Abstract
Spatial transcriptomics (ST) can provide vital insights into tissue function with the spatial organization of cell types. However, most technologies have limited spatial resolution, i.e., each measured location contains a mixture of cells, which only quantify the average expression level across many cells in the location. Recently developed algorithms show the promise to overcome these challenges by integrating single-cell and spatial data. In this review, we summarize spatial transcriptomic technologies and efforts at cell-type deconvolution. Importantly, we propose a unified probabilistic framework, integrating the details of the ST data generation process and the gene expression process simultaneously for modeling and inferring spatial transcriptomic data.
Graphical Abstract
[http://dx.doi.org/10.1016/j.immuni.2018.06.006] [PMID: 29958801]
[http://dx.doi.org/10.1159/000362978] [PMID: 25034869]
[http://dx.doi.org/10.1038/s41467-018-04724-5] [PMID: 29925878]
[http://dx.doi.org/10.1016/j.cell.2020.05.039] [PMID: 32579974]
[http://dx.doi.org/10.1038/s41586-019-1469-8] [PMID: 31391582]
[http://dx.doi.org/10.1146/annurev-genom-120219-083220] [PMID: 32339035]
[http://dx.doi.org/10.1016/j.devcel.2022.04.009] [PMID: 35512701]
[http://dx.doi.org/10.1016/j.devcel.2022.04.006] [PMID: 35512700]
[http://dx.doi.org/10.1016/j.cell.2015.04.044] [PMID: 26000487]
[http://dx.doi.org/10.1038/ncomms14049] [PMID: 28091601]
[http://dx.doi.org/10.1016/j.cell.2015.05.002] [PMID: 26000488]
[http://dx.doi.org/10.1016/j.mam.2017.07.002] [PMID: 28712804]
[http://dx.doi.org/10.1038/nrc.2017.58] [PMID: 28835719]
[http://dx.doi.org/10.1126/science.aan6828] [PMID: 28983043]
[http://dx.doi.org/10.1016/j.mam.2017.07.003] [PMID: 28754496]
[http://dx.doi.org/10.1038/s41576-021-00370-8] [PMID: 34145435]
[http://dx.doi.org/10.1038/s41592-020-01038-7] [PMID: 33408402]
[http://dx.doi.org/10.1038/s41588-021-00911-1] [PMID: 34493872]
[http://dx.doi.org/10.1016/j.cell.2021.12.018] [PMID: 35021063]
[http://dx.doi.org/10.1016/j.cmet.2021.07.018] [PMID: 34380013]
[http://dx.doi.org/10.1038/s41467-021-21892-z] [PMID: 33741943]
[http://dx.doi.org/10.1681/ASN.2021081150] [PMID: 34853151]
[http://dx.doi.org/10.1038/s41467-021-26271-2] [PMID: 34650042]
[http://dx.doi.org/10.1038/s41467-020-15968-5] [PMID: 32350282]
[http://dx.doi.org/10.1038/s12276-022-00896-9] [PMID: 36434043]
[http://dx.doi.org/10.1093/neuonc/noac219] [PMID: 36215273]
[http://dx.doi.org/10.15252/emmm.202114455] [PMID: 34936223]
[http://dx.doi.org/10.1016/j.cell.2020.12.016] [PMID: 33406409]
[http://dx.doi.org/10.3389/fmed.2022.873923] [PMID: 35872784]
[http://dx.doi.org/10.1172/jci.insight.147703] [PMID: 34003797]
[http://dx.doi.org/10.1016/j.isci.2022.104097] [PMID: 35372810]
[http://dx.doi.org/10.1038/nprot.2006.85] [PMID: 17406286]
[http://dx.doi.org/10.1038/s41586-019-1049-y] [PMID: 30911168]
[http://dx.doi.org/10.1126/science.aaw1219] [PMID: 30923225]
[http://dx.doi.org/10.1038/s41587-020-0739-1] [PMID: 33288904]
[http://dx.doi.org/10.1101/gr.229002] [PMID: 12045141]
[http://dx.doi.org/10.1016/j.cell.2014.09.038] [PMID: 25417113]
[http://dx.doi.org/10.1126/science.aaa6090] [PMID: 25858977]
[http://dx.doi.org/10.1126/science.aau5324] [PMID: 30385464]
[http://dx.doi.org/10.1038/nmeth.2892] [PMID: 24681720]
[http://dx.doi.org/10.1038/s41592-018-0175-z] [PMID: 30377364]
[http://dx.doi.org/10.1038/nprot.2014.191] [PMID: 25675209]
[http://dx.doi.org/10.1038/nmeth.2563] [PMID: 23852452]
[http://dx.doi.org/10.1126/science.aat5691] [PMID: 29930089]
[http://dx.doi.org/10.1126/science.aaf2403] [PMID: 27365449]
[http://dx.doi.org/10.1038/s41592-019-0548-y] [PMID: 31501547]
[http://dx.doi.org/10.1016/j.cell.2020.10.026] [PMID: 33188776]
[http://dx.doi.org/10.1016/j.xpro.2021.100532] [PMID: 34027489]
[http://dx.doi.org/10.1101/2021.03.17.435795]
[http://dx.doi.org/10.1016/j.cell.2021.05.010] [PMID: 34115981]
[http://dx.doi.org/10.1016/j.cell.2022.04.003] [PMID: 35512705]
[http://dx.doi.org/10.1126/sciadv.abg4755] [PMID: 33883145]
[http://dx.doi.org/10.1126/science.abb9536] [PMID: 34210887]
[http://dx.doi.org/10.1038/nrg3832] [PMID: 25446315]
[http://dx.doi.org/10.1002/bies.201900221] [PMID: 32363691]
[http://dx.doi.org/10.1038/s42003-020-01341-1] [PMID: 33097816]
[http://dx.doi.org/10.1038/s41592-022-01409-2] [PMID: 35273392]
[http://dx.doi.org/10.1111/febs.14435] [PMID: 29542254]
[http://dx.doi.org/10.1016/j.tibtech.2020.05.006] [PMID: 32505359]
[http://dx.doi.org/10.1158/2159-8290.CD-21-0683] [PMID: 34642171]
[http://dx.doi.org/10.1136/gutjnl-2019-320368] [PMID: 32532891]
[http://dx.doi.org/10.1016/j.cell.2019.06.029] [PMID: 31348891]
[http://dx.doi.org/10.1038/s42256-022-00534-z]
[http://dx.doi.org/10.1093/nar/gkaa838] [PMID: 33010177]
[http://dx.doi.org/10.1093/nar/gky900] [PMID: 30289549]
[http://dx.doi.org/10.1088/1742-5468/2008/10/P10008]
[http://dx.doi.org/10.1038/s41598-019-41695-z] [PMID: 30914743]
[http://dx.doi.org/10.1038/s41590-018-0276-y] [PMID: 30643263]
[http://dx.doi.org/10.1093/nar/gkz543] [PMID: 31226206]
[http://dx.doi.org/10.1093/bioinformatics/btac141] [PMID: 35258562]
[http://dx.doi.org/10.1016/j.isci.2020.101913] [PMID: 33364592]
[http://dx.doi.org/10.1038/s41587-021-00830-w] [PMID: 33603203]
[http://dx.doi.org/10.1038/s42003-020-01247-y] [PMID: 33037292]
[http://dx.doi.org/10.1038/s41587-022-01272-8] [PMID: 35449415]
[http://dx.doi.org/10.1038/s41587-021-01139-4] [PMID: 35027729]
[http://dx.doi.org/10.1038/s41467-022-30033-z] [PMID: 35487922]
[http://dx.doi.org/10.1093/nar/gkab043] [PMID: 33544846]
[http://dx.doi.org/10.1186/s13059-021-02362-7] [PMID: 33971932]
[http://dx.doi.org/10.1093/bib/bbaa414] [PMID: 33480403]
[http://dx.doi.org/10.1038/s41587-022-01273-7] [PMID: 35501392]
[http://dx.doi.org/10.1038/s41467-022-28020-5] [PMID: 35046414]
[http://dx.doi.org/10.3389/fphys.2021.809346] [PMID: 35069263]
[http://dx.doi.org/10.1016/j.csbj.2022.08.043] [PMID: 36147664]
[http://dx.doi.org/10.1186/s13059-022-02653-7] [PMID: 35337374]
[http://dx.doi.org/10.1007/978-3-030-87821-4_7]
[http://dx.doi.org/10.1038/s41592-022-01480-9] [PMID: 35577954]
[http://dx.doi.org/10.1093/bib/bbac245] [PMID: 35753702]
[http://dx.doi.org/10.1093/bioinformatics/btac805] [PMID: 36515467]
[http://dx.doi.org/10.1101/gr.275224.121] [PMID: 34599004]
[http://dx.doi.org/10.1038/nbt.4096] [PMID: 29608179]
[http://dx.doi.org/10.1016/j.cell.2021.04.048] [PMID: 34062119]
[http://dx.doi.org/10.1186/s12864-020-06832-3] [PMID: 32664861]
[http://dx.doi.org/10.1038/s41592-021-01358-2] [PMID: 35102346]
[http://dx.doi.org/10.1038/s41587-021-01206-w] [PMID: 35132262]
[http://dx.doi.org/10.1038/s41592-021-01264-7] [PMID: 34711971]
[http://dx.doi.org/10.1038/s41467-023-36796-3] [PMID: 36859400]
[http://dx.doi.org/10.1038/s41588-021-00873-4] [PMID: 34031584]
[http://dx.doi.org/10.1103/PhysRevE.105.014405]
[http://dx.doi.org/10.1101/2022.07.17.500373]
[http://dx.doi.org/10.1137/110852887]
[http://dx.doi.org/10.3934/mbe.2020287] [PMID: 33120554]
[http://dx.doi.org/10.1006/tpbi.1995.1027]