Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Is There a Role of Vitamin D in Alzheimer’s Disease?

Author(s): Domenico Plantone*, Matteo Pardini, Stefano Caneva and Nicola De Stefano

Volume 23, Issue 5, 2024

Published on: 08 June, 2023

Page: [545 - 553] Pages: 9

DOI: 10.2174/1871527322666230526164421

Price: $65

Abstract

Alzheimer’s disease (AD) represents the most prevalent type of neurodegenerative dementia and the sixth leading cause of death worldwide. The so-called “non-calcemic actions” of vitamin D have been increasingly described, and its insufficiency has already been linked to the onset and progression of the main neurological diseases, including AD. Immune-mediated Aβ plaque’s phagocytosis and clearance, immune response, oxidative stress, and mitochondrial function are all influenced by vitamin D, and these functions are considered relevant in AD pathogenesis. However, it has been shown that the genomic vitamin D signaling pathway is already impaired in the AD brain, making things more complicated. In this paper, we aim to summarise the role of vitamin D in AD and review the results of the supplementation trials in AD patients.

Graphical Abstract

[1]
Haque RU, Levey AI. Alzheimer’s disease: A clinical perspective and future nonhuman primate research opportunities. Proc Natl Acad Sci 2019; 116(52): 26224-9.
[http://dx.doi.org/10.1073/pnas.1912954116] [PMID: 31871211]
[2]
Förstl H, Kurz A. Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 1999; 249(6): 288-90.
[http://dx.doi.org/10.1007/s004060050101] [PMID: 10653284]
[3]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[4]
McCollum EV, Pitz W, Simmonds N, Becker JE, Shipley PG, Bunting RW. The effect of additions of fluorine to the diet of the rat on the quality of the teeth. 1925. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. 1922. The effect of additions of fluorine to the diet of the rat on the quality of the teeth. 1925. J Biol Chem 2002; 277(19): E8.
[PMID: 11991957]
[5]
Ma Y, Khalifa B, Yee YK, et al. Identification and characterization of noncalcemic, tissue-selective, nonsecosteroidal vitamin D receptor modulators. J Clin Invest 2006; 116(4): 892-904.
[http://dx.doi.org/10.1172/JCI25901] [PMID: 16528410]
[6]
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in neurological diseases. Int J Mol Sci 2022; 24(1): 87.
[http://dx.doi.org/10.3390/ijms24010087] [PMID: 36613531]
[7]
Masoumi A, Goldenson B, Ghirmai S, et al. 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2009; 17(3): 703-17.
[http://dx.doi.org/10.3233/JAD-2009-1080] [PMID: 19433889]
[8]
Patel P, Shah J. Role of vitamin D in amyloid clearance via LRP-1 upregulation in Alzheimer’s disease: A potential therapeutic target? J Chem Neuroanat 2017; 85: 36-42.
[http://dx.doi.org/10.1016/j.jchemneu.2017.06.007] [PMID: 28669880]
[9]
Mizwicki MT, Menegaz D, Zhang J, et al. Genomic and nongenomic signaling induced by 1α25(OH)2-vitamin D3 promotes the recovery of amyloid-β phagocytosis by Alzheimer’s disease macrophages. J Alzheimers Dis 2012; 29(1): 51-62.
[http://dx.doi.org/10.3233/JAD-2012-110560] [PMID: 22207005]
[10]
Yanagisawa J, Yanagi Y, Masuhiro Y, et al. Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. Science 1999; 283(5406): 1317-21.
[http://dx.doi.org/10.1126/science.283.5406.1317] [PMID: 10037600]
[11]
Burton T, Liang B, Dibrov A, Amara F. Transforming growth factor-β-induced transcription of the Alzheimer β-amyloid precursor protein gene involves interaction between the CTCF-complex and Smads. Biochem Biophys Res Commun 2002; 295(3): 713-23.
[http://dx.doi.org/10.1016/S0006-291X(02)00725-8] [PMID: 12099698]
[12]
Wimalawansa SJ, Vitamin D. Vitamin D deficiency: Effects on oxidative stress, epigenetics, gene regulation, and aging. Biology 2019; 8(2): 30.
[http://dx.doi.org/10.3390/biology8020030] [PMID: 31083546]
[13]
Bivona G, Lo Sasso B, Gambino CM, et al. The role of Vitamin D as a biomarker in Alzheimer’s Disease. Brain Sci 2021; 11(3): 334.
[http://dx.doi.org/10.3390/brainsci11030334] [PMID: 33800891]
[14]
Lai RH, Hsu YY, Shie FS, Huang CC, Chen MH, Juang JL. Non‐genomic rewiring of vitamin D receptor to p53 as a key to Alzheimer’s disease. Aging Cell 2021; 20(12): e13509.
[http://dx.doi.org/10.1111/acel.13509] [PMID: 34725922]
[15]
Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism. Int J Mol Sci 2020; 21(18): 6573.
[http://dx.doi.org/10.3390/ijms21186573] [PMID: 32911795]
[16]
Christakos S, Dhawan P, Verstuyf A, et al. Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 2016; 96(1): 365-408.
[http://dx.doi.org/10.1152/physrev.00014.2015] [PMID: 26681795]
[17]
Koshy KT, Vitamin D. An update. J Pharm Sci 1982; 71(2): 137-53.
[http://dx.doi.org/10.1002/jps.2600710203] [PMID: 6278123]
[18]
Sakaki T, Sawada N, Komai K, et al. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. Eur J Biochem 2000; 267(20): 6158-65.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01680.x] [PMID: 11012668]
[19]
Jones G, Prosser DE, Kaufmann M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its important role in the degradation of vitamin D. Arch Biochem Biophys 2012; 523(1): 9-18.
[http://dx.doi.org/10.1016/j.abb.2011.11.003] [PMID: 22100522]
[20]
Slominski AT, Janjetovic Z, Fuller BE, et al. Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PLoS One 2010; 5(3): e9907.
[http://dx.doi.org/10.1371/journal.pone.0009907] [PMID: 20360850]
[21]
Slominski AT, Li W, Kim TK, et al. Novel activities of CYP11A1 and their potential physiological significance. J Steroid Biochem Mol Biol 2015; 151: 25-37.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.010] [PMID: 25448732]
[22]
Slominski AT, Kim TK, Shehabi HZ, et al. In vivo evidence for a novel pathway of vitamin D 3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J 2012; 26(9): 3901-15.
[http://dx.doi.org/10.1096/fj.12-208975] [PMID: 22683847]
[23]
Pike JW, Meyer MB, Benkusky NA, et al. Genomic determinants of vitamin D-regulated gene expression. Vitam Horm 2016; 100: 21-44.
[http://dx.doi.org/10.1016/bs.vh.2015.10.011] [PMID: 26827947]
[24]
Carlberg C. Nutrigenomics of vitamin D. Nutrients 2019; 11(3): 676.
[http://dx.doi.org/10.3390/nu11030676] [PMID: 30901909]
[25]
Prüfer K, Racz A, Lin GC, Barsony J. Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem 2000; 275(52): 41114-23.
[http://dx.doi.org/10.1074/jbc.M003791200] [PMID: 11001945]
[26]
Carlberg C. Vitamin D and its target genes. Nutrients 2022; 14(7): 1354.
[http://dx.doi.org/10.3390/nu14071354] [PMID: 35405966]
[27]
Carlberg C, Molnár F. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view. Can J Physiol Pharmacol 2015; 93(5): 311-8.
[http://dx.doi.org/10.1139/cjpp-2014-0383] [PMID: 25741777]
[28]
Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357(3): 266-81.
[http://dx.doi.org/10.1056/NEJMra070553] [PMID: 17634462]
[29]
Pasing Y, Fenton CG, Jorde R, Paulssen RH. Changes in the human transcriptome upon vitamin D supplementation. J Steroid Biochem Mol Biol 2017; 173: 93-9.
[http://dx.doi.org/10.1016/j.jsbmb.2017.03.016] [PMID: 28330721]
[30]
Shen L, Ji HF. Vitamin D deficiency is associated with increased risk of Alzheimer’s disease and dementia: Evidence from meta-analysis. Nutr J 2015; 14(1): 76.
[http://dx.doi.org/10.1186/s12937-015-0063-7] [PMID: 26231781]
[31]
Sommer I, Griebler U, Kien C, et al. Vitamin D deficiency as a risk factor for dementia: A systematic review and meta-analysis. BMC Geriatr 2017; 17(1): 16.
[http://dx.doi.org/10.1186/s12877-016-0405-0] [PMID: 28086755]
[32]
Neuffer J, Gourru M, Thomas A, et al. A biological index to screen multi-micronutrient deficiencies associated with the risk to develop dementia in older persons from the community. J Alzheimers Dis 2022; 85(1): 331-42.
[http://dx.doi.org/10.3233/JAD-215011] [PMID: 34806604]
[33]
Lam V, Albrecht MA, Takechi R, et al. Serum 25-hydroxyvitamin D is associated with reduced verbal episodic memory in healthy, middle-aged and older adults. Eur J Nutr 2016; 55(4): 1503-13.
[http://dx.doi.org/10.1007/s00394-015-0968-0] [PMID: 26130325]
[34]
Navarrete-Reyes AP, García-Muñoz I, García-Lara JMA, Torres-Carrillo NM, Amieva H, Avila-Funes JA. 25-OH-Vitamin D is not associated with cognitive performance among mexican community-dwelling older persons. J Frailty Aging 2015; 4(2): 1-6.
[http://dx.doi.org/10.14283/jfa.2015.44] [PMID: 27032048]
[35]
Jorde R, Mathiesen EB, Rogne S, et al. Vitamin D and cognitive function: The Tromsø Study. J Neurol Sci 2015; 355(1-2): 155-61.
[http://dx.doi.org/10.1016/j.jns.2015.06.009] [PMID: 26092373]
[36]
Darwish H, Zeinoun P, Ghusn H, Khoury B, Tamim H, Khoury SJ. Serum 25-hydroxyvitamin D predicts cognitive performance in adults. Neuropsychiatr Dis Treat 2015; 11: 2217-23.
[http://dx.doi.org/10.2147/NDT.S87014]
[37]
Brouwer-Brolsma EM, Dhonukshe-Rutten RAM, van Wijngaarden JP, et al. Cognitive performance: A cross-sectional study on serum vitamin D and its interplay with glucose homeostasis in dutch older adults. J Am Med Dir Assoc 2015; 16(7): 621-7.
[http://dx.doi.org/10.1016/j.jamda.2015.02.013] [PMID: 25838206]
[38]
Pavlovic A, Abel K, Barlow CE, Farrell SW, Weiner M, DeFina LF. The association between serum vitamin d level and cognitive function in older adults: Cooper Center Longitudinal Study. Prev Med 2018; 113: 57-61.
[http://dx.doi.org/10.1016/j.ypmed.2018.05.010] [PMID: 29753804]
[39]
Goodwill AM, Campbell S, Simpson S Jr, et al. Vitamin D status is associated with executive function a decade later: Data from the Women’s Healthy Ageing Project. Maturitas 2018; 107: 56-62.
[http://dx.doi.org/10.1016/j.maturitas.2017.10.005] [PMID: 29169581]
[40]
Wang H-X, Wahlin Å, Basun H, Fastbom J, Winblad B, Fratiglioni L. Vitamin B 12 and folate in relation to the development of Alzheimer’s disease. Neurology 2001; 56(9): 1188.1-94.
[http://dx.doi.org/10.1212/WNL.56.9.1188] [PMID: 11342684]
[41]
Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. Annu Rev Nutr 2016; 36(1): 211-39.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050947] [PMID: 27431367]
[42]
Llewellyn DJ, Lang IA, Langa KM, et al. Vitamin D and risk of cognitive decline in elderly persons. Arch Intern Med 2010; 170(13): 1135-41.
[http://dx.doi.org/10.1001/archinternmed.2010.173] [PMID: 20625021]
[43]
Matchar DB, Chei CL, Yin ZX, et al. Vitamin D levels and the risk of cognitive decline in chinese elderly people: The chinese longitudinal healthy longevity survey. J Gerontol A Biol Sci Med Sci 2016; 71(10): 1363-8.
[http://dx.doi.org/10.1093/gerona/glw128] [PMID: 27412894]
[44]
Moon JH, Lim S, Han JW, et al. Serum 25-hydroxyvitamin D level and the risk of mild cognitive impairment and dementia: The Korean Longitudinal Study on Health and Aging (KLoSHA). Clin Endocrinol 2015; 83(1): 36-42.
[http://dx.doi.org/10.1111/cen.12733] [PMID: 25641087]
[45]
Feart C, Helmer C, Merle B, et al. Associations of lower vitamin D concentrations with cognitive decline and long‐term risk of dementia and Alzheimer’s disease in older adults. Alzheimers Dement 2017; 13(11): 1207-16.
[http://dx.doi.org/10.1016/j.jalz.2017.03.003] [PMID: 28522216]
[46]
Bartali B, Devore E, Grodstein F, Kang JH. Plasma vitamin d levels and cognitive function in aging women: The nurses’ health study. J Nutr Health Aging 2014; 18(4): 400-6.
[http://dx.doi.org/10.1007/s12603-013-0409-9] [PMID: 24676321]
[47]
Maddock J, Geoffroy MC, Power C, Hyppönen E. 25-Hydroxyvitamin D and cognitive performance in mid-life. Br J Nutr 2014; 111(5): 904-14.
[http://dx.doi.org/10.1017/S0007114513003176] [PMID: 24135155]
[48]
Beydoun MA, Hossain S, Fanelli-Kuczmarski MT, et al. Vitamin D status and intakes and their association with cognitive trajectory in a longitudinal study of urban adults. J Clin Endocrinol Metab 2018; 103(4): 1654-68.
[http://dx.doi.org/10.1210/jc.2017-02462] [PMID: 29409006]
[49]
van Schoor NM, Comijs HC, Llewellyn DJ, Lips P. Cross-sectional and longitudinal associations between serum 25-hydroxyvitamin D and cognitive functioning. Int Psychogeriatr 2016; 28(5): 759-68.
[http://dx.doi.org/10.1017/S1041610215002252] [PMID: 26691864]
[50]
Olsson E, Byberg L, Karlström B, et al. Vitamin D is not associated with incident dementia or cognitive impairment: An 18-y follow-up study in community-living old men. Am J Clin Nutr 2017; 105(4): 936-43.
[http://dx.doi.org/10.3945/ajcn.116.141531] [PMID: 28202477]
[51]
Overman MJ, Pendleton N, O’Neill TW, et al. Evaluation of cognitive subdomains, 25-hydroxyvitamin D, and 1,25-dihydroxyvitamin D in the European Male Ageing Study. Eur J Nutr 2017; 56(6): 2093-103.
[http://dx.doi.org/10.1007/s00394-016-1247-4] [PMID: 27370643]
[52]
Schneider ALC, Lutsey PL, Alonso A, et al. Vitamin D and cognitive function and dementia risk in a biracial cohort: The ARIC Brain MRI Study. Eur J Neurol 2014; 21(9): 1211-e70, e69-.
[http://dx.doi.org/10.1111/ene.12460] [PMID: 24846449]
[53]
Slinin Y, Paudel ML, Taylor BC, et al. 25-Hydroxyvitamin D levels and cognitive performance and decline in elderly men. Neurology 2010; 74(1): 33-41.
[http://dx.doi.org/10.1212/WNL.0b013e3181c7197b] [PMID: 19940271]
[54]
Laughlin GA, Kritz-Silverstein D, Bergstrom J, et al. Vitamin D insufficiency and cognitive function trajectories in older adults: The rancho bernardo study. J Alzheimers Dis 2017; 58(3): 871-83.
[http://dx.doi.org/10.3233/JAD-161295] [PMID: 28505973]
[55]
He XY, Kuo K, Yang L, et al. Serum clinical laboratory tests and risk of incident dementia: A prospective cohort study of 407,190 individuals. Transl Psychiatry 2022; 12(1): 312.
[http://dx.doi.org/10.1038/s41398-022-02082-x] [PMID: 35927253]
[56]
Mazahery H, von Hurst PR. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients 2015; 7(7): 5111-42.
[http://dx.doi.org/10.3390/nu7075111]
[57]
Soares JZ, Valeur J, Šaltytė Benth J, et al. Associations between intrathecal levels of vitamin D, cytokines, and core biomarkers of Alzheimer’s Disease: A cross-sectional study. J Alzheimers Dis 2022; 89(3): 825-34.
[http://dx.doi.org/10.3233/JAD-220407] [PMID: 35938253]
[58]
Soares JZ, Valeur J, Šaltytė Benth J, et al. Vitamin D in Alzheimer’s Disease: Low levels in cerebrospinal fluid despite normal amounts in serum. J Alzheimers Dis 2022; 86(3): 1301-14.
[http://dx.doi.org/10.3233/JAD-215536] [PMID: 35180126]
[59]
Annweiler C. Vitamin D in dementia prevention. Ann N Y Acad Sci 2016; 1367(1): 57-63.
[http://dx.doi.org/10.1111/nyas.13058] [PMID: 27116242]
[60]
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the Vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat 2005; 29(1): 21-30.
[http://dx.doi.org/10.1016/j.jchemneu.2004.08.006] [PMID: 15589699]
[61]
Moretti R, Morelli ME, Caruso P. Vitamin D in neurological diseases: A rationale for a pathogenic impact. Int J Mol Sci 2018; 19(8): 2245.
[http://dx.doi.org/10.3390/ijms19082245]
[62]
Latimer CS, Brewer LD, Searcy JL, et al. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci 2014; 111(41): E4359-66.
[http://dx.doi.org/10.1073/pnas.1404477111] [PMID: 25267625]
[63]
Sultan S, Taimuri U, Basnan SA, et al. Low vitamin D and its association with cognitive impairment and dementia. J Aging Res 2020; 2020: 6097820.
[http://dx.doi.org/10.1155/2020/6097820] [PMID: 32399297]
[64]
Liu D, Meng X, Tian Q, et al. Vitamin D and multiple health outcomes: An umbrella review of observational studies, randomized controlled trials, and mendelian randomization studies. Adv Nutr 2022; 13(4): 1044-62.
[http://dx.doi.org/10.1093/advances/nmab142] [PMID: 34999745]
[65]
Kalra A, Teixeira AL, Diniz BS. Association of vitamin D levels with incident all-cause dementia in longitudinal observational studies: A systematic review and meta-analysis. J Prev Alzheimers Dis 2019; 7(1): 1-7.
[http://dx.doi.org/10.14283/jpad.2019.44] [PMID: 32010921]
[66]
Jorde R, Kubiak J, Svartberg J, et al. Vitamin D supplementation has no effect on cognitive performance after four months in mid-aged and older subjects. J Neurol Sci 2019; 396: 165-71.
[http://dx.doi.org/10.1016/j.jns.2018.11.020] [PMID: 30472553]
[67]
Schietzel S, Fischer K, Brugger P, et al. Effect of 2000 IU compared with 800 IU vitamin D on cognitive performance among adults age 60 years and older: A randomized controlled trial. Am J Clin Nutr 2019; 110(1): 246-53.
[http://dx.doi.org/10.1093/ajcn/nqz081] [PMID: 31152541]
[68]
Przybelski R, Agrawal S, Krueger D, Engelke JA, Walbrun F, Binkley N. Rapid correction of low vitamin D status in nursing home residents. Osteoporos Int 2008; 19(11): 1621-8.
[http://dx.doi.org/10.1007/s00198-008-0619-x] [PMID: 18421544]
[69]
Rossom RC, Espeland MA, Manson JE, et al. Calcium and vitamin D supplementation and cognitive impairment in the women’s health initiative. J Am Geriatr Soc 2012; 60(12): 2197-205.
[http://dx.doi.org/10.1111/jgs.12032] [PMID: 23176129]
[70]
Bischoff-Ferrari HA, Vellas B, Rizzoli R, et al. Effect of vitamin D supplementation, omega-3 fatty acid supplementation, or a strength-training exercise program on clinical outcomes in older adults. JAMA 2020; 324(18): 1855-68.
[http://dx.doi.org/10.1001/jama.2020.16909] [PMID: 33170239]
[71]
Stein MS, Scherer SC, Ladd KS, Harrison LC. A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease. J Alzheimers Dis 2011; 26(3): 477-84.
[http://dx.doi.org/10.3233/JAD-2011-110149] [PMID: 21694461]
[72]
Moran C, Scotto di Palumbo A, Bramham J, et al. Effects of a six-month multi-ingredient nutrition supplement intervention of omega-3 polyunsaturated fatty acids, vitamin D, resveratrol, and whey protein on cognitive function in older adults: A randomised, double-blind, controlled trial. J Prev Alzheimers Dis 2018; 5(3): 1-9.
[http://dx.doi.org/10.14283/jpad.2018.11] [PMID: 29972210]
[73]
Hu J, Jia J, Zhang Y, Miao R, Huo X, Ma F. Effects of vitamin D 3 supplementation on cognition and blood lipids: a 12-month randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry 2018; 89(12): 1341-7.
[http://dx.doi.org/10.1136/jnnp-2018-318594] [PMID: 30279212]
[74]
Yang T, Wang H, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: A 12-month randomized controlled trial. J Alzheimers Dis 2020; 78(4): 1509-18.
[http://dx.doi.org/10.3233/JAD-200926] [PMID: 33164936]
[75]
Annweiler C, Fantino B, Gautier J, Beaudenon M, Thiery S, Beauchet O. Cognitive effects of vitamin D supplementation in older outpatients visiting a memory clinic: A pre-post study. J Am Geriatr Soc 2012; 60(4): 793-5.
[http://dx.doi.org/10.1111/j.1532-5415.2011.03877.x] [PMID: 22494292]
[76]
Miller BJ, Whisner CM, Johnston CS, Vitamin D. Vitamin D supplementation appears to increase plasma aβ40 in vitamin D insufficient older adults: A pilot randomized controlled trial. J Alzheimers Dis 2016; 52(3): 843-7.
[http://dx.doi.org/10.3233/JAD-150901] [PMID: 27031473]
[77]
Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry 2019; 90(12): jnnp-2018-320199.
[http://dx.doi.org/10.1136/jnnp-2018-320199] [PMID: 31296588]
[78]
Gagesch M, Wieczorek M, Vellas B, et al. Effects of vitamin D, omega-3 fatty acids and a home exercise program on prevention of pre-frailty in older adults: The DO-HEALTH randomized clinical trial. J Frailty Aging 2022; 12(1): 71-7.
[http://dx.doi.org/10.14283/jfa.2022.48] [PMID: 36629088]
[79]
Pettersen JA. Does high dose vitamin D supplementation enhance cognition?: A randomized trial in healthy adults. Exp Gerontol 2017; 90: 90-7.
[http://dx.doi.org/10.1016/j.exger.2017.01.019] [PMID: 28167237]
[80]
Lai RH, Hsu CC, Yu BH, et al. Vitamin D supplementation worsens Alzheimer’s progression: Animal model and human cohort studies. Aging Cell 2022; 21(8): e13670.
[http://dx.doi.org/10.1111/acel.13670] [PMID: 35822270]
[81]
Du Y, Liang F, Zhang L, Liu J, Dou H, Vitamin D. Vitamin D supplement for prevention of Alzheimer’s Disease: A systematic review and meta-analysis. Am J Ther 2021; 28(6): e638-48.
[http://dx.doi.org/10.1097/MJT.0000000000001302] [PMID: 33395056]
[82]
Goodwill AM, Szoeke C. A systematic review and meta-analysis of the effect of low vitamin D on cognition. J Am Geriatr Soc 2017; 65(10): 2161-8.
[http://dx.doi.org/10.1111/jgs.15012] [PMID: 28758188]
[83]
Ascherio A, Munger KL, White R, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 2014; 71(3): 306-14.
[http://dx.doi.org/10.1001/jamaneurol.2013.5993] [PMID: 24445558]
[84]
Feige J, Moser T, Bieler L, et al. Vitamin D supplementation in multiple sclerosis: A critical analysis of potentials and threats. Nutrients 2020; 12(3): 783.
[http://dx.doi.org/10.3390/nu12030783] [PMID: 32188044]
[85]
Silva ABJ, Barros WMA, Silva ML, et al. Impact of vitamin D on cognitive functions in healthy individuals: A systematic review in randomized controlled clinical trials. Front Psychol 2022; 13: 987203.
[http://dx.doi.org/10.3389/fpsyg.2022.987203] [PMID: 36524160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy