Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Landmark Model-based Individual Dynamic Prediction of Conversion from Mild Cognitive Impairment to Alzheimer’s Disease using Cognitive Screening

Author(s): Jing Cui, Durong Chen, Jiajia Zhang, Yao Qin, Wenlin Bai, Yifei Ma, Rong Zhang and Hongmei Yu*

Volume 20, Issue 2, 2023

Published on: 09 June, 2023

Page: [89 - 97] Pages: 9

DOI: 10.2174/1567205020666230526101524

Price: $65

Abstract

Background: Identifying individuals with mild cognitive impairment (MCI) who are at increased risk of Alzheimer’s Disease (AD) in cognitive screening is important for early diagnosis and prevention of AD.

Objective: This study aimed at proposing a screening strategy based on landmark models to provide dynamic predictive probabilities of MCI-to-AD conversion according to longitudinal neurocognitive tests.

Methods: Participants were 312 individuals who had MCI at baseline. The longitudinal neurocognitive tests were the Mini-Mental State Examination, Alzheimer Disease Assessment Scale-Cognitive 13 items, Rey Auditory Verbal Learning Test immediate, learning, and forgetting, and Functional Assessment Questionnaire. We constructed three types of landmark models and selected the optimal landmark model to dynamically predict 2-year probabilities of conversion. The dataset was randomly divided into training set and validation set at a ratio of 7:3.

Results: The FAQ, RAVLT-immediate, and RAVLT-forgetting were significant longitudinal neurocognitive tests for MCI-to-AD conversion in all three landmark models. We considered Model 3 as the final landmark model (C-index = 0.894, Brier score = 0.040) and selected Model 3c (FAQ and RAVLT-forgetting as neurocognitive tests) as the optimal landmark model (C-index = 0.898, Brier score = 0.027).

Conclusion: Our study shows that the optimal landmark model with a combination FAQ and RAVLTforgetting is feasible to identify the risk of MCI-to-AD conversion, which can be implemented in cognitive screening.

« Previous
[1]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[2]
Ezzati, A.; Zammit, A.R.; Harvey, D.J.; Habeck, C.; Hall, C.B.; Lipton, R.B. Optimizing machine learning methods to improve predictive models of Alzheimer’s Disease. J. Alzheimers Dis., 2019, 71(3), 1027-1036.
[http://dx.doi.org/10.3233/JAD-190262] [PMID: 31476152]
[3]
Wei, R.; Li, C.; Fogelson, N.; Li, L. Prediction of conversion from mild cognitive impairment to alzheimer’s disease using MRI and structural network features. Front. Aging Neurosci., 2016, 8, 76.
[http://dx.doi.org/10.3389/fnagi.2016.00076] [PMID: 27148045]
[4]
Beltrán, J.F.; Wahba, B.M.; Hose, N.; Shasha, D.; Kline, R.P. Alzheimer’s Disease Neuroimaging Initiative. Inexpensive, non-invasive biomarkers predict Alzheimer transition using machine learning analysis of the Alzheimer’s Disease Neuroimaging (ADNI) database. PLoS One, 2020, 15(7), e0235663.
[http://dx.doi.org/10.1371/journal.pone.0235663] [PMID: 32716914]
[5]
Davatzikos, C.; Bhatt, P.; Shaw, L.M.; Batmanghelich, K.N.; Trojanowski, J.Q. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging, 2011, 32(12), 2322.e19-2322.e27.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.023] [PMID: 20594615]
[6]
Wu, Y.; Zhang, X.; He, Y.; Cui, J.; Ge, X.; Han, H.; Luo, Y.; Liu, L.; Wang, X.; Yu, H. Predicting Alzheimer’s disease based on survival data and longitudinally measured performance on cognitive and functional scales. Psychiatry Res., 2020, 291, 113201.
[http://dx.doi.org/10.1016/j.psychres.2020.113201] [PMID: 32559670]
[7]
Levy, B.; Tsoy, E.; Gable, S. Developing cognitive markers of Alzheimer’s Disease for primary care: Implications for behavioral and global prevention. J. Alzheimers Dis., 2016, 54(4), 1259-1272.
[http://dx.doi.org/10.3233/JAD-160309] [PMID: 27567831]
[8]
Isik, A.T.; Soysal, P.; Kaya, D.; Usarel, C. Triple test, a diagnostic observation, can detect cognitive impairment in older adults. Psychogeriatrics, 2018, 18(2), 98-105.
[http://dx.doi.org/10.1111/psyg.12289] [PMID: 29409161]
[9]
Ewers, M.; Walsh, C.; Trojanowski, J.Q.; Shaw, L.M.; Petersen, R.C.; Jack, C.R., Jr; Feldman, H.H.; Bokde, A.L.W.; Alexander, G.E.; Scheltens, P.; Vellas, B.; Dubois, B.; Weiner, M.; Hampel, H. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol. Aging, 2012, 33(7), 1203-1214.e2.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.10.019] [PMID: 21159408]
[10]
Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; Cummings, J.L.; de Leon, M.; Feldman, H.; Ganguli, M.; Hampel, H.; Scheltens, P.; Tierney, M.C.; Whitehouse, P.; Winblad, B. Mild cognitive impairment. Lancet, 2006, 367(9518), 1262-1270.
[http://dx.doi.org/10.1016/S0140-6736(06)68542-5] [PMID: 16631882]
[11]
Wang, J.; Luo, S. Joint modeling of multiple repeated measures and survival data using multidimensional latent trait linear mixed model. Stat. Methods Med. Res., 2019, 28(10-11), 3392-3403.
[http://dx.doi.org/10.1177/0962280218802300] [PMID: 30306833]
[12]
Xue, H.; Sun, Q.; Liu, L.; Zhou, L.; Liang, R.; He, R.; Yu, H. Risk factors of transition from mild cognitive impairment to Alzheimer’s disease and death: A cohort study. Compr. Psychiatry, 2017, 78, 91-97.
[http://dx.doi.org/10.1016/j.comppsych.2017.07.003] [PMID: 28806610]
[13]
Fleisher, A.S.; Sowell, B.B.; Taylor, C.; Gamst, A.C.; Petersen, R.C.; Thal, L.J. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology, 2007, 68(19), 1588-1595.
[http://dx.doi.org/10.1212/01.wnl.0000258542.58725.4c] [PMID: 17287448]
[14]
McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; Mohs, R.C.; Morris, J.C.; Rossor, M.N.; Scheltens, P.; Carrillo, M.C.; Thies, B.; Weintraub, S.; Phelps, C.H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 263-269.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[15]
Folstein, M.F.; Folstein, S.E.; McHugh, P.R. "Mini-mental state". J. Psychiatr. Res., 1975, 12(3), 189-198.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[16]
Mohs, R.C.; Knopman, D.; Petersen, R.C.; Ferris, S.H.; Ernesto, C.; Grundman, M.; Sano, M.; Bieliauskas, L.; Geldmacher, D.; Clark, C.; Thai, L.J. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis. Assoc. Disord., 1997, 11, 13-21.
[http://dx.doi.org/10.1097/00002093-199700112-00003] [PMID: 9236948]
[17]
Vakil, E.; Blachstein, H. Rey auditory-verbal learning test: Structure analysis. J. Clin. Psychol., 1993, 49(6), 883-890.
[http://dx.doi.org/10.1002/1097-4679(199311)49:6<883:AID-JCLP2270490616>3.0.CO;2-6] [PMID: 8300877]
[18]
Mathuranath, P.S.; Ranjith, N.; Sharma, G.; Alexander, A. Qualitative aspects of learning, recall, and recognition in dementia. Ann. Indian Acad. Neurol., 2010, 13(2), 117-122.
[http://dx.doi.org/10.4103/0972-2327.64639] [PMID: 20814495]
[19]
Pfeffer, R.I.; Kurosaki, T.T.; Harrah, C.H., Jr; Chance, J.M.; Filos, S. Measurement of functional activities in older adults in the community. J. Gerontol., 1982, 37(3), 323-329.
[http://dx.doi.org/10.1093/geronj/37.3.323] [PMID: 7069156]
[20]
Hans, C. Dynamic prediction by landmarking in event history analysis. Scandinavian journal of stats, 2007, 34(1), 70-85.
[http://dx.doi.org/10.1111/j.1467-9469.2006.00529.x]
[21]
Ferrer, L.; Putter, H.; Proust-Lima, C. Individual dynamic predictions using landmarking and joint modelling: Validation of estimators and robustness assessment. Stat. Methods Med. Res., 2019, 28(12), 3649-3666.
[http://dx.doi.org/10.1177/0962280218811837] [PMID: 30463497]
[22]
Morgan, C.J. Landmark analysis: A primer. J. Nucl. Cardiol., 2019, 26(2), 391-393.
[http://dx.doi.org/10.1007/s12350-019-01624-z] [PMID: 30719655]
[23]
Raghavan, N.; Samtani, M.N.; Farnum, M.; Yang, E.; Novak, G.; Grundman, M.; Narayan, V.; DiBernardo, A. The ADAS‐Cog revisited: Novel composite scales based on ADAS‐Cog to improve efficiency in MCI and early AD trials. Alzheimers Dement., 2013, 9(1S)(Suppl.), S21-S31.
[http://dx.doi.org/10.1016/j.jalz.2012.05.2187] [PMID: 23127469]
[24]
Brown, P.J.; Devanand, D.P.; Liu, X.; Caccappolo, E. Alzheimer’s Disease Neuroimaging Initiative. Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer disease. Arch. Gen. Psychiatry, 2011, 68(6), 617-626.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.57] [PMID: 21646578]
[25]
Visser, P.J.; Verhey, F.R.; Hofman, P.A.; Scheltens, P.; Jolles, J. Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J. Neurol. Neurosurg. Psychiatry, 2002, 72(4), 491-497.
[http://dx.doi.org/10.1136/jnnp.72.4.491] [PMID: 11909909]
[26]
Beier, M.; Hughes, A.J.; Williams, M.W.; Gromisch, E.S. Brief and cost-effective tool for assessing verbal learning in multiple sclerosis: Comparison of the Rey Auditory Verbal Learning Test (RAVLT) to the California Verbal Learning Test - II (CVLT-II). J. Neurol. Sci., 2019, 400, 104-109.
[http://dx.doi.org/10.1016/j.jns.2019.03.016] [PMID: 30913522]
[27]
Islam, M.M.; Parkinson, A.; Burns, K.; Woods, M.; Yen, L. A training program for primary health care nurses on timely diagnosis and management of dementia in general practice: An evaluation study. Int. J. Nurs. Stud., 2020, 105, 103550.
[http://dx.doi.org/10.1016/j.ijnurstu.2020.103550] [PMID: 32145467]
[28]
Andrinopoulou, E.R.; Nasserinejad, K.; Szczesniak, R.; Rizopoulos, D. Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes. Stat. Methods Med. Res., 2020, 29(11), 3294-3307.
[http://dx.doi.org/10.1177/0962280220924680] [PMID: 32438854]
[29]
Suresh, K.; Taylor, J.M.G.; Spratt, D.E.; Daignault, S.; Tsodikov, A. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model. Biom. J., 2017, 59(6), 1277-1300.
[http://dx.doi.org/10.1002/bimj.201600235] [PMID: 28508545]
[30]
Rizopoulos, D.; Molenberghs, G.; Lesaffre, E.M.E.H. Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biom. J., 2017, 59(6), 1261-1276.
[http://dx.doi.org/10.1002/bimj.201600238] [PMID: 28792080]
[31]
Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E., Jr; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368, m441.
[http://dx.doi.org/10.1136/bmj.m441] [PMID: 32188600]
[32]
Riley, R.D.; Collins, G.S.; Ensor, J.; Archer, L.; Booth, S.; Mozumder, S.I.; Rutherford, M.J.; Smeden, M.; Lambert, P.C.; Snell, K.I.E. Minimum sample size calculations for external validation of a clinical prediction model with a time‐to‐event outcome. Stat. Med., 2022, 41(7), 1280-1295.
[http://dx.doi.org/10.1002/sim.9275] [PMID: 34915593]
[33]
Steyerberg, E.W.; Harrell, F.E., Jr; Borsboom, G.J.J.M.; Eijkemans, M.J.C.; Vergouwe, Y.; Habbema, J.D.F. Internal validation of predictive models. J. Clin. Epidemiol., 2001, 54(8), 774-781.
[http://dx.doi.org/10.1016/S0895-4356(01)00341-9] [PMID: 11470385]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy