Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Natural Amphibian-Derived Host Defense Peptides: Peptide Immunomodulators with Potential Therapeutic Value

Author(s): Jie Shi, Jing Wu, Guizhu Feng, Hailong Yang* and Lixian Mu*

Volume 30, Issue 7, 2023

Published on: 19 June, 2023

Page: [562 - 573] Pages: 12

DOI: 10.2174/0929866530666230525163307

Price: $65

Abstract

Due to the rapid evolution of bacterial drug resistance, anti-infective treatment has become a global problem. Therefore, there is an urgent need to develop alternative treatment strategies. Host defense peptides (HDPs) are important components of the natural immune system and are widely distributed in the animal and plant kingdoms. Amphibians, especially their skin, provide a rich source of natural HDPs encoded by genes. These HDPs exhibit not only broad-spectrum antimicrobial activity but also a wide range of immunoregulatory characteristics, including modulation of antiinflammatory and proinflammatory reactions, regulation of specific cellular functions, enhancement of immune chemotaxis, regulation of adaptive immunity, and promotion of wound healing. They also show potent therapeutic effects on infectious and inflammatory diseases caused by pathogenic microorganisms. Thus, in the current review, we summarize the extensive immunomodulatory functions of natural amphibian HDPs, as well as the challenges of clinical development and potential solutions, which have important implications for the development of new anti-infective drugs.

Graphical Abstract

[1]
Xu, X.; Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev., 2015, 115(4), 1760-1846.
[http://dx.doi.org/10.1021/cr4006704] [PMID: 25594509]
[2]
Varga, J.F.A.; Bui-Marinos, M.P.; Katzenback, B.A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol., 2018, 93128.
[http://dx.doi.org/10.3389/fimmu.2018.03128] [PMID: 30692997]
[3]
Bevins, C.L.; Zasloff, M. Peptides from frog skin. Annu. Rev. Biochem., 1990, 59(1), 395-414.
[http://dx.doi.org/10.1146/annurev.bi.59.070190.002143] [PMID: 2197979]
[4]
You, D.; Hong, J.; Rong, M.; Yu, H.; Liang, S.; Ma, Y.; Yang, H.; Wu, J.; Lin, D.; Lai, R. The first gene-encoded amphibian neurotoxin. J. Biol. Chem., 2009, 284(33), 22079-22086.
[http://dx.doi.org/10.1074/jbc.M109.013276] [PMID: 19535333]
[5]
Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides, 2014, 57, 67-77.
[http://dx.doi.org/10.1016/j.peptides.2014.04.019] [PMID: 24793775]
[6]
Cardoso, M.H.; Meneguetti, B.T.; Costa, B.O.; Buccini, D.F.; Oshiro, K.G.N.; Preza, S.L.E.; Carvalho, C.M.E.; Migliolo, L.; Franco, O.L. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int. J. Mol. Sci., 2019, 20(19), 4877.
[http://dx.doi.org/10.3390/ijms20194877] [PMID: 31581426]
[7]
Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell, 2006, 124(4), 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[8]
Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[9]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol., 2017, 55(1), 1-12.
[http://dx.doi.org/10.1007/s12275-017-6452-1] [PMID: 28035594]
[10]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[11]
Abbassi, F.; Lequin, O.; Piesse, C.; Goasdoué, N.; Foulon, T.; Nicolas, P.; Ladram, A. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J. Biol. Chem., 2010, 285(22), 16880-16892.
[http://dx.doi.org/10.1074/jbc.M109.097204] [PMID: 20308076]
[12]
Shahmiri, M.; Enciso, M.; Mechler, A. Controls and constrains of the membrane disrupting action of Aurein 1.2. Sci. Rep., 2015, 5(1), 16378.
[http://dx.doi.org/10.1038/srep16378] [PMID: 26574052]
[13]
Ferreira Cespedes, G.; Nicolas Lorenzon, E.; Festozo Vicente, E.; Mendes-Giannini, J.S.M.; Fontes, W.; de Souza Castro, M.; Maffud Cilli, E. Mechanism of action and relationship between structure and biological activity of Ctx-Ha: A new ceratotoxin-like peptide from Hypsiboas albopunctatus. Protein Pept. Lett., 2012, 19(6), 596-603.
[http://dx.doi.org/10.2174/092986612800494011] [PMID: 22519531]
[14]
Ebenhan, T.; Gheysens, O.; Kruger, H.G.; Zeevaart, J.R.; Sathekge, M.M. Antimicrobial peptides: Their role as infection-selective tracers for molecular imaging. BioMed Res. Int., 2014, 2014, 867381.
[http://dx.doi.org/10.1155/2014/867381] [PMID: 25243191]
[15]
Luisa Mangoni, M.; Di Grazia, A.; Cappiello, F.; Casciaro, B.; Luca, V. Naturally occurring peptides from Rana temporaria: antimicrobial properties and more. Curr. Top. Med. Chem., 2015, 16(1), 54-64.
[http://dx.doi.org/10.2174/1568026615666150703121403] [PMID: 26139114]
[16]
Santana, C.J.C.; Magalhães, A.C.M.; dos Santos Júnior, A.C.M.; Ricart, C.A.O.; Lima, B.D.; Álvares, A.C.M.; Freitas, S.M.; Pires, O.R., Jr; Fontes, W.; Castro, M.S. Figainin 1, a novel amphibian skin peptide with antimicrobial and antiproliferative properties. Antibiotics, 2020, 9(9), 625.
[http://dx.doi.org/10.3390/antibiotics9090625] [PMID: 32967114]
[17]
Song, X.; Pan, H.; Wang, H.; Liao, X.; Sun, D.; Xu, K.; Chen, T.; Zhang, X.; Wu, M.; Wu, D.; Gao, Y. Identification of new dermaseptins with self-assembly tendency: membrane disruption, biofilm eradication, and infected wound healing efficacy. Acta Biomater., 2020, 109, 208-219.
[http://dx.doi.org/10.1016/j.actbio.2020.03.024] [PMID: 32276085]
[18]
Shi, Y.; Li, C.; Wang, M.; Chen, Z.; Luo, Y.; Xia, X.; Song, Y.; Sun, Y.; Zhang, A.M. Cathelicidin-DM is an antimicrobial peptide from Duttaphrynus melanostictus and has wound-healing therapeutic potential. ACS Omega, 2020, 5(16), 9301-9310.
[http://dx.doi.org/10.1021/acsomega.0c00189] [PMID: 32363280]
[19]
Luca, V.; Stringaro, A.; Colone, M.; Pini, A.; Mangoni, M.L. Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell. Mol. Life Sci., 2013, 70(15), 2773-2786.
[http://dx.doi.org/10.1007/s00018-013-1291-7] [PMID: 23503622]
[20]
Yuan, Y.; Zai, Y.; Xi, X.; Ma, C.; Wang, L.; Zhou, M.; Shaw, C.; Chen, T. A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(5), 849-856.
[http://dx.doi.org/10.1016/j.bbagen.2019.02.013] [PMID: 30802593]
[21]
Yeung, A.T.Y.; Gellatly, S.L.; Hancock, R.E.W. Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci., 2011, 68(13), 2161-2176.
[http://dx.doi.org/10.1007/s00018-011-0710-x] [PMID: 21573784]
[22]
Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev., 2019, 39(3), 831-859.
[http://dx.doi.org/10.1002/med.21542] [PMID: 30353555]
[23]
Chen, Z.; Zhang, D.; Li, M.; Wang, B. Costunolide ameliorates lipoteichoic acid-induced acute lung injury via attenuating MAPK signaling pathway. Int. Immunopharmacol., 2018, 61, 283-289.
[http://dx.doi.org/10.1016/j.intimp.2018.06.017] [PMID: 29906743]
[24]
Wang, J.; Qi, L.; Wu, Z.; Mei, L.; Wang, H. Different effects of lipoteichoic acid from C. butyricum and S. aureus on inflammatory responses of HT-29 cells. Int. J. Biol. Macromol., 2016, 87, 481-487.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.010] [PMID: 26968924]
[25]
Beutler, B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol. Rev., 2009, 227(1), 248-263.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00733.x] [PMID: 19120489]
[26]
Zhang, J.; Sun, Y.; Kang, Y.; Shang, D. Antimicrobial peptide temporin-1CEa isolated from frog skin secretions inhibits the proinflammatory response in lipopolysaccharide-stimulated RAW264.7 murine macrophages through the MyD88-dependent signaling pathway. Mol. Immunol., 2021, 132, 227-235.
[http://dx.doi.org/10.1016/j.molimm.2021.01.007] [PMID: 33494936]
[27]
Wang, Y.; Ouyang, J.; Luo, X.; Zhang, M.; Jiang, Y.; Zhang, F.; Zhou, J.; Wang, Y. Identification and characterization of novel bifunctional cathelicidins from the black-spotted frog (Pelophylax nigromaculata) with both anti-infective and antioxidant activities. Dev. Comp. Immunol., 2021, 116, 103928.
[http://dx.doi.org/10.1016/j.dci.2020.103928] [PMID: 33242568]
[28]
Qi, R; Qi, R-H.; Chen, Y.; Guo, Z-L.; Zhang, F.; Fang, Z.; Huang, K.; Yu, H-N.; Wang, Y-P. Identification and characterization of two novel cathelicidins from the frog Odorrana livida. Zool. Res., 2019, 40(2), 94-101.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2018.062] [PMID: 30127328]
[29]
Mu, L.; Zhou, L.; Yang, J.; Zhuang, L.; Tang, J.; Liu, T.; Wu, J.; Yang, H. The first identified cathelicidin from tree frogs possesses anti-inflammatory and partial LPS neutralization activities. Amino Acids, 2017, 49(9), 1571-1585.
[http://dx.doi.org/10.1007/s00726-017-2449-7] [PMID: 28593346]
[30]
Dong, W.; Sun, Y.; Shang, D. Interactions between chensinin-1, a natural antimicrobial peptide derived from Rana chensinensis, and lipopolysaccharide. Biopolymers, 2015, 103(12), 719-726.
[http://dx.doi.org/10.1002/bip.22737] [PMID: 26340228]
[31]
Wei, L.; Yang, J.; He, X.; Mo, G.; Hong, J.; Yan, X.; Lin, D.; Lai, R. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J. Med. Chem., 2013, 56(9), 3546-3556.
[http://dx.doi.org/10.1021/jm4004158] [PMID: 23594231]
[32]
Luo, X.; Ouyang, J.; Wang, Y.; Zhang, M.; Fu, L.; Xiao, N.; Gao, L.; Zhang, P.; Zhou, J.; Wang, Y. A novel anionic cathelicidin lacking direct antimicrobial activity but with potent anti-inflammatory and wound healing activities from the salamander Tylototriton kweichowensis. Biochimie, 2021, 191, 37-50.
[http://dx.doi.org/10.1016/j.biochi.2021.08.007] [PMID: 34438004]
[33]
Guo, C.; Li, J.; Lee, W.; Li, H.; Shen, J.; Zhang, B. A novel peptide identified from skin secretions of Bombina maxima possesses LPS-neutralizing activity. Biochem. Biophys. Res. Commun., 2021, 550, 107-112.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.131] [PMID: 33689880]
[34]
Popov, C.S.F.C.; Magalhães, B.S.; Goodfellow, B.J.; Bocca, A.L.; Pereira, D.M.; Andrade, P.B.; Valentão, P.; Pereira, P.J.B.; Rodrigues, J.E.; de Holanda Veloso, P.H.; Rezende, T.M.B. Host-defense peptides AC12, DK16 and RC11 with immunomodulatory activity isolated from Hypsiboas raniceps skin secretion. Peptides, 2019, 113, 11-21.
[http://dx.doi.org/10.1016/j.peptides.2018.12.007] [PMID: 30610885]
[35]
Pogue, J.M.; Tam, V.H. Toxicity in Patients. Adv. Exp. Med. Biol., 2019, 1145, 289-304.
[http://dx.doi.org/10.1007/978-3-030-16373-0_17] [PMID: 31364083]
[36]
Cunha, B.A. Antibiotic side effects. Med. Clin. North Am., 2001, 85(1), 149-185.
[http://dx.doi.org/10.1016/S0025-7125(05)70309-6] [PMID: 11190350]
[37]
Greber, K.E.; Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem., 2017, 17(5), 620-628.
[http://dx.doi.org/10.2174/1568026616666160713143331] [PMID: 27411322]
[38]
Tian, M.; Liu, J.; Chai, J.; Wu, J.; Xu, X. Antimicrobial and anti-inflammatory effects of a novel peptide from the skin of frog microhyla pulchra. Front. Pharmacol., 2021, 12, 783108.
[http://dx.doi.org/10.3389/fphar.2021.783108] [PMID: 34975482]
[39]
Zeng, B.; Chai, J.; Deng, Z.; Ye, T.; Chen, W.; Li, D.; Chen, X.; Chen, M.; Xu, X. Functional characterization of a novel lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide in vitro and in vivo. J. Med. Chem., 2018, 61(23), 10709-10723.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01358] [PMID: 30427189]
[40]
Chai, J.; Chen, X.; Ye, T.; Zeng, B.; Zeng, Q.; Wu, J.; Kascakova, B.; Martins, L. A.; Prudnikova, T.; Smatanova, I. K.; Kotsyfakis, M.; Xu, X. Characterization and functional analysis of cathelicidin-MH, a novel frog-derived peptide with anti-septicemic properties. Elife, 2021, 2021, 10e64411.
[http://dx.doi.org/10.7554/eLife.64411]
[41]
Ghiselli, R.; Silvestri, C.; Cirioni, O.; Kamysz, W.; Orlando, F.; Calcinari, A.; Kamysz, E.; Casteletti, S.; Rimini, M.; Tocchini, M.; Giacometti, A.; Guerrieri, M. Protective effect of citropin 1.1 and tazobactam-piperacillin against oxidative damage and lethality in mice models of gram-negative sepsis. J. Surg. Res., 2011, 171(2), 726-733.
[http://dx.doi.org/10.1016/j.jss.2010.03.055] [PMID: 20605608]
[42]
Liu, S.; Long, Q.; Xu, Y.; Wang, J.; Xu, Z.; Wang, L.; Zhou, M.; Wu, Y.; Chen, T.; Shaw, C. Assessment of antimicrobial and wound healing effects of Brevinin-2Ta against the bacterium Klebsiella pneumoniae in dermally-wounded rats. Oncotarget, 2017, 8(67), 111369-111385.
[http://dx.doi.org/10.18632/oncotarget.22797] [PMID: 29340060]
[43]
Pantic, J.M.; Mechkarska, M.; Lukic, M.L.; Conlon, J.M. Effects of tigerinin peptides on cytokine production by mouse peritoneal macrophages and spleen cells and by human peripheral blood mononuclear cells. Biochimie, 2014, 101, 83-92.
[http://dx.doi.org/10.1016/j.biochi.2013.12.022] [PMID: 24412102]
[44]
Soudi, S.; Zavaran-Hosseini, A.; Muhammad Hassan, Z.; Soleimani, M.; Jamshidi Adegani, F.; Hashemi, S.M. Comparative study of the effect of LPS on the function of BALB/c and C57BL/6 peritoneal macrophages. Cell J., 2013, 15(1), 45-54.
[PMID: 23700560]
[45]
Scorciapino, M.A.; Manzo, G.; Rinaldi, A.C.; Sanna, R.; Casu, M.; Pantic, J.M.; Lukic, M.L.; Conlon, J.M. Conformational analysis of the frog skin peptide, plasticin-L1, and its effects on production of proinflammatory cytokines by macrophages. Biochemistry, 2013, 52(41), 7231-7241.
[http://dx.doi.org/10.1021/bi4008287] [PMID: 24073891]
[46]
Conlon, J.M.; Mechkarska, M.; Pantic, J.M.; Lukic, M.L.; Coquet, L.; Leprince, J.; Nielsen, P.F.; Rinaldi, A.C. An immunomodulatory peptide related to frenatin 2 from skin secretions of the Tyrrhenian painted frog Discoglossus sardus (Alytidae). Peptides, 2013, 40, 65-71.
[http://dx.doi.org/10.1016/j.peptides.2012.12.012] [PMID: 23262358]
[47]
Chatzidakis, I.; Mamalaki, C. T cells as sources and targets of TNF: implications for immunity and autoimmunity. Curr. Dir. Autoimmun., 2010, 11, 105-118.
[http://dx.doi.org/10.1159/000289200] [PMID: 20173390]
[48]
Spadaro, M.; Forni, G. Proinflammatory cytokines, immune response and tumour progression. Novartis Found Symp, 2004, 256, 92-99.
[http://dx.doi.org/10.1002/0470856734.ch7]
[49]
Van Der Meer, J.W.M.; Vogels, M.T.; Netea, M.G.; Kullberg, B.J. Proinflammatory cytokines and treatment of disease. Ann. N. Y. Acad. Sci., 1998, 856(1), 243-251.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb08331.x] [PMID: 9917883]
[50]
Chen, H.; Wang, L.; Zeller, M.; Hornshaw, M.; Wu, Y.; Zhou, M.; Li, J.; Hang, X.; Cai, J.; Chen, T.; Shaw, C. Kassorins: Novel innate immune system peptides from skin secretions of the African hyperoliid frogs, Kassina maculata and Kassina senegalensis. Mol. Immunol., 2011, 48(4), 442-451.
[http://dx.doi.org/10.1016/j.molimm.2010.09.018] [PMID: 21040978]
[51]
Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol., 2011, 11(8), 519-531.
[http://dx.doi.org/10.1038/nri3024] [PMID: 21785456]
[52]
Yang, Y.; Wu, J.; Li, Q.; Wang, J.; Mu, L.; Hui, L.; Li, M.; Xu, W.; Yang, H.; Wei, L. A non-bactericidal cathelicidin provides prophylactic efficacy against bacterial infection by driving phagocyte influx. Elife, 2022, 2022, 11e72849.
[http://dx.doi.org/10.7554/eLife.72849]
[53]
Shi, J.; Wu, J.; Chen, Q.; Shen, Y.; Mi, K.; Yang, H.; Mu, L. A frog-derived cathelicidin peptide with dual antimicrobial and immunomodulatory activities effectively ameliorates Staphylococcus aureus -induced peritonitis in mice. ACS Infect. Dis., 2022, 8(12), 2464-2479.
[http://dx.doi.org/10.1021/acsinfecdis.2c00260] [PMID: 36378028]
[54]
Chen, Q.; Wade, D.; Kurosaka, K.; Wang, Z.Y.; Oppenheim, J.J.; Yang, D. Temporin A and related frog antimicrobial peptides use formyl peptide receptor-like 1 as a receptor to chemoattract phagocytes. J. Immunol., 2004, 173(4), 2652-2659.
[http://dx.doi.org/10.4049/jimmunol.173.4.2652] [PMID: 15294982]
[55]
Auvynet, C.; El Amri, C.; Lacombe, C.; Bruston, F.; Bourdais, J.; Nicolas, P.; Rosenstein, Y. Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9. FEBS J., 2008, 275(16), 4134-4151.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06554.x] [PMID: 18637027]
[56]
Auvynet, C.; Joanne, P.; Bourdais, J.; Nicolas, P.; Lacombe, C.; Rosenstein, Y. Dermaseptin DA4, although closely related to dermaseptin B2, presents chemotactic and Gram-negative selective bactericidal activities. FEBS J., 2009, 276(22), 6773-6786.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07392.x] [PMID: 19843179]
[57]
Lacombe, C.; Piesse, C.; Sagan, S.; Combadière, C.; Rosenstein, Y.; Auvynet, C. Pachymodulin, a new functional formyl peptide receptor 2 peptidic ligand isolated from frog skin has Janus-like immunomodulatory capacities. J. Med. Chem., 2015, 58(3), 1089-1099.
[http://dx.doi.org/10.1021/jm501018q] [PMID: 25587631]
[58]
Buckley, C.D.; Gilroy, D.W.; Serhan, C.N.; Stockinger, B.; Tak, P.P. The resolution of inflammation. Nat. Rev. Immunol., 2013, 13(1), 59-66.
[http://dx.doi.org/10.1038/nri3362] [PMID: 23197111]
[59]
Pantic, J.M.; Jovanovic, I.P.; Radosavljevic, G.D.; Gajovic, N.M.; Arsenijevic, N.N.; Conlon, J.M.; Lukic, M.L. The frog skin host-defense peptide frenatin 2.1S enhances recruitment, activation and tumoricidal capacity of NK cells. Peptides, 2017, 93, 44-50.
[http://dx.doi.org/10.1016/j.peptides.2017.05.006] [PMID: 28526557]
[60]
Pantic, J.M.; Radosavljevic, G.D.; Jovanovic, I.P.; Arsenijevic, N.N.; Conlon, J.M.; Lukic, M.L. In vivo administration of the frog skin peptide frenatin 2.1S induces immunostimulatory phenotypes of mouse mononuclear cells. Peptides, 2015, 71, 269-275.
[http://dx.doi.org/10.1016/j.peptides.2015.03.028] [PMID: 25861850]
[61]
Haas, K.M.; Poe, J.C.; Steeber, D.A.; Tedder, T.F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity, 2005, 23(1), 7-18.
[http://dx.doi.org/10.1016/j.immuni.2005.04.011] [PMID: 16039575]
[62]
Lund, F.E. Cytokine-producing B lymphocytes—key regulators of immunity. Curr. Opin. Immunol., 2008, 20(3), 332-338.
[http://dx.doi.org/10.1016/j.coi.2008.03.003] [PMID: 18417336]
[63]
Lotfi, R.; Kalmarzi, R.N.; Roghani, S.A. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol. Res., 2021, 69(3), 213-224.
[http://dx.doi.org/10.1007/s12026-021-09198-0] [PMID: 33928531]
[64]
Yuan, S.; Carter, P.; Bruzelius, M.; Vithayathil, M.; Kar, S.; Mason, A.M.; Lin, A.; Burgess, S.; Larsson, S.C. Effects of tumour necrosis factor on cardiovascular disease and cancer: A two-sample Mendelian randomization study. EBioMedicine, 2020, 59, 102956.
[http://dx.doi.org/10.1016/j.ebiom.2020.102956] [PMID: 32805626]
[65]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[66]
Wu, J.; Yang, J.; Wang, X.; Wei, L.; Mi, K.; Shen, Y.; Liu, T.; Yang, H.; Mu, L. A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem. J., 2018, 475(17), 2785-2799.
[http://dx.doi.org/10.1042/BCJ20180286] [PMID: 30045878]
[67]
He, X.; Yang, Y.; Mu, L.; Zhou, Y.; Chen, Y.; Wu, J.; Wang, Y.; Yang, H.; Li, M.; Xu, W.; Wei, L. A frog-derived immunomodulatory peptide promotes cutaneous wound healing by regulating cellular response. Front. Immunol., 2019, 10, 2421.
[http://dx.doi.org/10.3389/fimmu.2019.02421] [PMID: 31681309]
[68]
Cao, X.; Wang, Y.; Wu, C.; Li, X.; Fu, Z.; Yang, M.; Bian, W.; Wang, S.; Song, Y.; Tang, J.; Yang, X. Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Sci. Rep., 2018, 8(1), 943.
[http://dx.doi.org/10.1038/s41598-018-19486-9] [PMID: 29343843]
[69]
Liu, N.; Li, Z.; Meng, B.; Bian, W.; Li, X.; Wang, S.; Cao, X.; Song, Y.; Yang, M.; Wang, Y.; Tang, J.; Yang, X. Accelerated wound healing induced by a novel amphibian peptide (OA-FF10). Protein Pept. Lett., 2019, 26(4), 261-270.
[http://dx.doi.org/10.2174/0929866526666190124144027] [PMID: 30678611]
[70]
Bian, W.; Meng, B.; Li, X.; Wang, S.; Cao, X.; Liu, N.; Yang, M.; Tang, J.; Wang, Y.; Yang, X. OA-GL21, a novel bioactive peptide from Odorrana andersonii, accelerated the healing of skin wounds. Biosci. Rep., 2018, 38(3), BSR20180215.
[http://dx.doi.org/10.1042/BSR20180215] [PMID: 29752337]
[71]
Liu, H.; Mu, L.; Tang, J.; Shen, C.; Gao, C.; Rong, M.; Zhang, Z.; Liu, J.; Wu, X.; Yu, H.; Lai, R. A potential wound healing-promoting peptide from frog skin. Int. J. Biochem. Cell Biol., 2014, 49, 32-41.
[http://dx.doi.org/10.1016/j.biocel.2014.01.010] [PMID: 24441016]
[72]
Li, X.; Wang, Y.; Zou, Z.; Yang, M.; Wu, C.; Su, Y.; Tang, J.; Yang, X. OM-LV20, a novel peptide from odorous frog skin, accelerates wound healing in vitro and in vivo. Chem. Biol. Drug Des., 2018, 91(1), 126-136.
[http://dx.doi.org/10.1111/cbdd.13063] [PMID: 28650592]
[73]
Wang, S.; Feng, C.; Yin, S.; Feng, Z.; Tang, J.; Liu, N.; Yang, F.; Yang, X.; Wang, Y. A novel peptide from the skin of amphibian Rana limnocharis with potency to promote skin wound repair. Nat. Prod. Res., 2021, 35(20), 3514-3518.
[http://dx.doi.org/10.1080/14786419.2019.1710702] [PMID: 31960722]
[74]
Wang, Y.; Feng, Z.; Yang, M.; Zeng, L.; Qi, B.; Yin, S.; Li, B.; Li, Y.; Fu, Z.; Shu, L.; Fu, C.; Qin, P.; Meng, Y.; Li, X.; Yang, Y.; Tang, J.; Yang, X. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol. Res., 2021, 163, 105296.
[http://dx.doi.org/10.1016/j.phrs.2020.105296] [PMID: 33220421]
[75]
Mu, L.; Tang, J.; Liu, H.; Shen, C.; Rong, M.; Zhang, Z.; Lai, R. A potential wound‐healing‐promoting peptide from salamander skin. FASEB J., 2014, 28(9), 3919-3929.
[http://dx.doi.org/10.1096/fj.13-248476] [PMID: 24868009]
[76]
Liu, H.; Duan, Z.; Tang, J.; Lv, Q.; Rong, M.; Lai, R. A short peptide from frog skin accelerates diabetic wound healing. FEBS J., 2014, 281(20), 4633-4643.
[http://dx.doi.org/10.1111/febs.12968] [PMID: 25117795]
[77]
Serra, I.; Scorciapino, M. A.; Manzo, G.; Casu, M.; Rinaldi, A. C.; Attoub, S.; Mechkarska, M.; Conlon, J. M. Conformational analysis and cytotoxic activities of the frog skin host-defense peptide, hymenochirin-1Pa. Peptides, 2014, 2014, 61114-61121.
[http://dx.doi.org/10.1016/j.peptides.2014.08.017]
[78]
Mechkarska, M.; Attoub, S.; Sulaiman, S.; Pantic, J.; Lukic, M. L.; Conlon, J. M. Anti-cancer, immunoregulatory, and antimicrobial activities of the frog skin host-defense peptides pseudhymenochirin-1Pb and pseudhymenochirin-2Pa. Regul Pept, 2014, 94-195, 69-76.
[http://dx.doi.org/10.1016/j.regpep.2014.11.001]
[79]
Zhang, S.K.; Song, J.; Gong, F.; Li, S.B.; Chang, H.Y.; Xie, H.M.; Gao, H.W.; Tan, Y.X.; Ji, S.P. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci. Rep., 2016, 6(1), 27394.
[http://dx.doi.org/10.1038/srep27394] [PMID: 27271216]
[80]
Huang, Y.; He, L.; Li, G.; Zhai, N.; Jiang, H.; Chen, Y. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell, 2014, 5(8), 631-642.
[http://dx.doi.org/10.1007/s13238-014-0061-0] [PMID: 24805306]
[81]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov., 2012, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[82]
Loffredo, M.R.; Ghosh, A.; Harmouche, N.; Casciaro, B.; Luca, V.; Bortolotti, A.; Cappiello, F.; Stella, L.; Bhunia, A.; Bechinger, B.; Mangoni, M.L. Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH2 and its Diastereomer Esc(1-21)-1c: Correlation with their antipseudomonal and cytotoxic activity. Biochim. Biophys. Acta Biomembr., 2017, 1859(12), 2327-2339.
[http://dx.doi.org/10.1016/j.bbamem.2017.09.009] [PMID: 28912103]
[83]
Shang, D.; Li, X.; Sun, Y.; Wang, C.; Sun, L.; Wei, S.; Gou, M. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, temporin-1CEb from Chinese brown frog, Rana chensinensis. Chem. Biol. Drug Des., 2012, 79(5), 653-662.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01363.x] [PMID: 22348663]
[84]
Mechkarska, M.; Prajeep, M.; Radosavljevic, G.D.; Jovanovic, I.P.; Baloushi, A.A.; Sonnevend, A.; Lukic, M.L.; Conlon, J.M. An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties. Peptides, 2013, 50, 153-159.
[http://dx.doi.org/10.1016/j.peptides.2013.10.015] [PMID: 24172540]
[85]
Casciaro, B.; Moros, M.; Rivera-Fernández, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater., 2017, 47, 170-181.
[http://dx.doi.org/10.1016/j.actbio.2016.09.041] [PMID: 27693686]
[86]
Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co -glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against pseudomonas aeruginosa lung infection: In vitro and in vivo studies. Biomacromolecules, 2019, 20(5), 1876-1888.
[http://dx.doi.org/10.1021/acs.biomac.8b01829] [PMID: 31013061]
[87]
Kang, H.K.; Seo, C.H.; Luchian, T.; Park, Y. Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant Pseudomonas aeruginosa infection. Antimicrob. Agents Chemother., 2018, 62(12), e01493-18.
[http://dx.doi.org/10.1128/AAC.01493-18] [PMID: 30323036]
[88]
Zhou, X.; Shi, D.; Zhong, R.; Ye, Z.; Ma, C.; Zhou, M.; Xi, X.; Wang, L.; Chen, T.; Kwok, H.F. Bioevaluation of ranatuerin-2Pb from the Frog Skin Secretion of Rana pipiens and its Truncated Analogues. Biomolecules, 2019, 9(6), 249.
[http://dx.doi.org/10.3390/biom9060249] [PMID: 31242693]
[89]
Lipsky, B.A.; Holroyd, K.J.; Zasloff, M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin. Infect. Dis., 2008, 47(12), 1537-1545.
[http://dx.doi.org/10.1086/593185] [PMID: 18990064]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy