, Hu J, Liu L, et al. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2. Cancer Cell Int 2021; 21(1): 502.
[http://dx.doi.org/10.1186/s12935-021-02102-8] [PMID: 34537070]
[47]
Liu D, Wu C, Wang J, et al. Transfer RNA-derived fragment 5′ tRF-Gly promotes the development of hepatocellular carcinoma by direct targeting of carcinoembryonic antigen-related cell adhesion molecule 1. Cancer Sci 2022; 113(10): 3476-88.
[http://dx.doi.org/10.1111/cas.15505] [PMID: 35879647]
[48]
Sui S, Wang Z, Cui X, Jin L, Zhu C. The biological behavior of tRNA-derived fragment tRF-Leu-AAG in pancreatic cancer cells. Bioengineered 2022; 13(4): 10617-28.
[http://dx.doi.org/10.1080/21655979.2022.2064206] [PMID: 35442152]
[49]
Huang B, Yang H, Cheng X, et al. tRF/miR-1280 suppresses stem cell–like cells and metastasis in colorectal cancer. Cancer Res 2017; 77(12): 3194-206.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3146] [PMID: 28446464]
[50]
Han Y, Peng Y, Liu S, et al. tRF3008A suppresses the progression and metastasis of colorectal cancer by destabilizing FOXK1 in an AGO-dependent manner. J Exp Clin Cancer Res 2022; 41(1): 32.
[http://dx.doi.org/10.1186/s13046-021-02190-4] [PMID: 35065674]
[51]
Luan N, Chen Y, Li Q, et al. TRF-20-M0NK5Y93 suppresses the metastasis of colon cancer cells by impairing the epithelial-to-mesenchymal transition through targeting Claudin-1. Am J Transl Res 2021; 13(1): 124-42.
[PMID: 33527013]
[52]
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX, Gao QY. A specific tRNA half, 5’tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. J Exp Clin Cancer Res 2021; 40(1): 67.
[http://dx.doi.org/10.1186/s13046-021-01836-7] [PMID: 33588913]
[53]
Zhang M, Li F, Wang J, et al. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. OncoTargets Ther 2019; 12: 6371-83.
[http://dx.doi.org/10.2147/OTT.S206861] [PMID: 31496739]
[54]
Yang C, Lee M, Song G, Lim W. tRNALys-Derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells. Pharmaceutics 2021; 13(1): 55.
[http://dx.doi.org/10.3390/pharmaceutics13010055] [PMID: 33406670]
[55]
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. A Novel tiRNA-Gly-GCC-1 promotes progression of urothelial bladder carcinoma and directly targets TLR4. Cancers 2022; 14(19): 4555.
[http://dx.doi.org/10.3390/cancers14194555] [PMID: 36230476]
[56]
Zhu P, Lu J, Zhi X, et al. tRNA-derived fragment tRFLys-CTT-010 promotes triple-negative breast cancer progression by regulating glucose metabolism via G6PC. Carcinogenesis 2021; 42(9): 1196-207.
[http://dx.doi.org/10.1093/carcin/bgab058] [PMID: 34216208]
[57]
Zhang Z, Liu Z, Zhao W, Zhao X, Tao Y. tRF-19-W4PU732S promotes breast cancer cell malignant activity by targeting inhibition of RPL27A (ribosomal protein-L27A). Bioengineered 2022; 13(2): 2087-98.
[http://dx.doi.org/10.1080/21655979.2021.2023796] [PMID: 35030975]
[58]
Farina NH, Scalia S, Adams CE, et al. Identification of tRNA-derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. J Cell Physiol 2020; 235(6): 5318-27.
[http://dx.doi.org/10.1002/jcp.29419] [PMID: 31919859]
[59]
Falconi M, Giangrossi M, Zabaleta ME, et al. A novel 3′-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by tar-geting nucleolin. FASEB J 2019; 33(12): 13228-40.
[http://dx.doi.org/10.1096/fj.201900382RR] [PMID: 31560576]
[60]
Han L, Lai H, Yang Y, et al. A 5′-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J Exp Clin Cancer Res 2021; 40(1): 222.
[http://dx.doi.org/10.1186/s13046-021-02024-3] [PMID: 34225773]
[61]
Liu L, Zhang Z, Xia X, Lei J. KIF18B promotes breast cancer cell proliferation, migration and invasion by targeting TRIP13 and activat-ing the Wnt/β catenin signaling pathway. Oncol Lett 2022; 23(4): 112.
[http://dx.doi.org/10.3892/ol.2022.13232] [PMID: 35251343]
[62]
Li Z, Liu H, Zhang Y, Tan H. The effect of propofol on the proliferation and apoptosis of hepatocellular carcinoma cells through TGF-B1/Smad2 signaling pathway. Bioengineered 2021; 12(1): 4581-92.
[http://dx.doi.org/10.1080/21655979.2021.1955177] [PMID: 34323647]
[63]
Mo S, Fang D, Zhao S, et al. Down regulated oncogene KIF2C inhibits growth, invasion, and metastasis of hepatocellular carcinoma through the Ras/MAPK signaling pathway and epithelial-to-mesenchymal transition. Ann Transl Med 2022; 10(3): 151.
[http://dx.doi.org/10.21037/atm-21-6240] [PMID: 35284538]
[64]
Saito-Diaz K, Chen TW, Wang X, et al. The way Wnt works: Components and mechanism. Growth Factors 2013; 31(1): 1-31.
[http://dx.doi.org/10.3109/08977194.2012.752737] [PMID: 23256519]
[65]
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt signaling pathways: A role in pain processing. Neuromolecular Med 2022; 24(3): 233-49.
[http://dx.doi.org/10.1007/s12017-021-08700-z] [PMID: 35067780]
[66]
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development 2018; 145(11): dev146589.
[http://dx.doi.org/10.1242/dev.146589] [PMID: 29884654]
[67]
Willert K, Jones KA. Wnt signaling: Is the party in the nucleus? Genes Dev 2006; 20(11): 1394-404.
[http://dx.doi.org/10.1101/gad.1424006] [PMID: 16751178]
[68]
Zhou HB, Yang L, Liu SF, et al. CDC like Kinase 2 plays an oncogenic role in colorectal cancer via modulating the Wnt/β-catenin signal-ing. Neoplasma 2022; 69(3): 657-69.
[http://dx.doi.org/10.4149/neo_2022_220206N138] [PMID: 35293765]
[69]
Shi Y, Ge C, Fang D, et al. NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial–mesenchymal transi-tion by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int 2022; 22(1): 119.
[http://dx.doi.org/10.1186/s12935-022-02538-6] [PMID: 35292013]
[70]
Chen K, Wang Z, Zong QB, Zhou MY, Chen QF. miR-497-5p-RSPO2 axis inhibits cell growth and metastasis in glioblastoma. J Cancer 2022; 13(4): 1241-51.
[http://dx.doi.org/10.7150/jca.62652] [PMID: 35281864]
[71]
Rong Z, Zhang L, Li Z, et al. SIK2 maintains breast cancer stemness by phosphorylating LRP6 and activating Wnt/β-catenin signaling. Oncogene 2022; 41(16): 2390-403.
[http://dx.doi.org/10.1038/s41388-022-02259-0] [PMID: 35277657]
[72]
Zhang X, Chen R, Song LD, Zhu LF, Zhan JF. SIRT6 promotes the progression of prostate cancer via regulating the Wnt/β-Catenin sig-naling pathway. J Oncol 2022; 2022: 1-7.
[http://dx.doi.org/10.1155/2022/2174758] [PMID: 35251169]
[73]
Fang Z, Zhong M, Zhou L, Le Y, Wang H, Fang Z. Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway. Bioengineered 2022; 13(3): 6807-18.
[http://dx.doi.org/10.1080/21655979.2022.2036917] [PMID: 35246020]
[74]
Zuo L, Zhu Y, Han J, Liu H. Circular RNA circSHPRH inhibits the malignant behaviors of bladder cancer by regulating the miR-942/BARX2 pathway. Aging 2022; 14(4): 1891-909.
[http://dx.doi.org/10.18632/aging.203911] [PMID: 35200157]
[75]
Sansom OJ, Meniel VS, Muncan V, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 2007; 446(7136): 676-9.
[http://dx.doi.org/10.1038/nature05674] [PMID: 17377531]
[76]
Shi N, Wang Z, Zhu H, et al. Research progress on drugs targeting the TGF-β signaling pathway in fibrotic diseases. Immunol Res 2022; 70(3): 276-88.
[http://dx.doi.org/10.1007/s12026-022-09267-y] [PMID: 35147920]
[77]
Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014; 2014: 1-16.
[http://dx.doi.org/10.1155/2014/141747] [PMID: 24891760]
[78]
Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018; 8(4): 552-62.
[http://dx.doi.org/10.1016/j.apsb.2018.01.008] [PMID: 30109180]
[79]
Zhang X, Guo X, Zhuo R, et al. BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblasto-ma. Biochem Biophys Res Commun 2022; 604: 63-9.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.039] [PMID: 35299072]
[80]
Xiao X, Guo L, Dai W, et al. Green tea-derived theabrownin suppresses human non-small cell lung carcinoma in xenograft model through activation of not only p53 signaling but also MAPK/JNK signaling pathway. J Ethnopharmacol 2022; 291: 115167.
[http://dx.doi.org/10.1016/j.jep.2022.115167] [PMID: 35271947]
[81]
Xia T, Zhang Z, Zhang X, Li Q. Hsa-miR-186-3p suppresses colon cancer progression by inhibiting KRT18/MAPK signaling pathway. Cell Cycle 2022; 21(7): 741-53.
[http://dx.doi.org/10.1080/15384101.2021.2023305] [PMID: 35258413]
[82]
Mardanshahi A, Gharibkandi NA, Vaseghi S, Abedi SM, Molavipordanjani S. The PI3K/AKT/mTOR signaling pathway inhibitors en-hance radiosensitivity in cancer cell lines. Mol Biol Rep 2021; 48(8): 1-14.
[http://dx.doi.org/10.1007/s11033-021-06607-3] [PMID: 34357550]
[83]
Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2019; 19(2): 783-91.
[PMID: 30535469]
[84]
Wyatt LA, Filbin MT, Keirstead HS. PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal pro-genitor cells. J Comp Neurol 2014; 522(12): 2741-55.
[http://dx.doi.org/10.1002/cne.23580] [PMID: 24610700]
[85]
Ni J, Chen Y, Fei B, et al. MicroRNA-301a promotes cell proliferation and resistance to apoptosis through PTEN/PI3K/Akt Signaling pathway in human ovarian cancer. Gynecol Obstet Invest 2021; 86(1-2): 108-16.
[http://dx.doi.org/10.1159/000513070] [PMID: 33596588]
[86]
Sheng X, Zhu P, Zhao Y, et al. Effect of PI3K/AKT/mTOR signaling pathway on regulating and controlling the anti-invasion and metas-tasis of hepatoma cells by bufalin. Recent Patents Anticancer Drug Discov 2021; 16(1): 54-65.
[http://dx.doi.org/10.2174/22123970MTEzaODMD4] [PMID: 33530915]
[87]
Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol 2019; 234(3): 2373-85.
[http://dx.doi.org/10.1002/jcp.27262] [PMID: 30192008]
[88]
Peltier J, O’Neill A, Schaffer DV. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 2007; 67(10): 1348-61.
[http://dx.doi.org/10.1002/dneu.20506] [PMID: 17638387]
[89]
Wei J, Gou Z, Wen Y, Luo Q, Huang Z. Marine compounds targeting the PI3K/Akt signaling pathway in cancer therapy. Biomed Pharmacother 2020; 129: 110484.
[http://dx.doi.org/10.1016/j.biopha.2020.110484] [PMID: 32768966]
[90]
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59: 147-60.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[91]
Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH, Akhavan-Niaki H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci 2020; 262: 118513.
[http://dx.doi.org/10.1016/j.lfs.2020.118513] [PMID: 33011222]
[92]
Wen X, Zhou L, Wu X, et al. The PI3K AKT pathway in the pathogenesis of prostate cancer. Front Biosci 2016; 21(5): 1084-91.
[http://dx.doi.org/10.2741/4443] [PMID: 27100493]
[93]
Nunnery SE, Mayer IA. Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 2020; 80(16): 1685-97.
[http://dx.doi.org/10.1007/s40265-020-01394-w] [PMID: 32894420]
[94]
Du L, Li X, Zhen L, et al. Everolimus inhibits breast cancer cell growth through PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2018; 17(5): 7163-9.
[http://dx.doi.org/10.3892/mmr.2018.8769] [PMID: 29568883]
[95]
Zhang T, Ma Y, Fang J, Liu C, Chen L. A Deregulated PI3K-AKT signaling pathway in patients with colorectal cancer. J Gastrointest Cancer 2019; 50(1): 35-41.
[http://dx.doi.org/10.1007/s12029-017-0024-9] [PMID: 29110225]
[96]
Braune EB, Lendahl U. Notch - a goldilocks signaling pathway in disease and cancer therapy. Discov Med 2016; 21(115): 189-96.
[PMID: 27115169]
[97]
Castro RC, Gonçales RA, Zambuzi FA, Frantz FG. Notch signaling pathway in infectious diseases: Role in the regulation of immune re-sponse. Inflamm Res 2021; 70(3): 261-74.
[http://dx.doi.org/10.1007/s00011-021-01442-5] [PMID: 33558976]
[98]
Sprinzak D, Blacklow SC. Biophysics of notch signaling. Annu Rev Biophys 2021; 50(1): 157-89.
[http://dx.doi.org/10.1146/annurev-biophys-101920-082204] [PMID: 33534608]
[99]
Jing J, Jiang X, Chen J, et al. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. Anim Reprod Sci 2017; 181: 69-78.
[http://dx.doi.org/10.1016/j.anireprosci.2017.03.017] [PMID: 28400072]
[100]
De Santis F, Romero-Cordoba SL, Castagnoli L, et al. BCL6 and the Notch pathway: A signaling axis leading to a novel druggable biotar-get in triple negative breast cancer. Cell Oncol 2022; 45(2): 257-74.
[http://dx.doi.org/10.1007/s13402-022-00663-y] [PMID: 35357654]
[101]
Zhu D, Xia J, Liu C, Fang C. Numb/Notch/PLK1 signaling pathway mediated hyperglycemic memory in pancreatic cancer cell radiore-sistance and the therapeutic effects of metformin. Cell Signal 2022; 93: 110268.
[http://dx.doi.org/10.1016/j.cellsig.2022.110268] [PMID: 35143930]
[102]
Huang S, Lin W, Wang L, et al. SIX1 predicts poor prognosis and facilitates the progression of non-small lung cancer via activating the notch signaling pathway. J Cancer 2022; 13(2): 527-40.
[http://dx.doi.org/10.7150/jca.61385] [PMID: 35069900]
[103]
Deng G, Luo Y, Zhang Y, Zhang J, He Z. Enabled homolog (ENAH) regulated by RNA binding protein splicing factor 3b subunit 4 (SF3B4) exacerbates the proliferation, invasion and migration of hepatocellular carcinoma cells via Notch signaling pathway. Bioengineered 2022; 13(2): 2194-206.
[http://dx.doi.org/10.1080/21655979.2021.2023983] [PMID: 35030977]
[104]
Li L, Tang P, Li S, et al. Notch signaling pathway networks in cancer metastasis: A new target for cancer therapy. Med Oncol 2017; 34(10): 180.
[http://dx.doi.org/10.1007/s12032-017-1039-6] [PMID: 28918490]
[105]
Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4): 649-61.
[http://dx.doi.org/10.1016/0092-8674(91)90111-B] [PMID: 1831692]
[106]
Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer 2021; 1876(1): 188556.
[http://dx.doi.org/10.1016/j.bbcan.2021.188556] [PMID: 33932560]
[107]
Liu Y, Tavana O, Gu W. p53 modifications: Exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11(7): 564-77.
[http://dx.doi.org/10.1093/jmcb/mjz060] [PMID: 31282934]
[108]
Levine AJ. The many faces of p53: Something for everyone. J Mol Cell Biol 2019; 11(7): 524-30.
[http://dx.doi.org/10.1093/jmcb/mjz026] [PMID: 30925588]
[109]
Liu J, Zhang C, Wang J, Hu W, Feng Z. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci 2020; 21(21): 8387.
[http://dx.doi.org/10.3390/ijms21218387] [PMID: 33182266]
[110]
Karni-Schmidt O, Lokshin M, Prives C. The roles of MDM2 and MDMX in cancer. Annu Rev Pathol 2016; 11(1): 617-44.
[http://dx.doi.org/10.1146/annurev-pathol-012414-040349] [PMID: 27022975]
[111]
Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res 2014; 74(24): 7161-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1446] [PMID: 25477334]
[112]
Aubrey BJ, Strasser A, Kelly GL. Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb Perspect Med 2016; 6(5): a026062.
[http://dx.doi.org/10.1101/cshperspect.a026062] [PMID: 27141080]
[113]
Zhang X, Jiang Y, Yang J. [p53-independent signaling pathway in DNA damage-induced cell apoptosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2013; 42(2): 217-23.
[PMID: 23585010]
[114]
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physi-ology, metabolic disorders, and cancer. Mol Metab 2020; 33: 2-22.
[http://dx.doi.org/10.1016/j.molmet.2019.10.002] [PMID: 31685430]
[115]
Kurashima K, Shiozaki A, Kudou M, et al. LRRC8A influences the growth of gastric cancer cells via the p53 signaling pathway. Gastric Cancer 2021; 24(5): 1063-75.
[http://dx.doi.org/10.1007/s10120-021-01187-4] [PMID: 33864161]
[116]
Wei GH, Wang X. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21(17): 3850-6.
[PMID: 28975980]
[117]
Cao J, Liu X, Yang Y, et al. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/BAI1 signaling pathway. Angiogenesis 2020; 23(3): 325-38.
[http://dx.doi.org/10.1007/s10456-020-09707-z] [PMID: 32020421]
[118]
Chen YH, Yang SF, Yang CK, et al. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppress-ing PI3K/AKT signaling in human cervical cancer cells. Mol Med Rep 2020; 23(1): 88.
[http://dx.doi.org/10.3892/mmr.2020.11725] [PMID: 33236135]
[119]
Zhang H, Zhang X, Li X, et al. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 2019; 234(1): 619-31.
[http://dx.doi.org/10.1002/jcp.26816] [PMID: 30069972]
[120]
Zhao Y, Cai J, Shi K, et al. Germacrone induces lung cancer cell apoptosis and cell cycle arrest via the Akt/MDM2/p53 signaling path-way. Mol Med Rep 2021; 23(6): 452.
[http://dx.doi.org/10.3892/mmr.2021.12091] [PMID: 33880579]
[121]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999; 27(1): 29-34.
[http://dx.doi.org/10.1093/nar/27.1.29] [PMID: 9847135]
[122]
Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontol-ogy and KEGG pathways. PLoS One 2017; 12(9): e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[123]
Lu Z, Su K, Wang X, et al. Expression Profiles of tRNA-derived small RNAs and their potential roles in primary nasopharyngeal carci-noma. Front Mol Biosci 2021; 8: 780621.
[http://dx.doi.org/10.3389/fmolb.2021.780621] [PMID: 34988117]
[124]
Shan N, Li N, Dai Q, et al. Interplay of tRNA-derived fragments and T cell activation in breast cancer patient survival. Cancers 2020; 12(8): 2230.
[http://dx.doi.org/10.3390/cancers12082230] [PMID: 32785169]
[125]
Chen H, Xu Z, Cai H, Peng Y, Yang L, Wang Z. Identifying differentially expressed tRNA-derived small fragments as a biomarker for the progression and metastasis of colorectal cancer. Dis Markers 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/2646173] [PMID: 35035608]
[126]
Huang Y, Ge H, Zheng M, et al. Serum tRNA-derived fragments (tRFs) as potential candidates for diagnosis of nontriple negative breast cancer. J Cell Physiol 2020; 235(3): 2809-24.
[http://dx.doi.org/10.1002/jcp.29185] [PMID: 31535382]
[127]
Karousi P, Papanota AM, Artemaki PI, et al. tRNA derivatives in multiple Myeloma: Investigation of the potential value of a tRNA-derived molecular signature. Biomedicines 2021; 9(12): 1811.
[http://dx.doi.org/10.3390/biomedicines9121811] [PMID: 34944627]
[128]
Xu C, Fu Y. Expression profiles of tRNA-derived fragments and their potential roles in multiple myeloma. OncoTargets Ther 2021; 14: 2805-14.
[http://dx.doi.org/10.2147/OTT.S302594] [PMID: 33911877]
[129]
Wang J, Ma G, Li M, et al. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol Ther Nucleic Acids 2020; 21: 954-64.
[http://dx.doi.org/10.1016/j.omtn.2020.07.026] [PMID: 32814252]
[130]
Xiong W, Wang X, Cai X, et al. Identification of tRNA derived fragments in colon cancer by comprehensive small RNA sequencing. Oncol Rep 2019; 42(2): 735-44.
[http://dx.doi.org/10.3892/or.2019.7178] [PMID: 31173257]
[131]
Xu C, Liang T, Zhang F, Liu J, Fu Y. tRNA-derived fragments as novel potential biomarkers for relapsed/refractory multiple myeloma. BMC Bioinformatics 2021; 22(1): 238.
[http://dx.doi.org/10.1186/s12859-021-04167-8] [PMID: 33971811]
[132]
Jin L, Zhu C, Qin X. Expression profile of tRNA derived fragments in pancreatic cancer. Oncol Lett 2019; 18(3): 3104-14.
[http://dx.doi.org/10.3892/ol.2019.10601] [PMID: 31452788]
[133]
Wang X, Zhang Y, Ghareeb WM, et al. A comprehensive repertoire of transfer RNA-derived fragments and their regulatory networks in colorectal cancer. J Comput Biol 2020; 27(12): 1644-55.
[http://dx.doi.org/10.1089/cmb.2019.0305] [PMID: 32392430]
[134]
Zong T, Yang Y, Lin X, et al. 5′-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. Mol Ther Nucleic Acids 2021; 26: 295-306.
[http://dx.doi.org/10.1016/j.omtn.2021.07.013] [PMID: 34513311]
[135]
Dou R, Zhang X, Xu X, Wang P, Yan B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol Immunol 2021; 139: 106-14.
[http://dx.doi.org/10.1016/j.molimm.2021.08.015] [PMID: 34464838]
[136]
Fang Y, Liu Y, Yan Y, et al. Differential expression profiles and function predictions for tRFs & tiRNAs in skin injury induced by ultra-violet irradiation. Front Cell Dev Biol 2021; 9: 707572.
[http://dx.doi.org/10.3389/fcell.2021.707572] [PMID: 34447751]
[137]
Wang T, Cao L, He S, et al. Small RNA sequencing reveals a novel tsRNA-06018 playing an important role during adipogenic differentia-tion of hMSCs. J Cell Mol Med 2020; 24(21): 12736-49.
[http://dx.doi.org/10.1111/jcmm.15858] [PMID: 32939933]
[138]
Wang T, Mei J, Li X, Xu X, Ma B, Li W. A novel tsRNA-16902 regulating the adipogenic differentiation of human bone marrow mesen-chymal stem cells. Stem Cell Res Ther 2020; 11(1): 365.
[http://dx.doi.org/10.1186/s13287-020-01882-6] [PMID: 32831139]
[139]
Shi H, Yu M, Wu Y, et al. tRNA-derived fragments (tRFs) contribute to podocyte differentiation. Biochem Biophys Res Commun 2020; 521(1): 1-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.009] [PMID: 31629473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy