Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Recent Approaches to Enhance Osteogenesis of Dental Pulp Stem Cells on Electrospun Scaffolds

Author(s): Zahra Safari, Seyedeh Sara Aghili, Sahar Hassantash, Ehsan Iranmanesh, Mehdi Abouali, Mobina Bagherianlemraski, Shabnam Ghasemzadeh, Esmaeel Dadgar, Ghasem Barati* and Ehsan Saburi*

Volume 19, Issue 5, 2024

Published on: 03 July, 2023

Page: [712 - 724] Pages: 13

DOI: 10.2174/1574888X18666230530153521

Price: $65

conference banner
Abstract

Critical-sized bone defects are a challenging issue during bone regeneration. Bone tissue engineering is aimed to repair such defects using biomimicking scaffolds and stem cells. Electrospinning allows the fabrication of biocompatible, biodegradable, and strengthened scaffolds for bone regeneration. Natural and synthetic polymers, alone or in combination, have been employed to fabricate scaffolds with appropriate properties for the osteogenic differentiation of stem cells. Dental pulps are rich in stem cells, and dental pulp stem cells (DPSCs) have a high capacity for proliferation, differentiation, immunomodulation, and trophic factor expression. Researchers have tried to enhance osteogenesis through scaffold modification approaches, including incorporation or coating with mineral, inorganic materials, and herbal extract components. Among them, the incorporation of nanofibers with hyaluronic acid (HA) has been widely used to promote osteogenesis. In this review, the electrospun scaffolds and their modifications used in combination with DPSCs for bone regeneration are discussed.

Graphical Abstract

[1]
Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 1999; 360(360): 71-86.
[http://dx.doi.org/10.1097/00003086-199903000-00010] [PMID: 10101312]
[2]
Wani TU, Khan RS, Rather AH, Abdal-hay A, Amna T, Sheikh FA. Nanofiber-mediated stem cell osteogenesis: Prospects in bone tissue regeneration. In: Sheikh FA, Ed. Engineering Materials for Stem Cell Regeneration. Springer Singapore, Singapore 2021; pp. 47-67.
[http://dx.doi.org/10.1007/978-981-16-4420-7_3]
[3]
Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003; 63(15): 2223-53.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[4]
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13(9): 1738-55.
[http://dx.doi.org/10.1002/term.2914] [PMID: 31216380]
[5]
Bar JK, Kowalczyk T, Grelewski PG, et al. Characterization of biological properties of dental pulp stem cells grown on an electrospun poly(l-lactide-co-caprolactone) scaffold. Materials (Basel) 2022; 15(5): 1900.
[http://dx.doi.org/10.3390/ma15051900] [PMID: 35269131]
[6]
Bar JK, Lis-Nawara A, Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential. Int J Mol Sci 2021; 22(21): 12018.
[http://dx.doi.org/10.3390/ijms222112018] [PMID: 34769446]
[7]
Vazin T, Freed WJ. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor Neurol Neurosci 2010; 28(4): 589-603.
[http://dx.doi.org/10.3233/RNN-2010-0543] [PMID: 20714081]
[8]
Leeb C, Jurga M, McGuckin C, et al. New perspectives in stem cell research: Beyond embryonic stem cells. Cell Prolif 2011; 44(S1): 9-14.
[http://dx.doi.org/10.1111/j.1365-2184.2010.00725.x] [PMID: 21481037]
[9]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 2006; 126(4): 663-76.
[10]
Fibbe WE, Nauta AJ, Roelofs H. Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci 2007; 1106(1): 272-8.
[http://dx.doi.org/10.1196/annals.1392.025] [PMID: 17442776]
[11]
Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018; 20(4): 479-98.
[http://dx.doi.org/10.1016/j.jcyt.2017.12.011] [PMID: 29449086]
[12]
Galipeau J, Krampera M, Barrett J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016; 18(2): 151-9.
[http://dx.doi.org/10.1016/j.jcyt.2015.11.008] [PMID: 26724220]
[13]
Gugliandolo A, Fonticoli L, Trubiani O, et al. Oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci 2021; 22(10): 5236.
[http://dx.doi.org/10.3390/ijms22105236] [PMID: 34063438]
[14]
L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 2019; 46: 1-9.
[http://dx.doi.org/10.1016/j.cytogfr.2019.04.002] [PMID: 30954374]
[15]
Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther 2018; 18(2): 187-96.
[http://dx.doi.org/10.1080/14712598.2018.1402004] [PMID: 29110535]
[16]
Morad G, Kheiri L, Khojasteh A. Dental pulp stem cells for in vivo bone regeneration: A systematic review of literature. Arch Oral Biol 2013; 58(12): 1818-27.
[http://dx.doi.org/10.1016/j.archoralbio.2013.08.011] [PMID: 24095289]
[17]
Rahmati M, Mills DK, Urbanska AM, et al. Electrospinning for tissue engineering applications. Prog Mater Sci 2021; 117: 100721.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100721]
[18]
Azari Matin A, Fattah K, Saeidpour MS, et al. Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells. J Biomater Sci Polym Ed 2022; 33(11): 1469-93.
[http://dx.doi.org/10.1080/09205063.2022.2056941] [PMID: 35321624]
[19]
Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007; 59(14): 1413-33.
[http://dx.doi.org/10.1016/j.addr.2007.04.022] [PMID: 17916396]
[20]
Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 2009; 30(25): 4094-103.
[http://dx.doi.org/10.1016/j.biomaterials.2009.04.024] [PMID: 19481080]
[21]
Prasad A, Sankar MR, Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffoldsfabrication. Mater Today Proc 2017; 4(2): 898-907.
[http://dx.doi.org/10.1016/j.matpr.2017.01.101]
[22]
Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 2019; 30(14): 1308-55.
[http://dx.doi.org/10.1080/09205063.2019.1630699] [PMID: 31181982]
[23]
Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif Cells Nanomed Biotechnol 2017; 45(2): 185-92.
[http://dx.doi.org/10.3109/21691401.2016.1146731] [PMID: 26923861]
[24]
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020; 5(8): 584-603.
[http://dx.doi.org/10.1038/s41578-020-0204-2]
[25]
Hashemi J, Barati G, Enderami SE, Safdari M. Osteogenic differentiation of induced pluripotent stem cells on electrospun nanofibers: A review of literature. Mater Commun 2020; 25: 101561.
[26]
Su WT, Wu PS, Huang TY. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Mater Sci Eng C 2015; 46: 427-34.
[http://dx.doi.org/10.1016/j.msec.2014.10.076] [PMID: 25492007]
[27]
Samanipour R, Farzaneh S, Ranjbari J, Hashemi S, Khojasteh A, Hosseinzadeh S. Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold. Polym Bull 2022; 80: 1795-816.
[28]
Aghazadeh M, Samiei M, Alizadeh E, Porkar P, Bakhtiyari M, Salehi R. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers Polym 2017; 18(8): 1468-77.
[http://dx.doi.org/10.1007/s12221-017-7120-0]
[29]
Oliveira NK, Salles THC, Pedroni AC, et al. Osteogenic potential of human dental pulp stem cells cultured onto poly-ε-caprolactone/poly (rotaxane) scaffolds. Dent Mater 2019; 35(12): 1740-9.
[http://dx.doi.org/10.1016/j.dental.2019.08.109] [PMID: 31543375]
[30]
Ma L, Yu Y, Liu H, et al. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep 2021; 11(1): 1027.
[http://dx.doi.org/10.1038/s41598-020-79734-9] [PMID: 33441759]
[31]
Alipour M, Aghazadeh M, Akbarzadeh A, Vafajoo Z, Aghazadeh Z, Raeisdasteh HV. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. Artif Cells Nanomed Biotechnol 2019; 47(1): 3431-7.
[http://dx.doi.org/10.1080/21691401.2019.1652627] [PMID: 31411067]
[32]
Hosseini FS, Enderami SE, Hadian A, et al. Efficient osteogenic differentiation of the dental pulp stem cells on β‐glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers. J Cell Physiol 2019; 234(8): 13951-8.
[http://dx.doi.org/10.1002/jcp.28078] [PMID: 30633333]
[33]
Akkouch A, Zhang Z, Rouabhia M. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (l -lactide-co-ɛ-caprolactone) scaffold. J Biomater Appl 2014; 28(6): 922-36.
[http://dx.doi.org/10.1177/0885328213486705] [PMID: 23640860]
[34]
Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng Part A 2008; 14(12): 2105-19.
[http://dx.doi.org/10.1089/ten.tea.2008.0057] [PMID: 18788980]
[35]
Sanaei-rad P, Jamshidi D, Adel M, Seyedjafari E. Electrospun poly(l ‐lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells. Polym Adv Technol 2021; 32(1): 402-10.
[http://dx.doi.org/10.1002/pat.5095]
[36]
Gonçalves F, Bentini R, Burrows M, et al. Hybrid membranes of PLLA/Collagen for bone tissue engineering: A comparative study of scaffold production techniques for optimal mechanical properties and osteoinduction ability. Materials 2015; 8(2): 408-23.
[http://dx.doi.org/10.3390/ma8020408] [PMID: 28787946]
[37]
Asghari F, Salehi R, Agazadeh M, et al. The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. Int J Polym Mater 2016; 65(14): 720-8.
[http://dx.doi.org/10.1080/00914037.2016.1163564]
[38]
Sohrabi A, Hosseini M, Abazari MF, et al. Wnt pathway activator delivery by poly (lactide-co-glycolide)/silk fibroin composite nanofibers promotes dental pulp stem cell osteogenesis. J Drug Deliv Sci Technol 2021; 61: 102223.
[http://dx.doi.org/10.1016/j.jddst.2020.102223]
[39]
Zhang L, Feng KC, Yu Y, et al. Effect of graphene on differentiation and mineralization of dental pulp stem cells in poly(4-vinylpyridine) matrix in vitro. ACS Appl Bio Mater 2019; 2(6): 2435-43.
[http://dx.doi.org/10.1021/acsabm.9b00127] [PMID: 35030700]
[40]
Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J Oral Biol Craniofac Res 2020; 10(1): 381-8.
[http://dx.doi.org/10.1016/j.jobcr.2019.10.003] [PMID: 31754598]
[41]
Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991; 12(3): 292-304.
[http://dx.doi.org/10.1016/0142-9612(91)90037-B] [PMID: 1649646]
[42]
Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012; 64: 72-82.
[http://dx.doi.org/10.1016/j.addr.2012.09.004]
[43]
Kang R, Luo Y, Zou L, et al. Osteogenesis of human induced pluripotent stem cells derived mesenchymal stem cells on hydroxyapatite contained nanofibers. RSC Advances 2014; 4(11): 5734-9.
[http://dx.doi.org/10.1039/c3ra44181d]
[44]
Ardeshirylajimi A, Khojasteh A. Synergism of electrospun nanofibers and pulsed electromagnetic field on osteogenic differentiation of induced pluripotent stem cells. ASAIO J 2018; 64(2): 253-60.
[http://dx.doi.org/10.1097/MAT.0000000000000631] [PMID: 28746081]
[45]
Soleimanifar F, Hosseini FS, Atabati H, et al. Adipose‐derived stem cells‐conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. J Cell Physiol 2019; 234(7): 10315-23.
[http://dx.doi.org/10.1002/jcp.27697] [PMID: 30378123]
[46]
Deitzel J, Kleinmeyer JD, Hirvonen JK, Beck Tan NC. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 2001; 42(19): 8163-70.
[http://dx.doi.org/10.1016/S0032-3861(01)00336-6]
[47]
Gaaz T, Sulong A, Akhtar M, Kadhum A, Mohamad A, Al-Amiery A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015; 20(12): 22833-47.
[http://dx.doi.org/10.3390/molecules201219884] [PMID: 26703542]
[48]
Azadian E, Arjmand B, Ardeshirylajimi A, Hosseinzadeh S, Omidi M, Khojasteh A. Polyvinyl alcohol modified polyvinylidene fluoride‐graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem 2020; 121(5-6): 3185-96.
[http://dx.doi.org/10.1002/jcb.29585] [PMID: 31886565]
[49]
Kashef-Saberi MS, Hayati Roodbari N, Parivar K, Vakilian S, Hanaee-Ahvaz H. Enhanced osteogenic differentiation of mesenchymal stem cells on electrospun polyethersulfone/Poly(Vinyl) alcohol/platelet rich plasma nanofibrous scaffolds. ASAIO J 2018; 64(5): e115-22.
[http://dx.doi.org/10.1097/MAT.0000000000000781] [PMID: 30142100]
[50]
Aslam M, Kalyar MA, Raza ZA. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 2018; 58(12): 2119-32.
[http://dx.doi.org/10.1002/pen.24855]
[51]
Feldman D. Poly(Vinyl Alcohol) recent contributions to engineering and medicine. Journal of Composites Science 2020; 4(4): 175.
[http://dx.doi.org/10.3390/jcs4040175]
[52]
Jundziłł A, Pokrywczyńska M, Adamowicz J, et al. Vascularization potential of electrospun poly(L-Lactide-co-Caprolactone) Scaffold: The impact for tissue engineering. Med Sci Monit 2017; 23: 1540-51.
[http://dx.doi.org/10.12659/MSM.899659] [PMID: 28360409]
[53]
Kloskowski T. Jundziłł A, Kowalczyk T, et al. Ureter regeneration-the proper scaffold has to be defined. PLoS One 2014; 9(8): e106023.
[http://dx.doi.org/10.1371/journal.pone.0106023] [PMID: 25162415]
[54]
Simamora P, Chern W. Poly-L-lactic acid: An overview. J Drugs Dermatol 2006; 5(5): 436-40.
[PMID: 16703779]
[55]
Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer 1982; 23(11): 1587-93.
[http://dx.doi.org/10.1016/0032-3861(82)90176-8]
[56]
Walton M, Cotton NJ. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. J Biomater Appl 2007; 21(4): 395-411.
[http://dx.doi.org/10.1177/0885328206065125] [PMID: 16684797]
[57]
D’Angelo F, Armentano I, Cacciotti I, et al. Tuning multi/pluri-potent stem cell fate by electrospun poly(L-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats. Biomacromolecules 2012; 13(5): 1350-60.
[http://dx.doi.org/10.1021/bm3000716] [PMID: 22449037]
[58]
Izadpanahi M, Seyedjafari E, Arefian E, et al. Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Mater Sci Eng C 2018; 93: 686-703.
[http://dx.doi.org/10.1016/j.msec.2018.08.023] [PMID: 30274102]
[59]
Karimi Z, Seyedjafari E, Mahdavi FS, et al. Baghdadite nanoparticle‐coated poly l ‐lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue‐derived mesenchymal stem cells. J Biomed Mater Res A 2019; 107(6): 1284-93.
[http://dx.doi.org/10.1002/jbm.a.36638] [PMID: 30706628]
[60]
Hu M, Deng C, Gu X, Fu Q, Zhang J. Manipulating the strength–toughness balance of poly(l -lactide) (PLLA) via introducing ductile poly(ε-caprolactone) (PCL) and strong shear flow. Ind Eng Chem Res 2020; 59(2): 1000-9.
[http://dx.doi.org/10.1021/acs.iecr.9b05380]
[61]
Lin CC, Fu SJ. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats. Mater Sci Eng C 2016; 58: 254-63.
[http://dx.doi.org/10.1016/j.msec.2015.08.009] [PMID: 26478309]
[62]
Helal MH, Hendawy HD, Gaber RA, Helal NR, Aboushelib MN. Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects. J Prosthet Dent 2019; 121(1): 118-23.
[http://dx.doi.org/10.1016/j.prosdent.2018.03.033] [PMID: 29961633]
[63]
Jin S, Xia X, Huang J, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127: 56-79.
[http://dx.doi.org/10.1016/j.actbio.2021.03.067] [PMID: 33831569]
[64]
Gentile P, Chiono V, Carmagnola I, Hatton P. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 2014; 15(3): 3640-59.
[http://dx.doi.org/10.3390/ijms15033640] [PMID: 24590126]
[65]
Zhang L, Yu Y, Feng K, et al. Templated dentin formation by dental pulp stem cells on banded collagen bundles nucleated on electrospun poly (4-vinyl pyridine) fibers in vitro. Acta Biomater 2018; 76: 80-8.
[http://dx.doi.org/10.1016/j.actbio.2018.06.028] [PMID: 29940368]
[66]
Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review. J Biomed Nanotechnol 2014; 10(10): 3124-40.
[http://dx.doi.org/10.1166/jbn.2014.1893] [PMID: 25992432]
[67]
Qin J, Yang D, Maher S, et al. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration. J Mater Chem B Mater Biol Med 2018; 6(19): 3136-44.
[http://dx.doi.org/10.1039/C7TB03251J] [PMID: 32254348]
[68]
Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann Stomatol 2014; 5(3): 108-14.
[http://dx.doi.org/10.11138/ads/2014.5.3.108] [PMID: 25506416]
[69]
Xu R, Zhang Z, Toftdal MS, et al. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J Control Release 2019; 301: 129-39.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.037] [PMID: 30880079]
[70]
Fang R, Zhang E, Xu L, Wei S. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J Nanosci Nanotechnol 2010; 10(11): 7747-51.
[http://dx.doi.org/10.1166/jnn.2010.2831] [PMID: 21138024]
[71]
Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000; 21(11): 1095-102.
[http://dx.doi.org/10.1016/S0142-9612(99)00192-1] [PMID: 10817261]
[72]
Erisken C, Kalyon DM, Wang H, Örnek-Ballanco C, Xu J. Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and Beta-glycerophosphate concentrations. Tissue Eng Part A 2011; 17(9-10): 1239-52.
[http://dx.doi.org/10.1089/ten.tea.2009.0693] [PMID: 21189068]
[73]
Krawetz RJ, Taiani JT, Wu YE, et al. Collagen I scaffolds cross-linked with beta-glycerol phosphate induce osteogenic differentiation of embryonic stem cells in vitro and regulate their tumorigenic potential in vivo. Tissue Eng Part A 2012; 18(9-10): 1014-24.
[http://dx.doi.org/10.1089/ten.tea.2011.0174] [PMID: 22166057]
[74]
Hassanian SM, Ardeshirylajimi A, Dinarvand P, Rezaie AR. Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β‐catenin signaling in endothelial cells. J Thromb Haemost 2016; 14(11): 2261-73.
[http://dx.doi.org/10.1111/jth.13477] [PMID: 27546592]
[75]
Yan M, Wu J, Yu Y, et al. Mineral trioxide aggregate promotes the odonto/osteogenic differentiation and dentinogenesis of stem cells from apical papilla via nuclear factor kappa B signaling pathway. J Endod 2014; 40(5): 640-7.
[http://dx.doi.org/10.1016/j.joen.2014.01.042] [PMID: 24767557]
[76]
Wang Y, Li J, Song W, Yu J. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways. Cell Prolif 2014; 47(3): 241-8.
[http://dx.doi.org/10.1111/cpr.12099] [PMID: 24635197]
[77]
Holt BD, Wright ZM, Arnold AM, Sydlik SA. Graphene oxide as a scaffold for bone regeneration. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(3): e1437.
[http://dx.doi.org/10.1002/wnan.1437] [PMID: 27781398]
[78]
Xie Y, Li H, Ding C, Zheng X, Li K. Effects of graphene plates’ adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating. Int J Nanomedicine 2015; 10: 3855-63.
[http://dx.doi.org/10.2147/IJN.S77919] [PMID: 26089662]
[79]
Yan Y, Zhang X, Mao H, Huang Y, Ding Q, Pang X. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications. Appl Surf Sci 2015; 329: 76-82.
[http://dx.doi.org/10.1016/j.apsusc.2014.12.115]
[80]
Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(l -lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A 2015; 103(4): 1424-35.
[http://dx.doi.org/10.1002/jbm.a.35283] [PMID: 25046153]
[81]
Santos C, Piedade C, Uggowitzer PJ, Montemor MF, Carmezim MJ. Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants. Appl Surf Sci 2015; 345: 387-93.
[http://dx.doi.org/10.1016/j.apsusc.2015.03.182]
[82]
Zeng Y, Pei X, Yang S, et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf Coat Tech 2016; 286: 72-9.
[http://dx.doi.org/10.1016/j.surfcoat.2015.12.013]
[83]
Wang JK, Xiong GM, Zhu M, et al. Polymer-enriched 3D graphene foams for biomedical applications. ACS Appl Mater Interfaces 2015; 7(15): 8275-83.
[http://dx.doi.org/10.1021/acsami.5b01440] [PMID: 25822669]
[84]
Saburi E, Islami M, Hosseinzadeh S, et al. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers. Gene 2019; 696: 72-9.
[http://dx.doi.org/10.1016/j.gene.2019.02.028] [PMID: 30772518]
[85]
Elkhenany H, Amelse L, Lafont A, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: Potential for bone tissue engineering. J Appl Toxicol 2015; 35(4): 367-74.
[http://dx.doi.org/10.1002/jat.3024] [PMID: 25220951]
[86]
Kumar S, Raj S, Sarkar K, Chatterjee K. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale 2016; 8(12): 6820-36.
[http://dx.doi.org/10.1039/C5NR06906H] [PMID: 26955801]
[87]
Luo Y, Shen H, Fang Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 2015; 7(11): 6331-9.
[http://dx.doi.org/10.1021/acsami.5b00862] [PMID: 25741576]
[88]
Hoseinpour V, Shariatinia Z. Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review. Tissue Cell 2021; 72: 101588.
[http://dx.doi.org/10.1016/j.tice.2021.101588] [PMID: 34237482]
[89]
Zarrintaj P, Mahmodi G, Manouchehri S, et al. Zeolite in tissue engineering: Opportunities and challenges. MedComm 2020; 1(1): 5-34.
[http://dx.doi.org/10.1002/mco2.5] [PMID: 34766107]
[90]
Zhu R, Chen YX, Ke QF, Gao YS, Guo YP. SC79-loaded ZSM-5/chitosan porous scaffolds with enhanced stem cell osteogenic differentiation and bone regeneration. J Mater Chem B Mater Biol Med 2017; 5(25): 5009-18.
[http://dx.doi.org/10.1039/C7TB00897J] [PMID: 32264018]
[91]
Gao X, Xue Y, Zhu Z, et al. Nanoscale Zeolitic Imidazolate Framework-8 Activator of Canonical MAPK Signaling for Bone Repair. ACS Appl Mater Interfaces 2021; 13(1): 97-111.
[http://dx.doi.org/10.1021/acsami.0c15945] [PMID: 33354968]
[92]
Wang X, Qiu X, Pei J, Zhao D, Yan Y. Fabrication of magnesium phosphate bone cement with enhanced osteogenic properties by employing zeolitic imidazolate framework-8. J Mater Res 2022; 37(17): 2761-74.
[http://dx.doi.org/10.1557/s43578-022-00663-6]
[93]
Choudhary S, Halbout P, Alander C, Raisz L, Pilbeam C. Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: Involvement of prostaglandins. J Bone Miner Res 2007; 22(7): 1002-10.
[http://dx.doi.org/10.1359/jbmr.070321] [PMID: 17371157]
[94]
Peng S, Liu XS, Wang T, et al. In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res 2010; 28(9): 1208-14.
[http://dx.doi.org/10.1002/jor.21127] [PMID: 20196084]
[95]
Marie PJ. Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone 2006; 38(2 (Supp1)): 10-4.
[http://dx.doi.org/10.1016/j.bone.2005.07.029] [PMID: 16439191]
[96]
Ammann P. Strontium ranelate: A physiological approach for an improved bone quality. Bone 2006; 38(S2): 15-8.
[http://dx.doi.org/10.1016/j.bone.2005.09.023] [PMID: 16455318]
[97]
Kalalinia F, Ghasim H, Amel Farzad S, Pishavar E, Ramezani M, Hashemi M. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci 2018; 208: 262-7.
[http://dx.doi.org/10.1016/j.lfs.2018.07.043] [PMID: 30048694]
[98]
Saah S, Siriwan D, Trisonthi P. Biological activities of Boesenbergia rotunda parts and extracting solvents in promoting osteogenic differentiation of pre-osteoblasts. Food Biosci 2021; 41: 101011.
[http://dx.doi.org/10.1016/j.fbio.2021.101011]
[99]
Natural Herb Mixture Extract Accelerates Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Activating the SMAD Pathway J Med Food 2021; 24(11): 1145-52.
[PMID: 34792394]
[100]
Li H, Miyahara T, Tezuka Y, Tran QL, Seto H, Kadota S. Effect of berberine on bone mineral density in SAMP6 as a senile osteoporosis model. Biol Pharm Bull 2003; 26(1): 110-1.
[http://dx.doi.org/10.1248/bpb.26.110] [PMID: 12520186]
[101]
Zhang R, Yang J, Wu J, et al. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration. Eur J Pharmacol 2019; 851: 144-50.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.026] [PMID: 30776366]
[102]
Liu J, Zhao X, Pei D, et al. The promotion function of Berberine for osteogenic differentiation of human periodontal ligament stem cells via ERK-FOS pathway mediated by EGFR. Sci Rep 2018; 8(1): 2848.
[http://dx.doi.org/10.1038/s41598-018-21116-3] [PMID: 29434321]
[103]
Xin BC, Wu QS, Jin S, Luo AH, Sun DG, Wang F. Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathol Oncol Res 2020; 26(3): 1677-85.
[http://dx.doi.org/10.1007/s12253-019-00746-6] [PMID: 31598896]
[104]
Yao Q, Cosme JGL, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017; 115: 115-27.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.018] [PMID: 27886552]
[105]
Abazari MF, Nejati F, Nasiri N, et al. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 2019; 720: 144096.
[http://dx.doi.org/10.1016/j.gene.2019.144096] [PMID: 31476405]
[106]
Tanikawa DYS, Pinheiro CCG, Almeida MCA, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int 2020; 2020: 6234167.
[107]
De Mori A, Peña Fernández M, Blunn G, Tozzi G, Roldo M. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers 2018; 10(3): 285.
[http://dx.doi.org/10.3390/polym10030285] [PMID: 30966320]
[108]
Hong N, Yang GH, Lee J, Kim G. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater 2018; 106(1): 444-59.
[http://dx.doi.org/10.1002/jbm.b.33826] [PMID: 28106947]
[109]
Adepu S, Dhiman N, Laha A, Sharma CS, Ramakrishna S, Khandelwal M. Three-dimensional bioprinting for bone tissue regeneration. Curr Opin Biomed Eng 2017; 2: 22-8.
[http://dx.doi.org/10.1016/j.cobme.2017.03.005]
[110]
Griffin KS, Davis KM, McKinley TO, et al. Evolution of bone grafting: Bone grafts and tissue engineering strategies for vascularized bone regeneration. Clin Rev Bone Miner Metab 2015; 13(4): 232-44.
[http://dx.doi.org/10.1007/s12018-015-9194-9]
[111]
Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 2010; 18(5): 1026-34.
[http://dx.doi.org/10.1038/mt.2009.315] [PMID: 20068549]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy