Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Antiviral Application of Carbohydrate Polymers: A Review

Author(s): Biswakanth Kar, Deepak Pradhan, Jitu Halder, Vineet Kumar Rai, Goutam Ghosh and Goutam Rath*

Volume 29, Issue 18, 2023

Published on: 06 June, 2023

Page: [1441 - 1458] Pages: 18

DOI: 10.2174/1381612829666230526142421

Price: $65

Abstract

Viral disease is a well-known cause of a significant impact on economic losses and threatens developed and developing societies. High mutation rates and the lack of ability of conventional formulations to target specific cells pose substantial hurdles to the successful treatment of viral diseases. We conducted a preliminary search by a standard procedure. With hand searching, we conducted an advanced search across several electronic databases. After defining the selection criteria, two writers independently reviewed and evaluated the first 500 abstracts before screening the remaining 300. Since there was 97% agreement on the screening decisions, only one reviewer conducted the screening. The pre-planned data extraction process was accomplished, and the thoroughness of the description of participation techniques was assessed. Additional data extraction was carried out for articles with the most detailed illustrations. Four stakeholder representatives co-authored this systematic review. Incorporating selective carbohydrate polymers into the antiviral pharmaceutical compositions could help to manage biological complications associated with viral infections. We included 172 papers in which authors were involved in a systematic review. The present review explains the role of carbohydrate polymers (chitosan, carrageenan, alginate, cyclodextrin, dextran, and heparin) in the prevention and treatment of viral infections in terms of their source, molecular weight, surface charge, chemical composition, and structure. Additionally, the review describes the primary mechanism of drug delivery performance of carbohydrate polymers to improve the antiviral properties and pharmacokinetic behaviour of lamivudine, zidovudine, acyclovir, etc. The article discussed the role of carbohydrate polymers in mitigating virus-induced associated complications like bacterial infection, cardiovascular disorder, oxidative stress, and metabolic disorder. As a result, this work will provide valuable information to scientists, researchers, and clinicians for suitable carbohydrate polymer-based pharmaceutical development.

[1]
Mourya D, Yadav P, Ullas PT, et al. Emerging/re-emerging viral diseases & new viruses on the Indian horizon. Indian J Med Res 2019; 149(4): 447-67.
[http://dx.doi.org/10.4103/ijmr.IJMR_1239_18] [PMID: 31411169]
[2]
Kim H, Hwang SG, Guk K, et al. Development of antibody against drug-resistant respiratory syncytial virus: Rapid detection of mutant virus using split superfolder green fluorescent protein-antibody system. Biosens Bioelectron 2021; 194: 113593.
[http://dx.doi.org/10.1016/j.bios.2021.113593] [PMID: 34481240]
[3]
Tzitzoglaki C, Hoffmann A, Turcu AL, et al. Amantadine variant- aryl conjugates that inhibit multiple M2 mutant – amantadine resistant influenza a viruses. Eur J Med Chem Rep 2022; 6: 100083.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100083]
[4]
Chen R, Quinones-Mateu M, Mansky L. Drug resistance, virus fitness and HIV-1 mutagenesis. Curr Pharm Des 2004; 10(32): 4065-70.
[http://dx.doi.org/10.2174/1381612043382404] [PMID: 15579088]
[5]
Kausar S, Said KF, Mujeeb Ur Rehman IM, et al. A review: Mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol 2021; 35: 20587384211002621.
[http://dx.doi.org/10.1177/20587384211002621] [PMID: 33726557]
[6]
Banti CN, Kourkoumelis N, Hatzidimitriou AG, et al. Amantadine copper(II) chloride conjugate with possible implementation in influenza virus inhibition. Polyhedron 2020; 185: 114590.
[http://dx.doi.org/10.1016/j.poly.2020.114590]
[7]
Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res 2020; 220: 33-42.
[http://dx.doi.org/10.1016/j.trsl.2020.01.005] [PMID: 32088166]
[8]
Scott LJJD. Peramivir: A review in uncomplicated influenza. Drugs 2018; 78: 1363-70.
[http://dx.doi.org/10.1007/s40265-018-0981-8]
[9]
Zarrouk K, Piret J, Guy B. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res 2017; 234: 177-92.
[10]
Stranska R. Antiviral drug resistance of herpes simplex virus. Utrecht University 2004.
[11]
Cakir M, Obernier K, Forget A, Krogan NJ. Target discovery for host-directed antiviral therapies: Application of proteomics approaches. mSystems 2021; 6(5): e00388-21.
[http://dx.doi.org/10.1128/mSystems.00388-21] [PMID: 34519533]
[12]
Jose GM, Haro IJCMC. Updating the use of synthetic peptides as inhibitors of HIV-1 entry. Curr Med Chem 2014; 21(10): 1188-200.
[13]
Langford BJ, So M, Raybardhan S, et al. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin Microbiol Infect 2020; 26(12): 1622-9.
[14]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[15]
Montani D, Savale L, Noel N, et al. Post-acute COVID-19 syndrome. Eur Respir J Title 2022; 31(163): 1-18.
[16]
Joshy K, Snigdha S, Kalarikkal N, Pothen LA, Thomas SJC. Gelatin modified lipid nanoparticles for anti-viral drug delivery. Chem Phys Lipids 2017; 207: 24-37.
[17]
Vyas S, Rawat M, Rawat A, Mahor S. Pegylated protein encapsulated multivesicular liposomes: A novel approach for sustained release of Interferon α. Drug Dev Ind Pharm 2006; 32(6): 699-707.
[18]
Bianculli RH, Mase JD, Schulz MDJM. Antiviral polymers: Past approaches and future possibilities. Macromolecules 2020; 53(21): 9158-86.
[http://dx.doi.org/10.1021/acs.macromol.0c01273]
[19]
Takemoto K, Liebhaber HJV. Virus-polysaccharide interactions: I. An agar polysaccharide determining plaque morphology of EMC virus. Virology 1961; 14(4): 456-62.
[20]
De Somer P, De Clercq E, Billiau A, Schonne E. Antiviral activity of polyacrylic and polymethacrylic acids: I. Mode of action in vitro. J Virol 1968; 2(9): 878-85.
[21]
Matsukura M, Shinozuka K, Zon G, Mitsuya H, Reitz M, Cohen JS. Phosphorothioate analogs of oligodeoxynucleotides: Inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Natl Acad Sci 1987; 84(21): 7706-10.
[22]
Gao W-Y, Jaroszewski J, Cohen J. Mechanisms of inhibition of herpes simplex virus type 2 growth by 28-mer phosphorothioate oligodeoxycytidine. J Biol Chem 1990; 265(33): 20172-8.
[23]
Agrawal S, Goodchild J, Civeira MP, Thornton AH, Sarin PS. Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc Natl Acad Sci 1988; 85(19): 7079-83.
[24]
Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A review of current applications and upcoming potentialities). J Polym Environ 2021; 29(8): 2359-71.
[http://dx.doi.org/10.1007/s10924-021-02052-2] [PMID: 33526994]
[25]
Tandon R, Sharp JS, Zhang F, et al. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.06.08.140236]
[26]
Regiel-Futyra A, Dąbrowski JM, Mazuryk O, et al. Bioinorganic antimicrobial strategies in the resistance era. Coord Chem Rev 2017; 351: 76-117.
[http://dx.doi.org/10.1016/j.ccr.2017.05.005]
[27]
Harden EA, Falshaw R, Carnachan SM, Kern ER. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res 2009; 83(3): 282-9.
[28]
Ghosh P, Adhikari U, Ghosal PK, et al. In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry 2004; 65(23): 3151-7.
[http://dx.doi.org/10.1016/j.phytochem.2004.07.025] [PMID: 15541745]
[29]
Liu F, Wang Y, Zhang K, et al. A novel polysaccharide with antioxidant, HIV protease inhibiting and HIV integrase inhibiting activities from Fomitiporia punctata (P. karst.) murrill (Basidiomycota, hymenochaetales). Int J Biol Macromol 2017; 97: 339-47.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.030] [PMID: 28089931]
[30]
Sun Y, Chen X, Liu H, et al. Preparation of new Sargassum fusiforme polysaccharide long-chain alkyl group nanomicelles and their antiviral properties against ALV-J. Molecules 2021; 26(11): 3265.
[http://dx.doi.org/10.3390/molecules26113265] [PMID: 34071584]
[31]
Jain N, Rajoriya V, Jain P, Jain A. Lactosaminated-N-succinyl chitosan nanoparticles for hepatocyte-targeted delivery of acyclovir. J Nanopart Res 2013; 16.
[32]
Mallipeddi R, Lisa CR. Progress in antiretroviral drug delivery using nanotechnology. Int J Nanomed 2010; 5: 533-47.
[33]
Donalisio M, Argenziano M, Rittà M, et al. Acyclovir-loaded sulfobutyl ether-β-cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. Int J Pharm 2020; 587: 119676.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119676] [PMID: 32738458]
[34]
Zuo K, Tang K, Liang Y, et al. Purification and antioxidant and anti‐Inflammatory activity of extracellular polysaccharopeptide from sanghuang mushroom, Sanghuangporus lonicericola. J Sci Food Agric 2021; 101(3): 1009-20.
[http://dx.doi.org/10.1002/jsfa.10709] [PMID: 32767366]
[35]
Adhikari U. Novel Material Design, Synthesis and Characterization for Peripheral Nerve Repair. North Carolina Agricultural and Technical State University 2018.
[36]
Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, et al. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B 2019; 180: 411-28.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.008]
[37]
Wang Y, Li L, Li B, et al. Action of chitosan against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Molecules 2012; 17(6): 7028-41.
[http://dx.doi.org/10.3390/molecules17067028] [PMID: 22678416]
[38]
Yu L, Li K, Zhang J, et al. Antimicrobial peptides and macromolecules for combating microbial infections: from agents to interfaces. ACS Appl Bio Mater 2022; 5(2): 366-93.
[http://dx.doi.org/10.1021/acsabm.1c01132]
[39]
Vahedifard F, Krishnan C. Nanomedicine for COVID-19: The role of nanotechnology in the treatment and diagnosis of COVID-19 2021; 4(1): 75-99.
[40]
Claus-Desbonnet H, Nikly E, Nalbantova V, et al. Polysaccharides and their derivatives as potential antiviral molecules. Viruses 2022; 14(2): 426.
[http://dx.doi.org/10.3390/v14020426]
[41]
He X, Xing R, Liu S, et al. The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus. Drug Chem Toxicol 2021; 44(4): 335-40.
[http://dx.doi.org/10.1080/01480545.2019.1620264]
[42]
Vo TS, Kim SK. Potential anti-HIV agents from marine resources: An overview. Mar Drugs 2010; 8(12): 2871-92.
[http://dx.doi.org/10.3390/md8122871] [PMID: 21339954]
[43]
Li X, Wu P, Gao GF, Cheng S. Carbohydrate-functionalized chitosan fiber for influenza virus capture. Biomacromolecules 2011; 12(11): 3962-9.
[http://dx.doi.org/10.1021/bm200970x] [PMID: 21978096]
[44]
Gao Y, Liu W, Wang W, Zhang X, Zhao X. The inhibitory effects and mechanisms of 3,6-O-sulfated chitosan against human papillomavirus infection. Carbohydr Polym 2018; 198: 329-38.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.096] [PMID: 30093007]
[45]
Milewska A, Chi Y, Szczepanski A, et al. HTCC as a polymeric inhibitor of SARS-CoV-2 and MERS-CoV. J Virol 2021; 95(4): e01622-20.
[http://dx.doi.org/10.1128/JVI.01622-20] [PMID: 33219167]
[46]
Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut WJB. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003; 4(6): 1457-65.
[http://dx.doi.org/10.1021/bm034130m]
[47]
He M, Zhong C, Hu H, et al. Cyclodextrin/chitosan nanoparticles for oral ovalbumin delivery: Preparation, characterization and intestinal mucosal immunity in mice. Asian J Pharm Sci 2019; 14(2): 193-203.
[48]
Zheng M, Qu D, Wang H, et al. Intranasal administration of chitosan against influenza A (H7N9) Virus infection in a mouse model. Sci Rep 2016; 6(1): 28729.
[http://dx.doi.org/10.1038/srep28729] [PMID: 27353250]
[49]
Sosa MAG, Fazely F, Koch JA, Vercellotti SV, Ruprecht RM. N-Carboxymethylchitosan-N,O-sulfate as an anti-HIV-1 agent. Biochem Biophys Res Commun 1991; 174(2): 489-96.
[http://dx.doi.org/10.1016/0006-291X(91)91443-G] [PMID: 1704225]
[50]
Jana B, Chatterjee A, Roy D, et al. Chitosan/benzyloxy-benzaldehyde modified ZnO nano template having optimized and distinct antiviral potency to human cytomegalovirus. Carbohydr Polym 2022; 278: 118965.
[http://dx.doi.org/10.1016/j.carbpol.2021.118965] [PMID: 34973780]
[51]
Miao J, Yang X, Gao Z, et al. Redox-responsive chitosan oligosaccharide-SS-Octadecylamine polymeric carrier for efficient anti-Hepatitis B Virus gene therapy. Carbohydr Polym 2019; 212: 215-21.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.047] [PMID: 30832850]
[52]
Donalisio M, Leone F, Civra A, et al. Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics 2018; 10(2): 46.
[http://dx.doi.org/10.3390/pharmaceutics10020046] [PMID: 29642603]
[53]
Deshkar S, Sikchi S, Thakre A, Kale R. Poloxamer modified chitosan nanoparticles for vaginal delivery of acyclovir. Pharm Nanotechnol 2021; 9(2): 141-56.
[http://dx.doi.org/10.2174/2211738508666210108121541] [PMID: 33423655]
[54]
Cazorla-Luna R, Notario-Pérez F, Martín-Illana A, et al. Chitosan-based mucoadhesive vaginal tablets for controlled release of the Anti-HIV drug tenofovir. Pharmaceutics 2019; 11(1): 20.
[http://dx.doi.org/10.3390/pharmaceutics11010020] [PMID: 30621307]
[55]
El-Shafai NM, Shawky S, El-Mehasseb IM, El-Kemary MA. Sandwich nanohybrid of chitosan-polyvinyl alcohol for water treatment and Sofosbuvir drug delivery for anti-hepatitis C virus (HCV). Int J Biol Macromol 2021; 190: 927-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.200] [PMID: 34480910]
[56]
Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. Mater Sci Eng C 2017; 73: 406-16.
[http://dx.doi.org/10.1016/j.msec.2016.12.073] [PMID: 28183626]
[57]
Safarzadeh M, Sadeghi S, Azizi M, Rastegari-Pouyani M, Pouriran R, Haji Molla Hoseini M. Chitin and chitosan as tools to combat COVID-19: A triple approach. Int J Biol Macromol 2021; 183: 235-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.157] [PMID: 33930442]
[58]
Cheng F, Wang B, Xia Y. Synthesis and characterization of o-acetyl-chitosan acetic ester. Int J Polym Sci 2018; 2018: 4960416.
[http://dx.doi.org/10.1155/2018/4960416]
[59]
Jiang Y, Liu S, Shen S, Guo H, Huang H, Wei W. Methyl-β-cyclodextrin inhibits EV-D68 virus entry by perturbing the accumulation of virus particles and ICAM-5 in lipid rafts. Antiviral Res 2020; 176: 104752.
[http://dx.doi.org/10.1016/j.antiviral.2020.104752] [PMID: 32101770]
[60]
Rong X, Ji Y, Zhu X, et al. Neuroprotective effect of insulin-loaded chitosan nanoparticles/PLGA-PEG-PLGA hydrogel on diabetic retinopathy in rats. Int J Nanomedicine 2018; 14: 45-55.
[http://dx.doi.org/10.2147/IJN.S184574] [PMID: 30587984]
[61]
Pan H, Fu C, Huang L, et al. Anti-obesity effect of chitosan oligosaccharide capsules (COSCs) in Obese rats by ameliorating leptin resistance and adipogenesis. Mar Drugs 2018; 16(6): 198.
[http://dx.doi.org/10.3390/md16060198] [PMID: 29874843]
[62]
Liu SH, Cai FY, Chiang MT. Long-term feeding of chitosan ameliorates glucose and lipid metabolism in a high-fructose-diet-impaired rat model of glucose tolerance. Mar Drugs 2015; 13(12): 7302-13.
[http://dx.doi.org/10.3390/md13127067] [PMID: 26690452]
[63]
Kalpana N, Shailendra KS, Dina NM. Chitosan nanoparticles: A promising system for drug delivery. Chem Pharm Bull 2013; 11(3): 51-66.
[64]
Di Santo MC. DA CL, Domínguez RAP, Alaimo A, Pérez OE. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications - A review. Biomed Pharmacother 2021; 142: 111970.
[65]
Szymańska E, Katarzyna W. Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Mar Drugs 2015; 13(4): 1819-46.
[66]
Jayakumar R, Menon D, Manzoor K, Nair SV. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr Polym 2010; 82(2): 227-32.
[67]
Flexner C. Dual protease inhibitor therapy in HIV-infected patients: Pharmacologic rationale and clinical benefits. Annu Rev Pharmacol Toxicol 2000; 40(1): 649-74.
[68]
Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM. Evaluation of chitosan nanoformulations as potent anti-HIV therapeutic systems. Biochim Biophys Acta, Gen Subj 2014; 1840(1): 476-84.
[http://dx.doi.org/10.1016/j.bbagen.2013.10.002] [PMID: 24121104]
[69]
Hassan H, Adam SK, Othman F, Shamsuddin AF. Antiviral nanodelivery systems: Current trends in acyclovir administration. J Nanomater 2016; 2016: 4591634.
[70]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 2013; 12(2): 265-73.
[71]
Nn R, Natrajan R, Kumar R, Selvaraj S. Acyclovir-loaded chitosan nanoparticles for ocular delivery. Asian J Pharm 2010; 4.
[72]
Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther 2011; 9(7): 857-79.
[http://dx.doi.org/10.1586/eri.11.59] [PMID: 21810057]
[73]
Tang H, Zhang P, Kieft TL, et al. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomater 2010; 6(7): 2562-71.
[http://dx.doi.org/10.1016/j.actbio.2010.01.002] [PMID: 20060936]
[74]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[75]
Xu G, Huang X, Qiu L, Wu J, Hu Y. Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Asia Pac J Clin Nutr 2007; 16 (Suppl. 1): 313-7.
[PMID: 17392126]
[76]
Hayashi K, Ito M. Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol Pharm Bull 2002; 25(2): 188-92.
[http://dx.doi.org/10.1248/bpb.25.188] [PMID: 11853163]
[77]
Chandy T, Rao GHR, Wilson RF, Das GS. Delivery of LMW heparin via surface coated chitosan/peg-alginate microspheres prevents thrombosis. Drug Deliv 2002; 9(2): 87-96.
[http://dx.doi.org/10.1080/10426500290095584] [PMID: 12055036]
[78]
Sinha VR, Singla AK, Wadhawan S, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004; 274(1-2): 1-33.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.026] [PMID: 15072779]
[79]
Goeijenbier M, van Wissen M, van de Weg C, et al. Review: Viral infections and mechanisms of thrombosis and bleeding. J Med Virol 2012; 84(10): 1680-96.
[http://dx.doi.org/10.1002/jmv.23354] [PMID: 22930518]
[80]
Sharma S, Swetha KL, Roy A. Chitosan-Chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds. Int J Biol Macromol 2019; 132: 97-108.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.186] [PMID: 30926509]
[81]
Necas J, Bartosikova L. Carrageenan: A review. Vet Med 2013; 58(4): 187-205.
[http://dx.doi.org/10.17221/6758-VETMED]
[82]
Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Curr Pharm Des 2019; 25(11): 1172-86.
[http://dx.doi.org/10.2174/1381612825666190425190754] [PMID: 31465278]
[83]
Leibbrandt A, Meier C, König-Schuster M, et al. Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS One 2010; 5(12): e14320.
[http://dx.doi.org/10.1371/journal.pone.0014320] [PMID: 21179403]
[84]
Ludwig M, Enzenhofer E, Schneider S, et al. Efficacy of a carrageenan nasal spray in patients with common cold: A randomized controlled trial. Respir Res 2013; 14(1): 124.
[http://dx.doi.org/10.1186/1465-9921-14-124] [PMID: 24219370]
[85]
Morokutti-Kurz M, Fröba M, Graf P, et al. Iota-carrageenan neutralizes SARS-CoV-2 and inhibits viral replication in vitro. PLoS One 2021; 16(2): e0237480.
[http://dx.doi.org/10.1371/journal.pone.0237480] [PMID: 33596218]
[86]
Song S, Peng H, Wang Q, et al. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct 2020; 11(9): 7415-20.
[http://dx.doi.org/10.1039/D0FO02017F] [PMID: 32966484]
[87]
Grice ID, Mariottini GL. Glycans with antiviral activity from marine organisms. Results Probl Cell Differ 2018; 65: 439-75.
[http://dx.doi.org/10.1007/978-3-319-92486-1_20] [PMID: 30083931]
[88]
Girond S, Crance JM, Van Cuyck-Gandre H, Renaudet J, Deloince R. Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Res Virol 1991; 142(4): 261-70.
[http://dx.doi.org/10.1016/0923-2516(91)90011-Q] [PMID: 1665574]
[89]
Pacheco-Quito EM, Ruiz-Caro R, Rubio J, Tamayo A, Veiga MD. Carrageenan-based acyclovir mucoadhesive vaginal tablets for prevention of genital herpes. Mar Drugs 2020; 18(5): 249.
[http://dx.doi.org/10.3390/md18050249] [PMID: 32403219]
[90]
Vlieghe P, Clerc T, Pannecouque C, et al. Synthesis of new covalently bound kappa-carrageenan-AZT conjugates with improved anti-HIV activities. J Med Chem 2002; 45(6): 1275-83.
[http://dx.doi.org/10.1021/jm010969d] [PMID: 11881996]
[91]
Liu F, Duan G, Yang H. Recent advances in exploiting carrageenans as a versatile functional material for promising biomedical applications. Int J Biol Macromol 2023; 235: 123787.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123787] [PMID: 36858089]
[92]
Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H. Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J 2008; 5(1): 107.
[http://dx.doi.org/10.1186/1743-422X-5-107] [PMID: 18817582]
[93]
Stiles J, Guptill-Yoran L, Moore GE, Pogranichniy RM. Effects of lambda-carrageenan on in vitro replication of feline herpesvirus and on experimentally induced herpetic conjunctivitis in cats. Invest Ophthalmol Vis Sci 2008; 49(4): 1496-501.
[http://dx.doi.org/10.1167/iovs.07-1245] [PMID: 18385068]
[94]
Morokutti-Kurz M, König-Schuster M, Koller C, et al. The intranasal application of zanamivir and carrageenan is synergistically active against influenza a virus in the murine model. PLoS One 2015; 10(6): e0128794.
[http://dx.doi.org/10.1371/journal.pone.0128794] [PMID: 26053018]
[95]
Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2006; 2(7): e69.
[http://dx.doi.org/10.1371/journal.ppat.0020069] [PMID: 16839203]
[96]
Trichet V. Nutrition and immunity: An update. Aquacult Res 2010; 41(3): 356-72.
[97]
Wang W, Zhang P, Hao C, Zhang XE, Cui ZQ, Guan HS. In vitro inhibitory effect of carrageenan oligosaccharide on influenza A H1N1 virus. Antiviral Res 2011; 92(2): 237-46.
[http://dx.doi.org/10.1016/j.antiviral.2011.08.010] [PMID: 21867732]
[98]
Kanagalingam J, Pang JJIPHJ. Cellular and clinical efficacy of iota carrageenan against viruses associated with the common cold. Int Public Health J 2021; 13(1): 9-18.
[99]
Koenighofer M, Lion T, Bodenteich A, et al. Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials. Multidiscip Respir Med 2014; 9(1): 57.
[http://dx.doi.org/10.1186/2049-6958-9-57] [PMID: 25411637]
[100]
Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterization of COVID-19 Patient Sera. Cell 2020; 182(1): 59-72.e15.
[http://dx.doi.org/10.1016/j.cell.2020.05.032] [PMID: 32492406]
[101]
Cardoso S, Pereira O, Seca A, Pinto D, Silva A. Seaweeds as preventive agents for cardiovascular diseases: From nutrients to functional foods. Mar Drugs 2015; 13(11): 6838-65.
[http://dx.doi.org/10.3390/md13116838] [PMID: 26569268]
[102]
Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska BJM. Modification of alginates to modulate their physic-chemical properties and obtain biomaterials with different functional properties. Molecules 2021; 26(23): 7264.
[http://dx.doi.org/10.3390/molecules26237264]
[103]
Manzano V, Pacho M, Tasqué J, D'Accorso N. Hydrogels, their chemistry, and applications. In: 2019; pp. 89-140.
[http://dx.doi.org/10.1201/9780429023439-3]
[104]
Pietropaolo V, Seganti L, Marchetti M, Sinibaldi L, Orsi N, Nicoletti R. Effect of natural and semisynthetic polymers on rabies virus infection in CER cells. Res Virol 1993; 144(2): 151-8.
[http://dx.doi.org/10.1016/S0923-2516(06)80023-3] [PMID: 8511399]
[105]
Joshy KS, Susan MA, Snigdha S, Nandakumar K, Laly AP, Sabu T. Encapsulation of zidovudine in PF-68 coated alginate conjugate nanoparticles for anti-HIV drug delivery. Int J Biol Macromol 2018; 107(Pt A): 929-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.078]
[106]
Lu X, Qin L, Guo M, et al. A novel alginate from Sargassum seaweed promotes diabetic wound healing by regulating oxidative stress and angiogenesis. Carbohydr Polym 2022; 289: 119437.
[http://dx.doi.org/10.1016/j.carbpol.2022.119437] [PMID: 35483850]
[107]
Dehghan S, Kheiri MT, Abnous K, Eskandari M, Tafaghodi M. Preparation, characterization and immunological evaluation of alginate nanoparticles loaded with whole inactivated influenza virus: Dry powder formulation for nasal immunization in rabbits. Microb Pathog 2018; 115: 74-85.
[http://dx.doi.org/10.1016/j.micpath.2017.12.011] [PMID: 29223454]
[108]
Xu C, Qiao M, Huo X, Liao Z, Su J. An oral microencapsulated vaccine loaded by sodium alginate effectively enhances protection against gcrv infection in grass carp (Ctenopharyngodon idella). Front Immunol 2022; 13: 848958.
[http://dx.doi.org/10.3389/fimmu.2022.848958] [PMID: 35401526]
[109]
Sinha S, Astani A, Ghosh T, Schnitzler P, Ray B. Polysaccharides from Sargassum tenerrimum: Structural features, chemical modification and anti-viral activity. Phytochemistry 2010; 71(2-3): 235-42.
[http://dx.doi.org/10.1016/j.phytochem.2009.10.014] [PMID: 19931103]
[110]
Meiyu G, Fuchuan L, Xianliang X, Jing L, Zuowei Y, Huashi G. The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entryInteraction between SPMG and HIV-1 rgp120 and CD4 molecule. Antiviral Res 2003; 59(2): 127-35.
[http://dx.doi.org/10.1016/S0166-3542(03)00068-8] [PMID: 12895696]
[111]
Xin X-l, Geng M, Guan H. Study on the mechanism of inhibitory action of 911 on replication of HIV-1 in vitro. China Marine Drugs 2000; 19: 15-8.
[112]
Chen R, Wang T, Song J, et al. Antiviral drug delivery system for enhanced bioactivity, better metabolism and pharmacokinetic characteristics. Int J Nanomedicine 2021; 16: 4959.
[113]
Ahmad A, Mubarak NM, Jannat FT, et al. A critical review on the synthesis of natural sodium alginate based composite materials: An innovative biological polymer for biomedical delivery applications. Processes 2021; 9(1): 137.
[http://dx.doi.org/10.3390/pr9010137]
[114]
Ararath D, Velmurugan S. Formulation and evaluation of nevirapine mucoadhesive microspheres. Int J Pharm Pharm Sci 2015; 7: 342-8.
[115]
Vaithianathan S, Haidar SH, Zhang X, et al. Effect of common excipients on the oral drug absorption of biopharmaceutics classification system class 3 drugs cimetidine and acyclovir. J Pharm Sci 2016; 105(2): 996-1005.
[116]
Jana S, Sharma R, Maiti S, Sen KK. Interpenetrating hydrogels of O -carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir. Int J Biol Macromol 2016; 92: 1034-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.017] [PMID: 27514441]
[117]
El--Sikaily A. Helal M, Saad A. Enhancement of immune tolerance of COVID-19 patients might be achieved with alginate supplemented therapy. J Cancer Biomedical Res 2020; 4: 21-6.
[118]
Fernandez CE, Franz CK, Ko JH, et al. Imaging review of peripheral nerve injuries in patients with COVID-19. Radiology 2021; 298(3): E117-30.
[http://dx.doi.org/10.1148/radiol.2020203116] [PMID: 33258748]
[119]
Hashimoto T, Suzuki Y, Suzuki K, Nakashima T, Tanihara M, Ide C. Review Peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds. J Mater Sci Mater Med 2005; 16(6): 503-9.
[http://dx.doi.org/10.1007/s10856-005-0524-1] [PMID: 15928864]
[120]
Kataoka K, Suzuki Y, Kitada M, et al. Alginate enhances elongation of early regenerating axons in spinal cord of young rats. Tissue Eng 2004; 10(3-4): 493-504.
[http://dx.doi.org/10.1089/107632704323061852] [PMID: 15165466]
[121]
Cai Q, Huang D, Yu H, et al. COVID-19: Abnormal liver function tests. J Hepatol 2020; 73(3): 566-74.
[http://dx.doi.org/10.1016/j.jhep.2020.04.006] [PMID: 32298767]
[122]
Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S. Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 2000; 67(3): 344-53.
[http://dx.doi.org/10.1002/(SICI)1097-0290(20000205)67:3<344:AID-BIT11>3.0.CO;2-2] [PMID: 10620265]
[123]
Xia Z, Ding L, Zheng J, et al. Alginate suppresses liver fibrosis through the inhibition of nuclear Factor-κB signaling. Drug Des Devel Ther 2020; 14: 1295-305.
[http://dx.doi.org/10.2147/DDDT.S233665] [PMID: 32280199]
[124]
Lee CJ, Lin HR, Liao CL, Lin YL. Cholesterol effectively blocks entry of flavivirus. J Virol 2008; 82(13): 6470-80.
[http://dx.doi.org/10.1128/JVI.00117-08] [PMID: 18448543]
[125]
Desplanques AS, Pontes M, De Corte N, et al. Cholesterol depletion affects infectivity and stability of pseudorabies virus. Virus Res 2010; 152(1-2): 180-3.
[http://dx.doi.org/10.1016/j.virusres.2010.06.008] [PMID: 20600396]
[126]
Barman S, Nayak DP. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol 2007; 81(22): 12169-78.
[http://dx.doi.org/10.1128/JVI.00835-07] [PMID: 17855515]
[127]
Yi L, Fang J, Isik N, Chim J, Jin T. HIV gp120-induced interaction between CD4 and CCR5 requires cholesterol-rich microenvironments revealed by live cell fluorescence resonance energy transfer imaging. J Biol Chem 2006; 281(46): 35446-53.
[http://dx.doi.org/10.1074/jbc.M607302200] [PMID: 16963439]
[128]
Proto MC, Fiore D, Piscopo C, et al. Lipid homeostasis and mevalonate pathway in COVID-19: Basic concepts and potential therapeutic targets. Prog Lipid Res 2021; 82: 101099.
[http://dx.doi.org/10.1016/j.plipres.2021.101099] [PMID: 33915202]
[129]
Karginov VA. Cyclodextrin derivatives as anti-infectives. Curr Opin Pharmacol 2013; 13(5): 717-25.
[http://dx.doi.org/10.1016/j.coph.2013.08.007] [PMID: 24011515]
[130]
Jeulin H, Grancher N, Kedzierewicz F, Finance C, Le Faou AE, Venard V. in vivo antiviral activity of ribavirin/alpha-cyclodextrin complex: Evaluation on experimental measles virus encephalitis in mice. Int J Pharm 2008; 357(1-2): 148-53.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.043] [PMID: 18329830]
[131]
Chung I, Lee CK, Ha CS, Cho WJ. Syntheses of cyclodextrin-3′-azido-3′-deoxythymidine conjugates and their sulfates with improved anti-HIV activities. J Polym Sci A Polym Chem 2006; 44(1): 295-303.
[http://dx.doi.org/10.1002/pola.21101]
[132]
Piperno A, Zagami R, Cordaro A, et al. Exploring the entrapment of antiviral agents in hyaluronic acid-cyclodextrin conjugates. J Incl Phenom Macrocycl Chem 2019; 93(1-2): 33-40.
[http://dx.doi.org/10.1007/s10847-018-0829-6]
[133]
Glisoni RJ, Cuestas ML, Mathet VL, Oubiña JR, Moglioni AG, Sosnik A. Antiviral activity against the hepatitis C virus (HCV) of 1-indanone thiosemicarbazones and their inclusion complexes with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci 2012; 47(3): 596-603.
[134]
Adeoye O, Bártolo I, Conceição J, et al. Pyromellitic dianhydride crosslinked soluble cyclodextrin polymers: Synthesis, lopinavir release from sub-micron sized particles and anti-HIV-1 activity. Int J Pharm 2020; 583: 119356.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119356] [PMID: 32325245]
[135]
Tirucherai GS, Mitra AK. Effect of hydroxypropyl beta cyclodextrin complexation on aqueous solubility, stability, and corneal permeation of acyl ester prodrugs of ganciclovir. AAPS PharmSciTech 2003; 4(3): 124-35.
[http://dx.doi.org/10.1208/pt040345] [PMID: 14621977]
[136]
Lembo D, Swaminathan S, Donalisio M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int J Pharm 2013; 443(1-2): 262-72.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[137]
Marinho YYM. Preparation, physicochemical characterization, docking and antiarrhythmic effect of d-limonene and d-limonene hydroxypropyl-β-cyclodextrin complex. J Drug Deliv Sci Technol 2022; 71: 103350.
[http://dx.doi.org/10.1016/j.jddst.2022.103350]
[138]
Jicsinszky L, Martina K, Cravotto G. Cyclodextrins in the antiviral therapy. J Drug Deliv Sci Technol 2021; 64: 102589.
[http://dx.doi.org/10.1016/j.jddst.2021.102589] [PMID: 34035845]
[139]
Pedotti S, Pistarà V, Cannavà C, et al. Synthesis and physico-chemical characterization of a β-cyclodextrin conjugate for sustained release of Acyclovir. Carbohydr Polym 2015; 131: 159-67.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.071] [PMID: 26256172]
[140]
Celebioglu A, Uyar T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. Mater Sci Eng C 2021; 118: 111514.
[http://dx.doi.org/10.1016/j.msec.2020.111514] [PMID: 33255070]
[141]
Szente L, Puskás I, Sohajda T, et al. Sulfobutylether-beta-cyclodextrin-enabled antiviral remdesivir: Characterization of electrospun- and lyophilized formulations. Carbohydr Polym 2021; 264: 118011.
[http://dx.doi.org/10.1016/j.carbpol.2021.118011] [PMID: 33910715]
[142]
Nicolazzi C, Venard V, Le Faou A, Finance C. In vitro antiviral efficacy of the ganciclovir complexed with β-cyclodextrin on human cytomegalovirus clinical strains. Antiviral Res 2002; 54(2): 121-7.
[http://dx.doi.org/10.1016/S0166-3542(01)00218-2] [PMID: 12062397]
[143]
Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res 2014; 45(8): 711-29.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.020] [PMID: 25482528]
[144]
Barthelemy A, Demais V, Stancu IC, et al. Glial contribution to cyclodextrin-mediated reversal of cholesterol accumulation in murine NPC1-deficient neurons in vivo. Neurobiol Dis 2021; 158: 105469.
[http://dx.doi.org/10.1016/j.nbd.2021.105469] [PMID: 34364974]
[145]
Wu D, Wang C, Pang P, et al. The association between herpes simplex virus type 1 infection and Alzheimer's disease J Clin Neurosci 2020; 82(Pt A): 63-70.
[146]
Yao J, Ho D, Calingasan NY, Pipalia NH, Lin MT, Beal MF. Neuroprotection by cyclodextrin in cell and mouse models of Alzheimer disease. J Exp Med 2012; 209(13): 2501-13.
[http://dx.doi.org/10.1084/jem.20121239] [PMID: 23209315]
[147]
Llanos P, Contreras-Ferrat A, Georgiev T, et al. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab 2015; 308(4): E294-305.
[http://dx.doi.org/10.1152/ajpendo.00189.2014] [PMID: 25491723]
[148]
Lu W, Yang Z, Chen J, Wang D, Zhang Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr Polym 2021; 272: 118526.
[http://dx.doi.org/10.1016/j.carbpol.2021.118526] [PMID: 34420760]
[149]
Nakashima H, Yoshida O, Baba M, De Clercq E, Yamamoto N. Anti-HIV activity of dextran sulphate as determined under different experimental conditions. Antiviral Res 1989; 11(5-6): 233-46.
[http://dx.doi.org/10.1016/0166-3542(89)90033-8] [PMID: 2478075]
[150]
Yamada H, Moriishi E, Haredy AM, et al. Influenza virus neuraminidase contributes to the dextran sulfate-dependent suppressive replication of some influenza A virus strains. Antiviral Res 2012; 96(3): 344-52.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.012] [PMID: 23022352]
[151]
Ito M, Baba M, Sato A, Pauwels R, De Clercq E, Shigeta S. Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antiviral Res 1987; 7(6): 361-7.
[http://dx.doi.org/10.1016/0166-3542(87)90018-0] [PMID: 2445284]
[152]
Ueno R, Kuno S. Dextran sulphate, a potent anti-HIV agent in vitro having synergism with zidovudine. Lancet 1987; 329(8546): 1379.
[http://dx.doi.org/10.1016/S0140-6736(87)90681-7] [PMID: 2438524]
[153]
Madkhali OA, Sivagurunathan Moni S, Sultan MH, et al. Formulation and evaluation of injectable dextran sulfate sodium nanoparticles as a potent antibacterial agent. Sci Rep 2021; 11(1): 9914.
[http://dx.doi.org/10.1038/s41598-021-89330-0] [PMID: 33972626]
[154]
Mitsuya H, Looney DJ, Kuno S, Ueno R, Wong-Staal F, Broder S. Dextran sulfate suppression of viruses in the HIV family: Inhibition of virion binding to CD4+ cells. Science 1988; 240(4852): 646-9.
[http://dx.doi.org/10.1126/science.2452480] [PMID: 2452480]
[155]
Piret J, Lamontagne J, Bestman-Smith J, et al. In vitro and in vivo evaluations of sodium lauryl sulfate and dextran sulfate as microbicides against herpes simplex and human immunodeficiency viruses. J Clin Microbiol 2000; 38(1): 110-9.
[http://dx.doi.org/10.1128/JCM.38.1.110-119.2000] [PMID: 10618073]
[156]
Pancheva SN. Potentiating effect of dextran sulphate on the antiviral activity of acyclovir and BVDU in the treatment of herpetic keratitis in rabbits. Antiviral Res 1995; 26(3): A331.
[http://dx.doi.org/10.1016/0166-3542(95)94897-B]
[157]
Sullad AG, Manjeshwar LS, Aminabhavi TM. Novel semi-interpenetrating microspheres of dextran- grafted -Acrylamide and Poly(Vinyl Alcohol) for controlled release of abacavir sulfate. Ind Eng Chem Res 2011; 50(21): 11778-84.
[http://dx.doi.org/10.1021/ie2006438]
[158]
Rokhade AP, Patil SA, Aminabhavi TM. Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 2007; 67(4): 605-13.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.001]
[159]
Iba T, Levy JH. The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic thrombocytopenia. Trends Cardiovasc Med 2022; 32(1): 1-9.
[http://dx.doi.org/10.1016/j.tcm.2021.08.012] [PMID: 34455073]
[160]
Cohen H, Tudhope GR. Dextran sulphate: Use as an anticoagulant, and action in lowering serum cholesterol. BMJ 1956; 2(5000): 1023-7.
[http://dx.doi.org/10.1136/bmj.2.5000.1023] [PMID: 13364378]
[161]
Shi C, Tingting W, Li JP, et al. Comprehensive landscape of heparin therapy for COVID-19. Carbohydr Polym 2021; 254: 117232.
[http://dx.doi.org/10.1016/j.carbpol.2020.117232] [PMID: 33357843]
[162]
Ginsburg I, Fibach E. Polycations and polyanions in SARS-CoV-2 infection. Med Hypotheses 2021; 146: 110470.
[http://dx.doi.org/10.1016/j.mehy.2020.110470] [PMID: 33412501]
[163]
Kim SY, Jin W, Sood A, et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res 2020; 181: 104873.
[http://dx.doi.org/10.1016/j.antiviral.2020.104873] [PMID: 32653452]
[164]
Li J, Zhang Y, Pang H, Li SJ. Heparin interacts with the main protease of SARS-CoV-2 and inhibits its activity. Spectrochim Acta A Mol Biomol Spectrosc 2022; 267(Pt 2): 120595.
[http://dx.doi.org/10.1016/j.saa.2021.120595] [PMID: 34815178]
[165]
Belen-Apak FB, Sarialioglu F. The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med Hypotheses 2020; 142: 109743.
[http://dx.doi.org/10.1016/j.mehy.2020.109743] [PMID: 32335456]
[166]
Paiardi G, Richter S, Oreste P, Urbinati C, Rusnati M, Wade RC. The binding of heparin to spike glycoprotein inhibits SARS-CoV-2 infection by three mechanisms. J Biol Chem 2022; 298(2): 101507.
[http://dx.doi.org/10.1016/j.jbc.2021.101507] [PMID: 34929169]
[167]
Pourianfar HR, Poh CL, Fecondo J, Grollo L. In vitro evaluation of the antiviral activity of heparan sulfate mimetic compounds against Enterovirus 71. Virus Res 2012; 169(1): 22-9.
[http://dx.doi.org/10.1016/j.virusres.2012.06.025] [PMID: 22771616]
[168]
Zoepfl M, Dwivedi R, Taylor MC, Pomin VH, McVoy MA. Antiviral activities of four marine sulfated glycans against adenovirus and human cytomegalovirus. Antiviral Res 2021; 190: 105077.
[http://dx.doi.org/10.1016/j.antiviral.2021.105077] [PMID: 33864843]
[169]
Seki Y, Mizukura M, Ichimiya T, et al. O-sulfate groups of heparin are critical for inhibition of ecotropic murine leukemia virus infection by heparin. Virology 2012; 424(1): 56-66.
[http://dx.doi.org/10.1016/j.virol.2011.11.030] [PMID: 22226323]
[170]
Jones KS, Petrow-Sadowski C, Bertolette DC, Huang Y, Ruscetti FW. Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J Virol 2005; 79(20): 12692-702.
[http://dx.doi.org/10.1128/JVI.79.20.12692-12702.2005] [PMID: 16188972]
[171]
Kato D, Era S, Watanabe I, et al. Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein. Antiviral Res 2010; 88(2): 236-43.
[http://dx.doi.org/10.1016/j.antiviral.2010.09.002] [PMID: 20851716]
[172]
Mahajan P, Dass B, Radhakrishnan N. COVID-19-associated systemic thromboembolism: A case report and review of the literature. Cardiorenal Med 2020; 10(6): 462-9.
[173]
Qiu M, Huang S, Luo C, et al. Pharmacological and clinical application of heparin progress: An essential drug for modern medicine. Biomed Pharmacother 2021; 139: 111561.
[http://dx.doi.org/10.1016/j.biopha.2021.111561]
[174]
García-Ceberino PM, Faro-Míguez N, Beltrán-Ávila FJ, Fernández-Reyes D, Gallardo-Muñoz I, Guirao-Arrabal E. Point of care ultrasound (POCUS) in diagnosis of proximal deep vein thrombosis among COVID-19 hospitalized patients with a high rate of low molecular weight heparin prophylaxis. Med Clin 2021; 157(4): 172-5.
[http://dx.doi.org/10.1016/j.medcli.2021.01.012]
[175]
Costanzo L, Palumbo FP, Ardita G, Antignani PL, Arosio E, Failla G. Coagulopathy, thromboembolic complications, and the use of heparin in COVID-19 pneumonia. J Vasc Surg Venous Lymphat Disord 2020; 8(5): 711-6.
[http://dx.doi.org/10.1016/j.jvsv.2020.05.018] [PMID: 32561465]
[176]
Peverill RE. Heparin in acute coronary syndromes. Lancet 2000; 356(9229): 593-4.
[http://dx.doi.org/10.1016/S0140-6736(05)73971-4] [PMID: 10950255]
[177]
Shute JK, Calzetta L, Cardaci V, Di Toro S, Page CP. Inhaled nebulised unfractionated heparin improves lung function in moderate to very severe COPD: A pilot study. Pulm Pharmacol Ther 2018; 48: 88-96.
[178]
Kim M, Kim SR, Park J, et al. Structure and antiviral activity of a pectic polysaccharide from the root of Sanguisorba officinalis against enterovirus 71 in vitro/vivo. Carbohydr Polym 2022; 281: 119057.
[http://dx.doi.org/10.1016/j.carbpol.2021.119057] [PMID: 35074124]
[179]
Song B, Puskás I, Szente L, Hildreth JEK. Hyaluronic acid-based biocompatible supramolecular assembly for sustained release of antiretroviral drug. J Pharm Sci 2016; 105(9): 2760-9.
[http://dx.doi.org/10.1016/j.xphs.2016.01.023] [PMID: 26975245]
[180]
Feldman SC, Reynaldi S, Stortz CA, Cerezo AS, Damonte EB. Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine 1999; 6(5): 335-40.
[http://dx.doi.org/10.1016/S0944-7113(99)80055-5] [PMID: 11962540]
[181]
Hidari KIPJ, Takahashi N, Arihara M, Nagaoka M, Morita K, Suzuki T. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem Biophys Res Commun 2008; 376(1): 91-5.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.100] [PMID: 18762172]
[182]
Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int J Biol Macromol 2016; 82: 83-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.078] [PMID: 26472515]
[183]
Dore CMPG, Faustino Alves MGC, Pofírio Will LSE, et al. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr Polym 2013; 91(1): 467-75.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.075] [PMID: 23044157]
[184]
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021; 505: 108326.
[http://dx.doi.org/10.1016/j.carres.2021.108326] [PMID: 34015720]
[185]
Sun Y, Gong G, Guo Y, et al. Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera. Int J Biol Macromol 2018; 108: 314-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.016] [PMID: 29222013]
[186]
Tran TTV, Truong HB, Tran NHV, et al. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Nat Prod Res 2018; 32(19): 2291-6.
[http://dx.doi.org/10.1080/14786419.2017.1408098] [PMID: 29199449]
[187]
Zhang W, Oda T, Yu Q, Jin JO. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar Drugs 2015; 13(3): 1084-104.
[http://dx.doi.org/10.3390/md13031084] [PMID: 25706632]
[188]
Wei W, Feng L, Bao WR, et al. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J Agric Food Chem 2016; 64(4): 881-9.
[http://dx.doi.org/10.1021/acs.jafc.5b05180] [PMID: 26752248]
[189]
Tseng YH, Yang JH, Mau JL. Antioxidant properties of polysaccharides from Ganoderma tsugae. Food Chem 2008; 107(2): 732-8.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.073]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy