Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Mapping the Nanotechnology Patent Landscape in the Field of Cancer

Author(s): Haoyu Sun, Tong Wu, Xinrui Liu, Huanzhang Xia and Hongmei Yuan*

Volume 18, Issue 3, 2024

Published on: 19 July, 2023

Page: [321 - 334] Pages: 14

DOI: 10.2174/1872210517666230530162115

Price: $65

Abstract

Background: Currently, cancer is still a significant disease that seriously endangers human health. Therefore, advanced diagnostic technology and treatment protocols are urgently needed. The rapid development of nanotechnology is expected to provide new ideas for cancer diagnosis and treatment.

Objective: The research aims to comprehensively demonstrate the hotspots of nanotechnology applications in cancer.

Methods: In this study, an International Patent Classification codes co-occurrence network is constructed to visualize the technology landscape by simultaneously locating and ranking technologies that play an integral role in nanotechnology diffusion and bridging in the field of cancer. In addition, community identification and topic modeling highlight the latent topics in patent documents.

Results: The visualization results of the patent network yield five main clusters: Cluster 0 is a nanoparticle composition delivery system with liposomes as the primary carrier. Cluster 1 is mainly represented by nano-immunotherapy with immune checkpoint inhibitors. Cluster 2 is nano phototherapy based on photodynamic therapy and photothermal therapy. Cluster 3 is diagnostic imaging involving nanotechnology. Cluster 4 is a drug delivery system with nanovesicles and albumin nanoparticles as carriers.

Conclusion: It was found that carriers represented by liposomes, vesicles, and albumin nanoparticles are essential nanomaterials in the current anticancer drug delivery systems. Integrating next-generation immunosuppressants and nanotechnology will become an important development direction for future immunotherapy. Organic/inorganic nanomaterials are pivotal in cancer imaging diagnosis and phototherapy.

Graphical Abstract

[1]
Zaimy MA, Saffarzadeh N, Mohammadi A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther 2017; 24(6): 233-43.
[http://dx.doi.org/10.1038/cgt.2017.16] [PMID: 28574057]
[2]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[3]
Yin Q, Wang Y, Xiang Y, Xu F. Nanovaccines: Merits, and diverse roles in boosting antitumor immune responses. Hum Vaccin Immunother 2022; 18(6): 2119020.
[http://dx.doi.org/10.1080/21645515.2022.2119020] [PMID: 36170662]
[4]
Khoobchandani M, Katti KK, Karikachery AR, et al. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine – pre-clinical and pilot human clinical investigations. Int J Nanomedicine 2020; 15: 181-97.
[http://dx.doi.org/10.2147/IJN.S219042] [PMID: 32021173]
[5]
Parekh G, Shi Y, Zheng J, Zhang X, Leporatti S. Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther Deliv 2018; 9(6): 451-68.
[http://dx.doi.org/10.4155/tde-2018-0013] [PMID: 29722631]
[6]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[7]
Ma L, Diao L, Peng Z, et al. Immunotherapy and prevention of cancer by nanovaccines loaded with whole‐cell components of tumor tissues or cells. Adv Mater 2021; 33(43): 2104849.
[http://dx.doi.org/10.1002/adma.202104849] [PMID: 34536044]
[8]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[9]
Silva M, Calado R, Marto J, Bettencourt A, Almeida A, Gonçalves L. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 2017; 15(12): 370.
[http://dx.doi.org/10.3390/md15120370] [PMID: 29194378]
[10]
Orza A. Method for preparing pH dependent ultra small polymeric nanoparticles for topical and/or transdermal delivery. US Patent 10850246B2, 2020.
[11]
Kaur A, Jain K, Mehra NK, Jain NK. Development and characterization of surface engineered PPI dendrimers for targeted drug delivery. Artif Cells Nanomed Biotechnol 2017; 45(3): 414-25.
[http://dx.doi.org/10.3109/21691401.2016.1160912] [PMID: 27027686]
[12]
McNamara K, Tofail SAM. Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys 2015; 17(42): 27981-95.
[http://dx.doi.org/10.1039/C5CP00831J] [PMID: 26024211]
[13]
Gómez-Graña S, Pérez-Juste J, Hervés P. Cyclodextrins and inorganic nanoparticles: Another tale of synergy. Adv Colloid Interface Sci 2021; 288: 102338.
[http://dx.doi.org/10.1016/j.cis.2020.102338] [PMID: 33383472]
[14]
Choi B, Kim H, Choi H, Kang S. Protein cage nanoparticles as delivery nanoplatforms. Adv Exp Med Biol 2018; 1064(0065-2598): 27-43.
[http://dx.doi.org/10.1007/978-981-13-0445-3_2]
[15]
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[16]
Harrison RG, Virani NA. Gold nanoparticle-ligand conjugates and methods of use. US Patent 20210353779A1, 2021.
[17]
Li J. Nanotechnology-based platform for early diagnosis of cancer. Sci Bull (Beijing) 2015; 60(4): 488-90.
[http://dx.doi.org/10.1007/s11434-014-0720-9]
[18]
Janse MEM, Zinkweg DB, Larsen OFA, van de Burgwal L. Innovations in the veterinary intestinal health field: A patent landscape analysis. One Health 2022; 15: 100419.
[http://dx.doi.org/10.1016/j.onehlt.2022.100419] [PMID: 36277087]
[19]
Jui CW, Trappey AJC, Fu CC. Discover patent landscape of two-photon polymerization technology for the production of 3d nano-structure using claim-based approach. Recent Pat Nanotechnol 2018; 12(3): 218-30.
[http://dx.doi.org/10.2174/1872210512666180817121454] [PMID: 30117404]
[20]
Pandey P, Dureja H. Recent patents on polymeric nanoparticles for cancer therapy. Recent Pat Nanotechnol 2018; 12(2): 155-69.
[http://dx.doi.org/10.2174/1872210512666180327120648] [PMID: 29589551]
[21]
Li S, Wei X, Li S, Zhu C, Wu C. Up-conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment. Int J Nanomedicine 2020; 15: 9431-45.
[http://dx.doi.org/10.2147/IJN.S266006] [PMID: 33268986]
[22]
Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-enhanced cancer immunotherapy: Immunology encounters nanotechnology. Cells 2020; 9(9): 2102.
[http://dx.doi.org/10.3390/cells9092102] [PMID: 32942725]
[23]
Tichy NM, Tushman ML, Fombrun C. Social Network Analysis for Organizations. Acad Manage Rev 1979; 4(4): 507-19.
[http://dx.doi.org/10.2307/257851]
[24]
Misra H, Yvon F, Cappé O, Jose J. Text segmentation: A topic modeling perspective. IPM 2010; 47(4): 528-44.
[25]
Law J, Bauin S, Courtial JP, Whittaker J. Policy and the mapping of scientific change: A co-word analysis of research into environmental acidification. Scientometrics 1988; 14(3-4): 251-64.
[http://dx.doi.org/10.1007/BF02020078]
[26]
Curran CS, Leker J. Patent indicators for monitoring convergence – examples from NFF and ICT. Technol Forecast Soc Change 2011; 78(2): 256-73.
[http://dx.doi.org/10.1016/j.techfore.2010.06.021]
[27]
Geum Y. Technological convergence of it and bt: evidence from patent analysis. ETRI J 2012; 34(3): 439-49.
[http://dx.doi.org/10.4218/etrij.12.1711.0010]
[28]
Caviggioli F. Technology fusion: Identification and analysis of the drivers of technology convergence using patent data. Technovation 2016; 55-56: 22-32.
[http://dx.doi.org/10.1016/j.technovation.2016.04.003]
[29]
Kim MS, Kim C, On A. On a patent analysis method for technological convergence. Procedia Soc Behav Sci 2012; 40: 657-63.
[http://dx.doi.org/10.1016/j.sbspro.2012.03.245]
[30]
Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. J Mach Learn Res 2003; 3(4): 993-1022.
[31]
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. JSMTE 2008; 2008(10): P10008.
[32]
Abulaish M. Jahiruddin, Dey L. Deep text mining for automatic keyphrase extraction from text documents. J Int Sys 2011; 20(4): 327-51.
[http://dx.doi.org/10.1515/JISYS.2011.017]
[33]
Kaplan S, Vakili K. The double-edged sword of recombination in breakthrough innovation. Strateg Manage J 2015; 36(10): 1435-57.
[http://dx.doi.org/10.1002/smj.2294]
[34]
Zhang H, Daim T, Zhang YP. Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technol Forecast Soc Change 2021; 167: 120729.
[http://dx.doi.org/10.1016/j.techfore.2021.120729]
[35]
Ke M, Xingmei D, Yuquan W. Application of DMP nanoparticles in mRNA delivery. CN Patent 112608397(B), 2021.
[36]
Yi Y, Die Z, Lin Z, et al. Bufalin (BUF)-carrying nano liposome modified by hyaluronic acid as well as preparation method and application of BUF-carrying nano liposome. CN Patent 111773185(A), 2020.
[37]
Haihua X, Zhigang C, Xiaoxu K. Method for carrying out liposome modification on compound with free hydroxyl groups. CN Patent 109675047(A), 2019.
[38]
Jun-sik C, Sudipta M, Xuyi L, Flag D. Nanoliposomes that deliver drugs to the mitochondria with N-terminal cholesterol-binding mitochondrial penetrating peptide as the active ingredient. KR Patent 101948088(B1), 2019.
[39]
Lijuan Z, Canyang Z, Quan C, Wensheng W, Na Y. Based on cholesterol modified in response to the pH of the polypeptide polymer and its preparation method and application. CN Patent 104530438(B), 2017.
[40]
O’halloran TV, Chen H, Mazar A. Nanoparticle arsenic-platinum compositions. US Patent 20140220115(A1), 2014.
[41]
Sengupta S, Roy M, Sarkar A, et al. Lipid-based platinum compounds and nanoparticles. US Patent 20200354394(A1), 2020.
[42]
Arindam S, Kumar MS, Aniruddha S, et al. Fluorescent platinum anti-cancer drugs. IN Patent 201847017879(A), 2018.
[43]
Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci 2019; 20(12): 3011.
[http://dx.doi.org/10.3390/ijms20123011] [PMID: 31226747]
[44]
Vertelova R, Tankovich N. Nanoparticle composition and method of use and manufacture. US Patent 20210130182(A1), 2021.
[45]
Fenghua M, Yuan F, Weijing Y, Yan Z, Zhiyuan Z. Reversibly cross-linked biodegradable polymer vesicle with positively charged internal membrane and preparation method and use for preparing anti-tumor drug thereof. WO2018010624(A1), 2018.
[46]
Ehrlich P. den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd 1909; 35: 273-90.
[47]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[48]
Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 2015; 15(6): 361-70.
[http://dx.doi.org/10.1038/nrc3930] [PMID: 25998715]
[49]
Guevara ML, Jilesen Z, Stojdl D, Persano S. Codelivery of mRNA with α-galactosylceramide using a new lipopolyplex formulation induces a strong antitumor response upon intravenous administration. ACS Omega 2019; 4(8): 13015-26.
[http://dx.doi.org/10.1021/acsomega.9b00489] [PMID: 31460428]
[50]
Guedan S, Ruella M, June CH. Emerging cellular therapies for cancer. Annu Rev Immunol 2019; 37(1545-3278): 145-71.
[http://dx.doi.org/10.1146/annurev-immunol-042718-041407]
[51]
Hoyos V, Borrello I. The immunotherapy era of myeloma: Monoclonal antibodies, vaccines, and adoptive T-cell therapies. Blood 2016; 128(13): 1679-87.
[http://dx.doi.org/10.1182/blood-2016-05-636357] [PMID: 27506540]
[52]
Guevara ML, Persano S, Persano F. Lipid-based vectors for therapeutic mRNA-Based Anti-Cancer Vaccines. Curr Pharm Des 2019; 25(13): 1443-54.
[http://dx.doi.org/10.2174/1381612825666190619150221] [PMID: 31258071]
[53]
Mardiana S, Solomon BJ, Darcy PK, Beavis PA. Supercharging adoptive T cell therapy to overcome solid tumor–induced immunosuppression. Sci Transl Med 2019; 11(495): eaaw2293.
[http://dx.doi.org/10.1126/scitranslmed.aaw2293] [PMID: 31167925]
[54]
Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021; 21(6): 360-78.
[http://dx.doi.org/10.1038/s41568-021-00346-0] [PMID: 33907315]
[55]
Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369(2): 122-33.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[56]
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018; 24(5): 541-50.
[http://dx.doi.org/10.1038/s41591-018-0014-x] [PMID: 29686425]
[57]
Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18(3): 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[58]
Shi Y, Lammers T. Combining nanomedicine and immunotherapy. Acc Chem Res 2019; 52(6): 1543-54.
[http://dx.doi.org/10.1021/acs.accounts.9b00148] [PMID: 31120725]
[59]
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2021; 69(1096-3650): 238-48.
[60]
Qing Z, Lian W, Xiangmin L, Shaozheng L, Qingjie C. The invention relates to antibody nanoparticles, and a preparation method and application thereof. CN Patent 113855788(A), 2021.
[61]
Shyu WC, Chen SY, Chiang CS, Hsieh CH, Lin YJ, Tsai CH. Immunomagnetic nanocapsule,pharmaceutical composition thereof for treating cancer and kit for treating cancer. US Patent 20180311354(A1), 2018.
[62]
Xiuxiu W, Jing Z, Jingyi Z, Wei W, Zijian G, Tian T. Combined application of arsenene nanometer material and immune checkpoint inhibitor for tumor treatment. CN Patent 112494645(A), 2021.
[63]
Dinh TV, Inman BA, Maccarini P, Palmer G, Liu Y, Weitzel D. Synergistic nanotherapy systems and methods of use thereof. US Patent 20180133319(A1), 2018.
[64]
Kyoung OY, Gayong S, Viet LQ. Pharmaceutical composition for treatment of cancers or inhibition of metastasis comprising photothermal nanoparticle conjugated immune checkpoint inhibitor and adjuvant. KR Patent 1020200008823(A), 2020.
[65]
Su YX, Lan X, Xie X. Transdermal system for synergistic immunechemotherapy using microneedles and method of treatment thereof. US Patent 20210361563(A1), 2021.
[66]
Cheng W. Method for cancer treatment based on combination of drugs. CN Patent 111840563(A), 2020.
[67]
Zhaohui T, Ying W, Na S, Linlin L, Xuesi C. Anti-tumor composition, application thereof and anti-tumor medicine comprising antitumor composition. CN Patent 112691119(A), 2021.
[68]
Lin W, Duan X, Chan C, Han W. Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy and any combination thereof. JP Patent 2019523757(A), 2019.
[69]
Anusha K, Antoni R, Marisol Q. Methods for treating cancer with double stranded RNA sensor activators and adoptive cell therapy. WO2020072366(A1), 2020.
[70]
Lu Y, Luo Q, Jia X, et al. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal 2022.
[71]
Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36(1873-1597): 102597.
[72]
Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17(11): 657-74.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[73]
Li X, Xing L, Zheng K, et al. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy. ACS Appl Mater Interfaces 2017; 9(7): 5817-27.
[http://dx.doi.org/10.1021/acsami.6b15185] [PMID: 28118704]
[74]
Joon-myung S. Self-assembled nanoparticles comprising photosensitizer and composition for using photodynamic therapy comprising the same. KR Patent 102179530(B1), 2020.
[75]
Moon LC, Joon LH, Ah KM. Pharmaceutical composition for the treatment of cancer comprising phycocyanin-anticancer agent conjugate, composition for photodynamic therapy comprising the same and manufacturing method thereof. KR Patent 1020210126469(A), 2021.
[76]
Nagan VL, Kim D, Min-ji A. pH-sensitive carbon nanoparticles, a process for producing the same, and drug delivery using the same. KR Patent 102300092(B1), 2021.
[77]
Kim S, Kwon IC, Lee S. Method for treating cancer by photodynamic therapy. US Patent 20190000974(A1), 2019.
[78]
Mchale A, Callan J, Sheng Y. Calcium peroxides nanoparticles as adjuvant therapy. US Patent 20200069727(A1), 2020.
[79]
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019; 48(7): 2053-108.
[http://dx.doi.org/10.1039/C8CS00618K] [PMID: 30259015]
[80]
Myung-hwan P. Combinational cancer therapy via near-IR responsive photothermal and chemotherapy with drug conjugated metal nanorods. KR Patent 102139601(B1), 2020.
[81]
Tag KY, Oyuntuya G. A photothermal nano complex comprising photothermal nanoparticle, anticancer drug and conjugate of hyaluronic acid and PEG. KR Patent 1020200015037(A), 2020.
[82]
Kyoung OY, Kee SY, Gayong S, Hobin Y, Viet LQ. Pharmaceutical composition for treatment of cancers comprising lipidphotothermal nanoparticle conjugated antibody. KR Patent 1020210124898(A), 2021.
[83]
Geun CB, Hyun LJ, Woo CH, Sungjoon M. Porous nanocomposite of CuS and Silica for photothermal therapy and drug release by cancer cell targeting type double stimuli and method for preparing the same. KR Patent 1020210088221(A), 2021.
[84]
Fernandes R, Sze RW, Cruz CRY, et al. Functionalized Prussian blue nanoparticles,combination Prussian blue nanoparticle-based nano-immunotherapy and applications thereof. US Patent 20200163899(A1), 2020.
[85]
Li X, Sun H, Li H, et al. Multi‐responsive biodegradable cationic nanogels for highly efficient treatment of tumors. Adv Funct Mater 2021; 31(26): 2100227.
[http://dx.doi.org/10.1002/adfm.202100227] [PMID: 34230825]
[86]
Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomedicine 2014; 10(1): 19-34.
[http://dx.doi.org/10.1016/j.nano.2013.07.001] [PMID: 23871761]
[87]
Li Q, Chen Y, Zhou X, et al. Hyaluronic acid–methotrexate conjugates coated magnetic polydopamine nanoparticles for multimodal imaging-guided multistage targeted chemo-photothermal therapy. Mol Pharm 2018; 15(9): 4049-62.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00473] [PMID: 30011996]
[88]
Li X, Lu S, Xiong Z, et al. Light‐addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv Sci (Weinh) 2019; 6(19): 1901800.
[http://dx.doi.org/10.1002/advs.201901800] [PMID: 31592427]
[89]
Cheng Z, Yan X, Sun X, Shen B, Gambhir SS. tumor molecular imaging with nanoparticles. engineering (Beijing) 2016; 2(1): 132-40.
[http://dx.doi.org/10.1016/J.ENG.2016.01.027]
[90]
Malik MT, O’toole MG, Bates PJ. Anti-nucleolin agent-conjugated nanoparticles as radio-sensitizers and MRI and/or X-ray contrast agents. US Patent 20200390904A1, 2020.
[91]
Yinting C, Kaihong H, Jinmao Z, et al. Iron oxide nanoparticle compound and preparation method and application thereof. CN Patent 110841072A, 2020.
[92]
Manuel DVJ, Natividad GR, Michelangelo MM, Fernando CRA, Deyanira RR, Monica OM. Probiotic bacteria comprising metals, metal nanoparticles and uses thereof. EP Patent 2818056A1, 2014.
[93]
Harmsen S. Fluorescent nanoparticles and imaging uses. US Patent 20210268128A1, 2021.
[94]
Bradbury MS, Wiesner U, Medina OP, Burns A, Lewis JS, Larson SM. Multimodal silica-based nanoparticles. US Patent 20200376149A1, 2020.
[95]
Jingyi Z, Junxing Y. Functionalized polyethyleneimine-coated nano gold particle composite material and preparation method thereof. CN Patent 110128666B, 2021.
[96]
Barber J, Hajdu S, Bodna M, Csikós Z. Tumorspecific SPECT/MR(T1), SPECT/MR(T2) and SPECT/CT contrast agents. US Patent 20150004096A1, 2015.
[97]
Messersmith PB, Black KCL, Rivera JYJG. Multifunctional metal nanoparticles having a polydopamine-based surface and methods of making and using the same. US Patent 20160228549A1, 2016.
[98]
Furusawa N, Aimiya T, Nakano N, Gonda K, Ouchi N, Nakagawa T. X-ray absorbing fluorescent nanoparticles. JPWO2012153820A1, 2014.
[99]
Lee JJ. Chemiluminescent and fluorescent nanoparticles for optical imaging of cancer. US Patent 20210369876A1, 2021.
[100]
Zhichao P, Shuang C, Pei H, Yuxin P, Ziyan S. Targeted and fluorescence tracing stimulation-responsive multifunctional nanovesicle drug-loading system. CN Patent 111714456A, 2020.
[101]
Cheol KH, Bum SC. Near-infrared light adjustable nitric oxide donor type nanovesicle, preparation method and application. CN Patent 112891533A, 2021.
[102]
Farrugia A. Albumin usage in clinical medicine: Tradition or therapeutic? Transfus Med Rev 2010; 24(1): 53-63.
[http://dx.doi.org/10.1016/j.tmrv.2009.09.005] [PMID: 19962575]
[103]
Tan YL, Ho HK. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov Today 2018; 23(5): 1108-14.
[http://dx.doi.org/10.1016/j.drudis.2018.01.051] [PMID: 29408437]
[104]
Kim HC, Jeong JW, Jeong EA. Human serum albumen nano- hepatic artery embolization using particles bearing an anti-chemical composition and manufacturing method thereof. JP Patent 6959661B2, 2021.
[105]
Lintao C, Zonghai C, Degong H. A plurality of containing degenerated indole polymer white protein ball and its preparation method and application. CN Patent 104162164B, 2017.
[106]
Lintao C, Zonghai C, Degong H. A multimeric white protein comprising paclitaxel of the ball and its preparation method and application. CN Patent 104162172B, 2017.
[107]
Cheol KH, Bum SC. Albumin nanoparticles exhibiting photoacoustic contrast effect and anticancer effect. WO2016068647A2, 2016.
[108]
Yao J, Wang LV. Recent progress in photoacoustic molecular imaging. Curr Opin Chem Biol 2018; 45(1879-0402) : 104-12.
[http://dx.doi.org/10.1016/j.cbpa.2018.03.016]
[109]
Shuai G, Guoguang W, Sihang Z, Wei L. Albumin nano-particle preparation of donor-receptor type fluorescent molecule containing aggregation-induced emission group in near infrared II region. CN Patent 110787305A, 2020.
[110]
Lanfang R, Xijian L, Jie L, et al. Cysteine/ferroferric oxide/copper sulfide/BSA (bovine serum albumin) nano-composite particle as well as preparation and application thereof. CN Patent 106729733A, 2017.
[111]
Ming M, Hangrong C, Jianlin S, Xiaoqing J. Organic and inorganic compound nano-capsule agent and preparation method thereof. CN Patent 103735533A, 2014.
[112]
Man Y, Zihua W, Zhiyuan H. Targeted nanometer medicine carrier and preparation method and application thereof. CN Patent 107213468A, 2017.
[113]
Li X, Hetjens L, Wolter N, Li H, Shi X, Pich A. Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin. J Adv Res 2023; 43: 87-96.
[http://dx.doi.org/10.1016/j.jare.2022.02.014] [PMID: 36585117]
[114]
Saha P, Ganguly R, Li X, Das R, Singha NK, Pich A. Zwitterionic nanogels and microgels: an overview on their synthesis and applications. Macromol Rapid Commun 2021; 42(13): 2100112.
[http://dx.doi.org/10.1002/marc.202100112] [PMID: 34021658]
[115]
Xu P, Sui B. Fabrication and application of a hetero-targeted nanococktail with traceless linkers. US Patent 20200281955(A1), 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy