Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Central Countries' and Brazil's Contributions to Nanotechnology

Author(s): Jonas Farias Santos, Leydi del Rocío Silva-Calpa, Fernando Gomes de Souza* and Kaushik Pal

Volume 9, Issue 2, 2024

Published on: 23 June, 2023

Page: [109 - 147] Pages: 39

DOI: 10.2174/2405461508666230525124138

Price: $65

Abstract

Nanotechnology is a cornerstone of the scientific advances witnessed over the past few years. Nanotechnology applications are extensively broad, and an overview of the main trends worldwide can give an insight into the most researched areas and gaps to be covered. This document presents an overview of the trend topics of the three leading countries studying in this area, as well as Brazil for comparison. The data mining was made from the Scopus database and analyzed using the VOSviewer and Voyant Tools software. More than 44.000 indexed articles published from 2010 to 2020 revealed that the countries responsible for the highest number of published articles are The United States, China, and India, while Brazil is in the fifteenth position. Thematic global networks revealed that the standing-out research topics are health science, energy, wastewater treatment, and electronics. In a temporal observation, the primary topics of research are: India (2020), which was devoted to facing SARS-COV 2; Brazil (2019), which is developing promising strategies to combat cancer; China (2018), whit research on nanomedicine and triboelectric nanogenerators; the United States (2017) and the Global tendencies (2018) are also related to the development of triboelectric nanogenerators. The collected data are available on GitHub. This study demonstrates the innovative use of data-mining technologies to gain a comprehensive understanding of nanotechnology's contributions and trends and highlights the diverse priorities of nations in this cutting-edge field.

Next »
Graphical Abstract

[1]
Ran W, Walz A, Stoiber K, et al. Depositing Molecular Graphene Nanoribbons on Ag(111) by electrospray controlled ion beam deposition: Self‐assembly and on‐surface transformations. Angew Chem Int Ed 2022; 61(14): e202111816.
[http://dx.doi.org/10.1002/anie.202111816] [PMID: 35077609]
[2]
Hu X, Li F, Xia F, et al. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175: 113830.
[http://dx.doi.org/10.1016/j.addr.2021.113830] [PMID: 34139254]
[3]
Mitchell S, Qin R, Zheng N, Pérez-Ramírez J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat Nanotechnol 2021; 16(2): 129-39.
[http://dx.doi.org/10.1038/s41565-020-00799-8] [PMID: 33230317]
[4]
Xie X, Li P, Xu Y, et al. Single-molecule junction: A reliable platform for monitoring molecular physical and chemical processes. ACS Nano 2022; 16(3): 3476-505.
[http://dx.doi.org/10.1021/acsnano.1c11433] [PMID: 35179354]
[5]
Hurtado-Gallego J, Sangtarash S, Davidson R, et al. Thermoelectric enhancement in single organic radical molecules. Nano Lett 2022; 22(3): 948-53.
[http://dx.doi.org/10.1021/acs.nanolett.1c03698] [PMID: 35073099]
[6]
Soleymani-Goloujeh M, Hosseini S, Baghaban Eslaminejad M. Advanced nanotechnology approaches as emerging tools in cellular-based technologies. Adv Exp Med Biol 2023; 1409: 127-44.
[http://dx.doi.org/10.1007/5584_2022_725]
[7]
Li D, Liu Y, Wu N. Application progress of nanotechnology in regenerative medicine of diabetes mellitus. Diabetes Res Clin Pract 2022; 190: 109966.
[http://dx.doi.org/10.1016/j.diabres.2022.109966] [PMID: 35718019]
[8]
Dash S, Khan AS, Mohanty S. Impact of nanotechnology on the realm of stem cells and regenerative medicine. In: ChemNanoMat 2022; 8(9): e202200177.
[http://dx.doi.org/10.1002/cnma.202200177]
[9]
Dhanjal DS, Mehra P, Bhardwaj S, et al. Mycology-nanotechnology interface: Applications in medicine and cosmetology. Int J Nanomedicine 2022; 17: 2505-33.
[http://dx.doi.org/10.2147/IJN.S363282] [PMID: 35677678]
[10]
Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic medicine. Adv Funct Mater 2022; 32(32): 2204791.
[http://dx.doi.org/10.1002/adfm.202204791]
[11]
Abedini-Nassab R, Emami SM, Nowghabi AN. Nanotechnology and acoustics in medicine and biology. Recent Pat Nanotechnol 2022; 16(3): 198-206.
[http://dx.doi.org/10.2174/1872210515666210428134424] [PMID: 33913408]
[12]
Alzate-Correa D, Lawrence WR, Salazar-Puerta A, Higuita-Castro N, Gallego-Perez D. Nanotechnology-driven cell-based therapies in regenerative medicine. AAPS J 2022; 24(2): 43.
[http://dx.doi.org/10.1208/s12248-022-00692-3] [PMID: 35292878]
[13]
Kumar R, Ranjith S, Balu H, Bharathi DR, Chandan K, Ahmed SS. Role of nanotechnology in biomedical applications: An updated review. UPI J Pharm Med Health Sci 2022; 39-43.
[14]
Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The promise of nanotechnology in personalized medicine. J Pers Med 2022; 12(5): 673.
[http://dx.doi.org/10.3390/jpm12050673] [PMID: 35629095]
[15]
Cascallar M, Alijas S, Pensado-López A, et al. What zebrafish and nanotechnology can offer for cancer treatments in the age of personalized medicine. Cancers 2022; 14(9): 2238.
[http://dx.doi.org/10.3390/cancers14092238] [PMID: 35565373]
[16]
Sahoo U. Application of nanotechnology in agriculture in India. Int J Nat Sci 2022; 13(72): 44422-9.
[17]
Chopra H, Bibi S, Islam F, et al. Emerging trends in the delivery of resveratrol by nanostructures: Applications of nanotechnology in life sciences. J Nanomater 2022; 2022
[18]
Vijayakumar MD, Surendhar GJ, Natrayan L, Patil PP, Ram PM, Paramasivam P. Evolution and recent scenario of nanotechnology in agriculture and food industries. J Nanomater 2022; 2022
[http://dx.doi.org/10.1155/2022/1280411]
[19]
Fadiji AE, Mthiyane DMN, Onwudiwe DC, Babalola OO. Harnessing the known and unknown impact of nanotechnology on enhancing food security and reducing postharvest losses: Constraints and future prospects. Agronomy 2022; 12(7): 1657.
[http://dx.doi.org/10.3390/agronomy12071657]
[20]
Khodadadi A, Zarepour A, Abbaszadeh S, et al. Nanotechnology for SARS-CoV-2 Diagnosis. Nanofabrication 2022; 7: 1-17.
[21]
Rai R, Nalini P, Singh YP. Nanotechnology for Sustainable Horticulture Development: Opportunities and Challenges. Innov. Approaches Sustain. Dev 2022; pp. 191-210.
[22]
Xu C, Lei C, Hosseinpour S, Ivanovski S, Walsh LJ, Khademhosseini A. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. Natl Sci Rev 2022; 9(10): nwac124.
[http://dx.doi.org/10.1093/nsr/nwac124] [PMID: 36196115]
[23]
Melanie M, Miranti M, Kasmara H, et al. Nanotechnology-based bioactive antifeedant for plant protection. Nanomaterials 2022; 12(4): 630.
[http://dx.doi.org/10.3390/nano12040630] [PMID: 35214959]
[24]
Beig B, Niazi MBK, Sher F, et al. Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett 2022; 20(4): 2709-26.
[http://dx.doi.org/10.1007/s10311-022-01409-w]
[25]
Andreo J, Ettlinger R, Zaremba O, et al. Reticular nanoscience: Bottom-up assembly nanotechnology. J Am Chem Soc 2022; 144(17): 7531-50.
[http://dx.doi.org/10.1021/jacs.1c11507] [PMID: 35389641]
[26]
Afolalu SA, Ikumapayi OM, Oloyede OR, Ogedengbe TS, Ogundipe AT. Advances in nanotechnology and nanoparticles in the 21st Century-an overview. Proceedings of the International Conference on Industrial Engineering and Operations Management. Nsukka, Nigeria. 2022.
[27]
Del Grosso E, Franco E, Prins LJ, Ricci F. Dissipative DNA nanotechnology. Nat Chem 2022; 14(6): 600-13.
[http://dx.doi.org/10.1038/s41557-022-00957-6] [PMID: 35668213]
[28]
Zheng Z, Zhu S, Lv M, Gu Z, Hu H. Harnessing nanotechnology for cardiovascular disease applications-a comprehensive review based on bibliometric analysis. Nano Today 2022; 44: 101453.
[http://dx.doi.org/10.1016/j.nantod.2022.101453]
[29]
Nabizadeh Z, Nasrollahzadeh M, Daemi H, et al. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. Beilstein J Nanotechnol 2022; 13: 363-89.
[http://dx.doi.org/10.3762/bjnano.13.31] [PMID: 35529803]
[30]
Hindy OA, Goker M, Yilgor Huri P. Nanoscale agents within 3D-printed constructs: Intersection of nanotechnology and personalized bone tissue engineering. Emergent Mater 2022; pp. 1-11.
[31]
Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology strategies for plant genetic engineering. Adv Mater 2022; 34(7): 2106945.
[http://dx.doi.org/10.1002/adma.202106945] [PMID: 34699644]
[32]
Soni RA, Rizwan M, Singh S. Opportunities and potential of green chemistry in nanotechnology. Nanotechnol Environ Eng 2022; 1-13.
[33]
Pijeira MSO, Viltres H, Kozempel J, et al. Radiolabeled nanomaterials for biomedical applications: Radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022; 7(1): 8.
[http://dx.doi.org/10.1186/s41181-022-00161-4] [PMID: 35467307]
[34]
Payal Pandey P. Role of nanotechnology in electronics: A review of recent developments and patents. Recent Pat Nanotechnol 2022; 16(1): 45-66.
[http://dx.doi.org/10.2174/1872210515666210120114504] [PMID: 33494686]
[35]
Hao P, Niu L, Luo Y, Wu N, Zhao Y. Surface engineering of lipid vesicles based on DNA nanotechnology. ChemPlusChem 2022; 87(5): e202200074.
[http://dx.doi.org/10.1002/cplu.202200074] [PMID: 35604011]
[36]
Marzana M, Morsada Z, Faruk MO, et al. Nanostructured carbons: Towards soft‐bioelectronics, biosensing and theraputic applications. Chem Rec 2022; 22(7): e202100319.
[http://dx.doi.org/10.1002/tcr.202100319] [PMID: 35189015]
[37]
Sen D, Patil V, Smriti K, et al. Nanotechnology and nanomaterials in dentistry: Present and future perspectives in clinical applications. Eng Sci 2022; 2022(20): 13-22.
[38]
Bucci R, Georgilis E, Bittner AM, Gelmi ML, Clerici F. Peptide-based electrospun fibers: Current status and emerging developments. Nanomaterials 2021; 11(5): 1262.
[http://dx.doi.org/10.3390/nano11051262] [PMID: 34065019]
[39]
Wang W, Jiang Y, Thomas PJ. Structural design and physical mechanism of axial and radial sandwich resonators with piezoelectric ceramics: A review. Sensors 2021; 21(4): 1112.
[http://dx.doi.org/10.3390/s21041112] [PMID: 33562652]
[40]
El-Sheekh MM, Morsi HH, Hassan LHS, Ali SS. The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiol Res 2022; 263: 127111.
[http://dx.doi.org/10.1016/j.micres.2022.127111] [PMID: 35834891]
[41]
Ashrafizadeh SN, Seifollahi Z. Trends in biotechnology and ties with chemical engineering. J Biotechnol Biomed 2021; 4: 169-86.
[42]
Muhammad ID. A comparative study of research and development related to nanotechnology in Egypt, Nigeria and South Africa. Technol Soc 2022; 68: 101888.
[http://dx.doi.org/10.1016/j.techsoc.2022.101888]
[43]
Bodunde OP, Ikumapayi OM, Akinlabi ET, Oladapo BI, Adeoye AOM, Fatoba SO. A futuristic insight into a “nano-doctor”: A clinical review on medical diagnosis and devices using nanotechnology. Mater Today Proc 2021; 44: 1144-53.
[http://dx.doi.org/10.1016/j.matpr.2020.11.232]
[44]
Leso V, Fontana L, Iavicoli I. Biomedical nanotechnology: Occupational views. Nano Today 2019; 24: 10-4.
[http://dx.doi.org/10.1016/j.nantod.2018.11.002]
[45]
Chatterjee P, Kumar S. Current developments in nanotechnology for cancer treatment. Mater Today Proc 2022; 48: 1754-8.
[http://dx.doi.org/10.1016/j.matpr.2021.10.048]
[46]
Umapathy VR, Natarajan PM, Sumathi JC, et al. Current trends and future perspectives on dental nanomaterials-an overview of nanotechnology strategies in dentistry. J King Saud Univ Sci 2022; 102231.
[http://dx.doi.org/10.1016/j.jksus.2022.102231]
[47]
Bell IR, Schwartz GE. Enhancement of adaptive biological effects by nanotechnology preparation methods in homeopathic medicines. Homeopathy 2015; 104(2): 123-38.
[http://dx.doi.org/10.1016/j.homp.2014.11.003] [PMID: 25869977]
[48]
Kalita M, Payne MM, Bossmann SH. Glyco-nanotechnology: A biomedical perspective. Nanomedicine 2022; 42: 102542.
[http://dx.doi.org/10.1016/j.nano.2022.102542] [PMID: 35189393]
[49]
Assad H, Kaya S, Senthil Kumar P, Vo DVN, Sharma A, Kumar A. Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review. Fuel 2022; 323: 124277.
[http://dx.doi.org/10.1016/j.fuel.2022.124277]
[50]
Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol 2004; 61(3): 216-20.
[http://dx.doi.org/10.1016/j.surneu.2003.09.036] [PMID: 14984987]
[51]
Zhang X, Guo M, Huang Z, Huang Y, Wu C, Pan X. Mapping the intersection of nanotechnology and SARS-CoV-2/COVID-19: A bibliometric analysis. Infect Med 2022; 1(2): 103-12.
[http://dx.doi.org/10.1016/j.imj.2022.06.005]
[52]
Yabrov A, Okunev Y. Medicine without drugs-a new direction for application of nanotechnology. Med Hypotheses 2004; 63(1): 149-54.
[http://dx.doi.org/10.1016/j.mehy.2004.01.034] [PMID: 15193368]
[53]
Ikumapayi OM, Akinlabi ET, Adeoye AOM, Fatoba SO. Microfabrication and nanotechnology in manufacturing system-an overview. Mater Today Proc 2021; 44: 1154-62.
[http://dx.doi.org/10.1016/j.matpr.2020.11.233]
[54]
Pushparaj K, Liu WC, Meyyazhagan A, et al. Nano- from nature to nurture: A comprehensive review on facets, trends, perspectives and sustainability of nanotechnology in the food sector. Energy 2022; 240: 122732.
[http://dx.doi.org/10.1016/j.energy.2021.122732]
[55]
Datta R, Jaitawat SS. Nanotechnology-the new frontier of medicine. Med J Armed Forces India 2006; 62(3): 263-8.
[http://dx.doi.org/10.1016/S0377-1237(06)80016-X] [PMID: 27365690]
[56]
Almeida L, Felzenszwalb I, Marques M, Cruz C. Nanotechnology activities: Environmental protection regulatory issues data. Heliyon 2020; 6(10): e05303.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05303] [PMID: 33102878]
[57]
Kargozar S, Mozafari M. Nanotechnology and nanomedicine: Start small, think big. Mater Today Proc 2018; 5(7): 15492-500.
[http://dx.doi.org/10.1016/j.matpr.2018.04.155]
[58]
Wang DK, Rahimi M, Filgueira CS. Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. Nanomedicine 2021; 34: 102387.
[http://dx.doi.org/10.1016/j.nano.2021.102387] [PMID: 33753283]
[59]
Nedumal Pugazhenthi P, Selvaperumal S, Gnananaskanda Parthiban P, Nagarajan R, Naganathan GS. Nanotechnology applied for improving research in electrical domain-a survey. Mater Today Proc 2021.
[http://dx.doi.org/10.1016/j.matpr.2021.03.379]
[60]
Zarrintaj P, Ahmadi Z, Hosseinnezhad M, Saeb MR, Laheurte P, Mozafari M. Photosensitizers in medicine: Does nanotechnology make a difference? Mater Today Proc 2018; 5(7): 15836-44.
[http://dx.doi.org/10.1016/j.matpr.2018.05.082]
[61]
Shi F, Zhang Y, Yang G, Guo T, Feng N. Preparation of a micro/nanotechnology based multi-unit drug delivery system for a Chinese medicine Niuhuang Xingxiao Wan and assessment of its antitumor efficacy. Int J Pharm 2015; 492(1-2): 244-7.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.023] [PMID: 26188318]
[62]
Kamarulzaman NA, Lee KE, Siow KS, Mokhtar M. Public benefit and risk perceptions of nanotechnology development: Psychological and sociological aspects. Technol Soc 2020; 62: 101329.
[http://dx.doi.org/10.1016/j.techsoc.2020.101329]
[63]
Rathore A, Mahesh G. Public perception of nanotechnology: A contrast between developed and developing countries. Technol Soc 2021; 67: 101751.
[http://dx.doi.org/10.1016/j.techsoc.2021.101751]
[64]
Kuang L, Burgess B, Cuite CL, Tepper BJ, Hallman WK. Sensory acceptability and willingness to buy foods presented as having benefits achieved through the use of nanotechnology. Food Qual Prefer 2020; 83: 103922.
[http://dx.doi.org/10.1016/j.foodqual.2020.103922]
[65]
Behl T, Kaur I, Sehgal A, et al. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. Chemosphere 2022; 288(Pt 2): 132533.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132533] [PMID: 34655646]
[66]
Khan MI, Zahra QA, Batool F, et al. Trends in nanotechnology to improve therapeutic efficacy across special structures. OpenNano 2022; 7: 100049.
[http://dx.doi.org/10.1016/j.onano.2022.100049]
[67]
Bastani B, Fernandez D. Intellectual property rights in nanotechnology. Thin Solid Films 2002; 420-421: 472-7.
[http://dx.doi.org/10.1016/S0040-6090(02)00843-X]
[68]
Samal SS, Manohara SR. Nanoscience and nanotechnology in India: A broad perspective. Mater Today Proc 2019; 10: 151-8.
[http://dx.doi.org/10.1016/j.matpr.2019.02.200]
[69]
Tanguy NR, Rana M, Khan AA, et al. Natural lignocellulosic nanofibrils as tribonegative materials for self-powered wireless electronics. Nano Energy 2022; 98: 107337.
[http://dx.doi.org/10.1016/j.nanoen.2022.107337]
[70]
Branecky M, Aboualigaledari N, Cech V. Plasma nanotechnology for controlling chemical and physical properties of organosilicon nanocoatings. Mater Today Commun 2020; 24: 101234.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101234]
[71]
Mishra M, Dashora K, Srivastava A, Fasake VD, Nag RH. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol Environ Saf 2019; 171: 677-82.
[http://dx.doi.org/10.1016/j.ecoenv.2018.12.085] [PMID: 30658303]
[72]
Riyaz S, Nashit Rabeet M, Kumar Sharma V. Reversible code converters in QCA nanotechnology. Mater Today Proc 2022; 63: 440-6.
[http://dx.doi.org/10.1016/j.matpr.2022.03.446]
[73]
Review A. Role of nanotechnology in the world of cosmetology: A review. Mater Today Proc 2021; 45: 3302-6.
[http://dx.doi.org/10.1016/j.matpr.2020.12.638]
[74]
Böttner S, Jorgensen MR, Schmidt OG. Rolled-up nanotechnology: 3D photonic materials by design. Scr Mater 2016; 122: 119-24.
[http://dx.doi.org/10.1016/j.scriptamat.2016.04.030]
[75]
Ghosh T, Raj GVSB, Dash KK. A comprehensive review on nanotechnology based sensors for monitoring quality and shelf life of food products. Measurement. Food 2022; 7: 100049.
[http://dx.doi.org/10.1016/j.meafoo.2022.100049]
[76]
Younis SA, Kim KH, Shaheen SM, et al. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renew Sustain Energy Rev 2021; 152: 111686.
[http://dx.doi.org/10.1016/j.rser.2021.111686]
[77]
Pummakarnchana O, Tripathi N, Dutta J. Air pollution monitoring and GIS modeling: A new use of nanotechnology based solid state gas sensors. Sci Technol Adv Mater 2005; 6(3-4): 251-5.
[http://dx.doi.org/10.1016/j.stam.2005.02.003]
[78]
Ashfaq A, Khursheed N, Fatima S, Anjum Z, Younis K. Application of nanotechnology in food packaging: Pros and Cons. Journal of Agriculture and Food Research 2022; 7: 100270.
[http://dx.doi.org/10.1016/j.jafr.2022.100270]
[79]
Duncan TV. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 2011; 363(1): 1-24.
[http://dx.doi.org/10.1016/j.jcis.2011.07.017] [PMID: 21824625]
[80]
Cardoso RM, Pereira TS, Facure MHM, et al. Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sensors and Actuators Reports 2022; 4: 100068.
[http://dx.doi.org/10.1016/j.snr.2021.100068]
[81]
Comini E, Baratto C, Concina I, et al. Metal oxide nanoscience and nanotechnology for chemical sensors. Sens Actuators B Chem 2013; 179: 3-20.
[http://dx.doi.org/10.1016/j.snb.2012.10.027]
[82]
Jadhav MS, Laxmeshwar LS, Akki JF, Raikar PU, Tangod VB, Raikar US. Multimode fiber optic sensor for adulterant traces in edible oil using nanotechnology technique. Mater Today Proc 2017; 4(11): 11910-4.
[http://dx.doi.org/10.1016/j.matpr.2017.09.111]
[83]
Suma GR, Subramani NK, Sachhidananda S, Satyanarayana SV. Siddaramaiah. Nanotechnology enabled E.Coli sensors: An opto-electronic study. Mater Today Proc 2017; 4(10): 11300-4.
[http://dx.doi.org/10.1016/j.matpr.2017.09.054]
[84]
Gómez-Llorente H, Hervás P, Pérez-Esteve É, Barat JM, Fernández-Segovia I. Nanotechnology in the agri-food sector: Consumer perceptions. NanoImpact 2022; 26: 100399.
[http://dx.doi.org/10.1016/j.impact.2022.100399] [PMID: 35560291]
[85]
Kuda A, Yadav M. Opportunities and challenges of using nanomaterials and nanotechnology in architecture: An overview. Mater Today Proc 2022; 65: 2102-11.
[http://dx.doi.org/10.1016/j.matpr.2022.07.052]
[86]
Miao Y, Li P, Cheng S, et al. Preparation of multi-axial compressible 3D PVDF nanofibre/graphene wearable composites sensor sponge and application of integrated sensor. Sens Actuators A Phys 2022; 342: 113648.
[http://dx.doi.org/10.1016/j.sna.2022.113648]
[87]
Khorablou Z, Shahdost-fard F, Razmi H, Yola ML, Karimi-Maleh H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. Chemosphere 2021; 278: 130393.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130393] [PMID: 33823350]
[88]
Chausali N, Saxena J, Prasad R. Recent trends in nanotechnology applications of bio-based packaging. Journal of Agriculture and Food Research 2022; 7: 100257.
[http://dx.doi.org/10.1016/j.jafr.2021.100257]
[89]
Thanigaivel S, Priya AK, Dutta K, et al. Role of nanotechnology for the conversion of lignocellulosic biomass into biopotent energy: A biorefinery approach for waste to value-added products. Fuel 2022; 322: 124236.
[http://dx.doi.org/10.1016/j.fuel.2022.124236]
[90]
Norris A, Saafi M, Romine P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/microelectromechanical systems (MEMS) sensors. Constr Build Mater 2008; 22(2): 111-20.
[http://dx.doi.org/10.1016/j.conbuildmat.2006.05.047]
[91]
Chatterjee A, Bhattacharjee P, Roy NK, Kumbhakar P. Usage of nanotechnology based gas sensor for health assessment and maintenance of transformers by DGA method. Int J Electr Power Energy Syst 2013; 45(1): 137-41.
[http://dx.doi.org/10.1016/j.ijepes.2012.08.044]
[92]
Giotitsas C, Pazaitis A, Kostakis V. A peer-to-peer approach to energy production. Technol Soc 2015; 42: 28-38.
[http://dx.doi.org/10.1016/j.techsoc.2015.02.002]
[93]
Koç P, Gülmez A. Analysis of relationships between nanotechnology applications, mineral saving and ecological footprint: Evidence from panel fourier cointegration and causality tests. Resour Policy 2021; 74: 102373.
[http://dx.doi.org/10.1016/j.resourpol.2021.102373]
[94]
Charoen K, Prapainainar C, Sureeyatanapas P, et al. Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production. J Clean Prod 2017; 142: 1309-20.
[http://dx.doi.org/10.1016/j.jclepro.2016.09.059]
[95]
Al-Nemrawi NK, AbuAlSamen MM, Alzoubi KH. Awareness about nanotechnology and its applications in drug industry among pharmacy students. Curr Pharm Teach Learn 2020; 12(3): 274-80.
[http://dx.doi.org/10.1016/j.cptl.2019.12.003] [PMID: 32273062]
[96]
Kandi D, Parida K. CdS QDs sensitized various Bi based semiconductors: A comparison study on clean energy production under visible light irradiation. Mater Today Proc 2021; 35: 216-20.
[http://dx.doi.org/10.1016/j.matpr.2020.04.538]
[97]
Samer M, Helmy K, Morsy S, et al. Cellphone application for computing biogas, methane and electrical energy production from different agricultural wastes. Comput Electron Agric 2019; 163: 104873.
[http://dx.doi.org/10.1016/j.compag.2019.104873]
[98]
Vijayalakshmi S, Govindarajan M, Al-Mulahim N, Ahmed Z, Mahboob S. Cellulase immobilized magnetic nanoparticles for green energy production from Allamanda schottii L: Sustainability research in waste recycling. Saudi J Biol Sci 2021; 28(1): 901-10.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.034] [PMID: 33424382]
[99]
Frewer LJ, Gupta N, George S, Fischer ARH, Giles EL, Coles D. Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci Technol 2014; 40(2): 211-25.
[http://dx.doi.org/10.1016/j.tifs.2014.06.005]
[100]
Phung CD, Tran TH, Pham LM, et al. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020; 324: 413-29.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.029] [PMID: 32461115]
[101]
Mohammad AW, Lau CH, Zaharim A, Omar MZ. Elements of nanotechnology education in engineering curriculum worldwide. Procedia Soc Behav Sci 2012; 60: 405-12.
[http://dx.doi.org/10.1016/j.sbspro.2012.09.398]
[102]
Govarthanan M, Manikandan S, Subbaiya R, et al. Emerging trends and nanotechnology advances for sustainable biogas production from lignocellulosic waste biomass: A critical review. Fuel 2022; 312: 122928.
[http://dx.doi.org/10.1016/j.fuel.2021.122928]
[103]
Sagel VN, Rouwenhorst KHR, Faria JA. Green ammonia enables sustainable energy production in small island developing states: A case study on the island of Curaçao. Renew Sustain Energy Rev 2022; 161: 112381.
[http://dx.doi.org/10.1016/j.rser.2022.112381]
[104]
Bosu S, Rajamohan N. Nanotechnology approach for enhancement in biohydrogen production- review on applications of nanocatalyst and life cycle assessment. Fuel 2022; 323: 124351.
[http://dx.doi.org/10.1016/j.fuel.2022.124351]
[105]
Martinez-Duart JM, Hernandez-Moro J, Serrano-Calle S, Gomez-Calvet R, Casanova-Molina M. New frontiers in sustainable energy production and storage. Vacuum 2015; 122: 369-75.
[http://dx.doi.org/10.1016/j.vacuum.2015.05.027]
[106]
Nuortimo K, Härkönen J. Opinion mining approach to study media-image of energy production. Implications to public acceptance and market deployment. Renew Sustain Energy Rev 2018; 96: 210-7.
[http://dx.doi.org/10.1016/j.rser.2018.07.018]
[107]
Jung F, Thurn M, Krollik K, et al. Predicting the environmental emissions arising from conventional and nanotechnology-related pharmaceutical drug products. Environ Res 2021; 192: 110219.
[http://dx.doi.org/10.1016/j.envres.2020.110219] [PMID: 32980299]
[108]
Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022; 397-399: 316-49.
[http://dx.doi.org/10.1016/j.cattod.2021.08.016]
[109]
Karaca F, Öner MA. Scenarios of nanotechnology development and usage in Turkey. Technol Forecast Soc Change 2015; 91: 327-40.
[http://dx.doi.org/10.1016/j.techfore.2014.04.004]
[110]
Foley RW, Wiek A. Scenarios of nanotechnology innovation vis-à-vis sustainability challenges. Futures 2014; 64: 1-14.
[http://dx.doi.org/10.1016/j.futures.2014.09.005]
[111]
Howard DC, Wadsworth RA, Whitaker JW, Hughes N, Bunce RGH. The impact of sustainable energy production on land use in Britain through to 2050. Land Use Policy 2009; 26: S284-92.
[http://dx.doi.org/10.1016/j.landusepol.2009.09.017]
[112]
Rakkappan SR, Sivan S, Raza MA, Relkar A, Mittal H, Adak M. A facile and reliable approach to enhance the energy storage performance of 1-Decanol for sustainable and energy-efficient cold storage system. J Energy Storage 2022; 52: 104933.
[http://dx.doi.org/10.1016/j.est.2022.104933]
[113]
El-Shafai NM, Shukry M, Sharshir SW, Ramadan MS, Alhadhrami A, El-Mehasseb I. Advanced applications of the nanohybrid membrane of chitosan/nickel oxide for photocatalytic, electro-biosensor, energy storage, and supercapacitors. J Energy Storage 2022; 50: 104626.
[http://dx.doi.org/10.1016/j.est.2022.104626]
[114]
Wang Y, Zhao Y, Ren M, et al. Artificial muscle fascicles integrated with high-performance actuation properties and energy-storage function. Nano Energy 2022; 102: 107609.
[http://dx.doi.org/10.1016/j.nanoen.2022.107609]
[115]
Tang Y, Zhang H, Jin Y, Shi J, Zou R. Boosting the electrochemical energy storage and conversion performance by structural distortion in metal–organic frameworks. Chem Eng J 2022; 443: 136269.
[http://dx.doi.org/10.1016/j.cej.2022.136269]
[116]
Manuraj M, Mohan VV, Assa Aravindh S, Sarath Kumar SR, Narayanan Unni KN, Rakhi RB. Can mixed anion transition metal dichalcogenide electrodes enhance the performance of electrochemical energy storage devices? The case of MoS2xSe2(1-x). Chem Eng J 2022; 443: 136451.
[http://dx.doi.org/10.1016/j.cej.2022.136451]
[117]
Saranprabhu MK, Rajan KS. Copper-dispersed solar salt: An improved phase change material for thermal energy storage. Thermochim Acta 2022; 179302.
[http://dx.doi.org/10.1016/j.tca.2022.179302]
[118]
Priya Balmuchu S, Mangalampalli SRNK, Dobbidi P. Dielectric spectroscopy and ferroelectric studies of multiferroic bismuth ferrite modified barium titanate ceramics for energy storage capacitor applications. Mater Sci Eng B 2022; 282: 115791.
[http://dx.doi.org/10.1016/j.mseb.2022.115791]
[119]
Kuo TR, Lin LY, Lin KY, Yougbaré S. Effects of size and phase of TiO2 in poly (vinyl alcohol)-based gel electrolyte on energy storage ability of flexible capacitive supercapacitors. J Energy Storage 2022; 52: 104773.
[http://dx.doi.org/10.1016/j.est.2022.104773]
[120]
Prasad AK, Park JY, Kang SH, Ahn KS. Electrochemically co-deposited WO3-V2O5 composites for electrochromic energy storage applications. Electrochim Acta 2022; 422: 140340.
[http://dx.doi.org/10.1016/j.electacta.2022.140340]
[121]
Zhou Y, Chen J, Jiang N, Guo F, Yang B, Zhao S. Energy storage performances of La doped SrBi5Ti4FeO18 films. Chem Eng J 2022; 431: 133999.
[http://dx.doi.org/10.1016/j.cej.2021.133999]
[122]
Wu Q, Zhao Y, Zhou Y, Chen X, Wu X, Zhao S. Energy storage properties of composite films with relaxor antiferroelectric behaviors. J Alloys Compd 2021; 881: 160576.
[http://dx.doi.org/10.1016/j.jallcom.2021.160576]
[123]
Xu Y, Yang Z, Xu K, et al. Enhanced energy-storage performance in silver niobate-based dielectric ceramics sintered at low temperature. J Alloys Compd 2022; 913: 165313.
[http://dx.doi.org/10.1016/j.jallcom.2022.165313]
[124]
Qin W, Zhao M, Li Z, et al. High energy storage and thermal stability under low electric field in Bi0.5Na0.5TiO3-modified BaTiO3-Bi(Zn0.25Ta0.5)O3 ceramics. Chem Eng J 2022; 443: 136505.
[http://dx.doi.org/10.1016/j.cej.2022.136505]
[125]
Tang X, Zhou B, Ma Q, et al. High-mass-density nanographene frameworks for compact capacitive energy storage. J Power Sources 2022; 529: 231266.
[http://dx.doi.org/10.1016/j.jpowsour.2022.231266]
[126]
Gou X, Liu Y, Jiang N, et al. Non–ferroelectric intercalation structure based on Aurivillius phase Bi4Ti3O12: A research arena to achieve high energy storage performance. Ceram Int 2022; 48(7): 9534-43.
[http://dx.doi.org/10.1016/j.ceramint.2021.12.151]
[127]
Ghalambaz M, Melaibari AA, Chamkha AJ, Younis O, Sheremet M. Phase change heat transfer and energy storage in a wavy-tube thermal storage unit filled with a nano-enhanced phase change material and metal foams. J Energy Storage 2022; 54: 105277.
[http://dx.doi.org/10.1016/j.est.2022.105277]
[128]
Lokhande PE, Pakdel A, Pathan HM, et al. Prospects of MXenes in energy storage applications. Chemosphere 2022; 297: 134225.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134225] [PMID: 35259358]
[129]
Iqbal MZ, Siddique S, Shaheen M, Alam S, Alzaid M. Role of Ag and Cu as an interfacial layer on the electrochemical performance of Ni/Ag/Co3(PO4)2 and Ni/Cu/Co3(PO4)2 electrodes for hybrid energy storage devices. Ceram Int 2022; 48(11): 15686-94.
[http://dx.doi.org/10.1016/j.ceramint.2022.02.103]
[130]
Hourdakis E, Kochylas I, Botzakaki MA, Xanthopoulos NJ, Gardelis S. Si nanowire-based micro-capacitors fabricated with metal assisted chemical etching for integrated energy storage applications. Solid-State Electron 2022; 196: 108408.
[http://dx.doi.org/10.1016/j.sse.2022.108408]
[131]
Li Y, Kumar N, Hirschey J, et al. Stable salt hydrate-based thermal energy storage materials. Compos, Part B Eng 2022; 233: 109621.
[http://dx.doi.org/10.1016/j.compositesb.2022.109621]
[132]
Bahzad H, Fennell P, Shah N, Hallett J, Ali N. Techno-economic assessment for a pumped thermal energy storage integrated with open cycle gas turbine and chemical looping technology. Energy Convers Manage 2022; 255: 115332.
[http://dx.doi.org/10.1016/j.enconman.2022.115332]
[133]
Bryant ST, Straker K, Wrigley C. The rapid product design and development of a viable nanotechnology energy storage product. J Clean Prod 2020; 244: 118725.
[http://dx.doi.org/10.1016/j.jclepro.2019.118725]
[134]
Wu Q, Chen X, Zhao L, Zhao Y, Zhou Y, Zhao S. The relaxor properties and energy storage performance of Aurivillius compounds with different number of perovskite-like layers. J Alloys Compd 2022; 911: 165081.
[http://dx.doi.org/10.1016/j.jallcom.2022.165081]
[135]
Thermal energy storage system with a high-temperature nanoparticle enhanced phase change material: Charging and discharging characteristics upon integration with process preheating. J Energy Storage 2022; 55: 105295.
[http://dx.doi.org/10.1016/j.est.2022.105295]
[136]
Zhou Y, Chen J, Yang B, Zhao S. Ultrahigh energy storage performances derived from the relaxation behaviors and inhibition of the grain growth in La doped Bi5Ti3FeO15 films. Chem Eng J 2021; 424: 130435.
[http://dx.doi.org/10.1016/j.cej.2021.130435]
[137]
Saravanan A, Kumar PS, Karishma S, et al. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021; 264(Pt 2): 128580.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128580] [PMID: 33059285]
[138]
Sivasubramanian P, Chang JH, Nagendran S, Dong CD, Shkir M, Kumar M. A review on bismuth-based nanocomposites for energy and environmental applications. Chemosphere 2022; 307(Pt 1): 135652.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135652] [PMID: 35817189]
[139]
Baraneedharan P, Vadivel S. C A A, Mohamed SB, Rajendran S. Advances in preparation, mechanism and applications of various carbon materials in environmental applications: A review. Chemosphere 2022; 300: 134596.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134596] [PMID: 35436457]
[140]
Li SN, Wang R, Ho SH. Algae-mediated biosystems for metallic nanoparticle production: From synthetic mechanisms to aquatic environmental applications. J Hazard Mater 2021; 420: 126625.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126625] [PMID: 34329084]
[141]
Saravanan A, Kumar PS. Biochar derived carbonaceous material for various environmental applications: Systematic review. Environ Res 2022; 214(Pt 1): 113857.
[http://dx.doi.org/10.1016/j.envres.2022.113857] [PMID: 35835170]
[142]
Shalaby MG, Al-Hossainy AF, Abo-Zeid AM, Mobark H, Mahmoud YAG. Combined experimental thin film, DFT-TDDFT computational study, structure properties for [FeO+P2O5] bio-nanocomposite by Geotrichum candidum and Environmental application. J Mol Struct 2022; 1258: 132635.
[http://dx.doi.org/10.1016/j.molstruc.2022.132635]
[143]
Hosny M, Fawzy M, El-Borady OM, Mahmoud AED. Comparative study between Phragmites australis root and rhizome extracts for mediating gold nanoparticles synthesis and their medical and environmental applications. Adv Powder Technol 2021; 32(7): 2268-79.
[http://dx.doi.org/10.1016/j.apt.2021.05.004]
[144]
Bansal R, Verduzco R, Wong MS, Westerhoff P, Garcia-Segura S. Development of nano boron-doped diamond electrodes for environmental applications. J Electroanal Chem 2022; 907: 116028.
[http://dx.doi.org/10.1016/j.jelechem.2022.116028]
[145]
Corsi I, Winther-Nielsen M, Sethi R, et al. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 2018; 154: 237-44.
[http://dx.doi.org/10.1016/j.ecoenv.2018.02.037] [PMID: 29476973]
[146]
Bellingeri A, Scattoni M, Venditti I, Battocchio C, Protano G, Corsi I. Ecologically based methods for promoting safer nanosilver for environmental applications. J Hazard Mater 2022; 438: 129523.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129523] [PMID: 35820334]
[147]
Prabha I, Nivetha A, Sakthivel C. Effective/comparative investigation on green mediated nano copper oxide: Fabrication, characterization and environmental applications. Mater Today Proc 2022; 51: 1690-5.
[http://dx.doi.org/10.1016/j.matpr.2020.10.024]
[148]
Zhang W, Narang K, Jasso-Salcedo A, et al. Electrospun nanofiber materials for energy and environmental applications. Energy Procedia 2019; 158: 6723-4.
[http://dx.doi.org/10.1016/j.egypro.2019.01.016]
[149]
Padmanabhan NT, Thomas N, Louis J, et al. Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere 2021; 271: 129506.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129506] [PMID: 33445017]
[150]
Ezhilarasi AA, Vijaya JJ, Kennedy LJ, Kaviyarasu K. Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications. Mater Chem Phys 2020; 241: 122419.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122419]
[151]
Manikandan V, Lee NY. Green synthesis of carbon quantum dots and their environmental applications. Environ Res 2022; 212(Pt B): 113283.
[http://dx.doi.org/10.1016/j.envres.2022.113283] [PMID: 35461844]
[152]
Subramanian R, Eswaran A, Kathirason SG, et al. Green synthesized chitosan modified platinum-doped silver nanocomposite: An investigation for biomedical and environmental applications. J King Saud Univ Sci 2022; 34(7): 102220.
[http://dx.doi.org/10.1016/j.jksus.2022.102220]
[153]
Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Kaviyarasu K, Selvaraj R. Green synthesized hydroxyapatite nanoadsorbent for the adsorptive removal of AB113 dye for environmental applications. Environ Res 2022; 212(Pt B): 113274.
[http://dx.doi.org/10.1016/j.envres.2022.113274] [PMID: 35461848]
[154]
Ortega PP, Silva CC, Ramirez MA, Biasotto G, Foschini CR, Simões AZ. Multifunctional environmental applications of ZnO nanostructures synthesized by the microwave-assisted hydrothermal technique. Appl Surf Sci 2021; 542: 148723.
[http://dx.doi.org/10.1016/j.apsusc.2020.148723]
[155]
Tom AP. WITHDRAWN: Nanotechnology for sustainable water treatment-a review. Mater Today Proc 2021.
[http://dx.doi.org/10.1016/j.matpr.2021.05.629]
[156]
Chen L, Huang H, Thangavelu L, et al. Optimization and comparison of machine learning methods in estimation of carbon dioxide loading in chemical solvents for environmental applications. J Mol Liq 2022; 349: 118513.
[http://dx.doi.org/10.1016/j.molliq.2022.118513]
[157]
Maria Baroi A, Ioana Brazdis R, Fistos T, Claudiu Fierascu R. Overview on the use of apatitic materials for environmental applications. Mater Today Proc 2019; 19: 917-23.
[http://dx.doi.org/10.1016/j.matpr.2019.08.002]
[158]
George A, Magimai Antoni Raj D, Venci X, et al. Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ Res 2022; 203: 111880.
[http://dx.doi.org/10.1016/j.envres.2021.111880] [PMID: 34400161]
[159]
Chongdar S, Bhattacharjee S, Bhanja P, Bhaumik A. Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications. Chem Commun 2022; 58(21): 3429-60.
[http://dx.doi.org/10.1039/D1CC06340E] [PMID: 35234753]
[160]
Khan F, Shahid A, Zhu H, et al. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 2022; 293: 133571.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133571] [PMID: 35026203]
[161]
Rani P, Ahmed B, Singh J, et al. Silver nanostructures prepared via novel green approach as an effective platform for biological and environmental applications. Saudi J Biol Sci 2022; 29(6): 103296.
[http://dx.doi.org/10.1016/j.sjbs.2022.103296] [PMID: 35574283]
[162]
Unal MA, Bayrakdar F, Fusco L, et al. 2D MXenes with antiviral and immunomodulatory properties: A pilot study against SARS-CoV-2. Nano Today 2021; 38: 101136.
[http://dx.doi.org/10.1016/j.nantod.2021.101136] [PMID: 33753982]
[163]
De Maio F, Rosa E, Perini G, et al. 3D-printed graphene polylactic acid devices resistant to SARS-CoV-2: Sunlight-mediated sterilization of additive manufactured objects. Carbon 2022; 194: 34-41.
[http://dx.doi.org/10.1016/j.carbon.2022.03.036] [PMID: 35313599]
[164]
Khan S, Joshi K, Deshmukh S. A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts. Mater Today Proc 2022; 50: 2119-27.
[http://dx.doi.org/10.1016/j.matpr.2021.09.433]
[165]
Kamaraj AB, Sundaram M. A mathematical model to predict the porosity of nickel pillars manufactured by localized electrochemical deposition under pulsed voltage conditions. Procedia Manuf 2020; 48: 181-6.
[http://dx.doi.org/10.1016/j.promfg.2020.05.036]
[166]
Sagan A, Bryndova L, Kowalska-Bobko I, et al. A reversal of fortune: Comparison of health system responses to COVID-19 in the Visegrad group during the early phases of the pandemic. Health Policy 2022; 126(5): 446-55.
[http://dx.doi.org/10.1016/j.healthpol.2021.10.009] [PMID: 34789401]
[167]
Nair AN, Anand P, George A, Mondal N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environ Res 2022; 213: 113579.
[http://dx.doi.org/10.1016/j.envres.2022.113579] [PMID: 35714688]
[168]
Prabhakar A, Bansal I, Jaiswar A, Roy N, Verma D. A simple cost-effective microfluidic platform for rapid synthesis of diverse metal nanoparticles: A novel approach towards fighting SARS-CoV-2. Mater Today Proc 2021.
[http://dx.doi.org/10.1016/j.matpr.2021.05.624] [PMID: 34150529]
[169]
Durán Acevedo CM, Carrillo Gómez JK, Albarracín Rojas CA. Academic stress detection on university students during COVID-19 outbreak by using an electronic nose and the galvanic skin response. Biomed Signal Process Control 2021; 68: 102756.
[http://dx.doi.org/10.1016/j.bspc.2021.102756] [PMID: 36570516]
[170]
Zeng J, Duarte PA, Ma Y, et al. An impedimetric biosensor for COVID-19 serology test and modification of sensor performance via dielectrophoresis force. Biosens Bioelectron 2022; 213: 114476.
[http://dx.doi.org/10.1016/j.bios.2022.114476] [PMID: 35716642]
[171]
Xue Q, Kan X, Pan Z, et al. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens Bioelectron 2021; 186: 113286.
[http://dx.doi.org/10.1016/j.bios.2021.113286] [PMID: 33990035]
[172]
Bourguignon T, Torrano AA, Houel-Renault L, Machelart A, Brodin P, Gref R. An original methodology to study polymeric nanoparticle-macrophage interactions: Nanoparticle tracking analysis in cell culture media and quantification of the internalized objects. Int J Pharm 2021; 610: 121202.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121202] [PMID: 34666144]
[173]
Patrício Silva AL, Prata JC, Duarte AC, Barcelò D, Rocha-Santos T. An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: Pollution prevention and technological (Bio) remediation solutions. Chem Eng J 2021; 426: 131201.
[http://dx.doi.org/10.1016/j.cej.2021.131201] [PMID: 35791349]
[174]
Kumaravel V, Nair KM, Mathew S, et al. Antimicrobial TiO2 nanocomposite coatings for surfaces, dental and orthopaedic implants. Chem Eng J 2021; 416: 129071.
[http://dx.doi.org/10.1016/j.cej.2021.129071] [PMID: 33642937]
[175]
Nickels L. Antiviral boost for nanoparticles. Met Powder Rep 2020; 75(6): 330-3.
[http://dx.doi.org/10.1016/j.mprp.2020.10.002]
[176]
Jahromi AM, Solhjoo A, Ghasemi M, Khedri M, Maleki R, Tayebi L. Atomistic insight into 2D COFs as antiviral agents against SARS-CoV-2. Mater Chem Phys 2022; 276: 125382.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125382] [PMID: 34725529]
[177]
Wang D, Li K, Zhou C, et al. Bi2MoO6 and Ag nanoparticles immobilized on textile by plasma-derived innovative techniques to generate antimicrobial activity. Appl Surf Sci 2022; 585: 152591.
[http://dx.doi.org/10.1016/j.apsusc.2022.152591]
[178]
Singh S, Shauloff N, Sharma CP, Shimoni R, Arnusch CJ, Jelinek R. Carbon dot-polymer nanoporous membrane for recyclable sunlight-sterilized facemasks. J Colloid Interface Sci 2021; 592: 342-8.
[http://dx.doi.org/10.1016/j.jcis.2021.02.049] [PMID: 33677194]
[179]
Wibeck V, Eliasson K, Neset TS. Co-creation research for transformative times: Facilitating foresight capacity in view of global sustainability challenges. Environ Sci Policy 2022; 128: 290-8.
[http://dx.doi.org/10.1016/j.envsci.2021.11.023]
[180]
Karges J. Combination of chemistry and material science to overcome health problems. Biosafety and Health 2022; 4(2): 64-5.
[http://dx.doi.org/10.1016/j.bsheal.2022.03.004] [PMID: 35284813]
[181]
Pei Y, Liu W, Masokano IB, et al. Comparing Chinese children and adults with RT-PCR positive COVID-19: A systematic review. J Infect Public Health 2020; 13(10): 1424-31.
[http://dx.doi.org/10.1016/j.jiph.2020.06.036] [PMID: 32682658]
[182]
Khizar S, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Contribution of magnetic particles in molecular diagnosis of human viruses. Talanta 2022; 241: 123243.
[http://dx.doi.org/10.1016/j.talanta.2022.123243] [PMID: 35121538]
[183]
Tapia-Hernández JA, Madera-Santana TJ, Rodríguez-Félix F, Barreras-Urbina CG. Controlled and prolonged release systems of urea from micro- and nanomaterials as an alternative for developing a sustainable agriculture: A review. J Nanomater 2022; 2022: 1-14.
[http://dx.doi.org/10.1155/2022/5697803]
[184]
Rahmani AM, Mirmahaleh SYH. Coronavirus disease (COVID-19) prevention and treatment methods and effective parameters: A systematic literature review. Sustain Cities Soc 2021; 64: 102568.
[http://dx.doi.org/10.1016/j.scs.2020.102568] [PMID: 33110743]
[185]
Yüce M, Filiztekin E, Özkaya KG. COVID-19 diagnosis-a review of current methods. Biosens Bioelectron 2021; 172: 112752.
[http://dx.doi.org/10.1016/j.bios.2020.112752] [PMID: 33126180]
[186]
Ardusso M, Forero-López AD, Buzzi NS, Spetter CV, Fernández-Severini MD. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci Total Environ 2021; 763: 144365.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144365] [PMID: 33360513]
[187]
Tavilani A, Abbasi E, Kian Ara F, Darini A, Asefy Z. COVID-19 vaccines: Current evidence and considerations. Metabolism Open 2021; 12: 100124.
[http://dx.doi.org/10.1016/j.metop.2021.100124] [PMID: 34541483]
[188]
O’Connor S, Mathew S, Dave F, et al. COVID-19: Rapid prototyping and production of face shields via flat, laser-cut, and 3D-printed models. Results in Engineering 2022; 14: 100452.
[http://dx.doi.org/10.1016/j.rineng.2022.100452] [PMID: 35600085]
[189]
López ADF, Fabiani M, Lassalle VL, Spetter CV, Severini MDF. Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Mar Pollut Bull 2022; 174: 113276.
[http://dx.doi.org/10.1016/j.marpolbul.2021.113276] [PMID: 35090270]
[190]
Periasamy R. Cyclodextrin-based molecules as hosts in the formation of supramolecular complexes and their practical applications—A review. J Carbohydr Chem 2021; 40(4): 135-55.
[http://dx.doi.org/10.1080/07328303.2021.1967970]
[191]
Mignani S, Shi X, Rodrigues J, et al. Dendrimers toward translational nanotherapeutics: Concise key step analysis. Bioconjug Chem 2020; 31(9): 2060-71.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00395] [PMID: 32786368]
[192]
Suresh Kumar V, Krishnamoorthi C. Development of electrical transduction based wearable tactile sensors for human vital signs monitor: Fundamentals, methodologies and applications. Sens Actuators A Phys 2021; 321: 112582.
[http://dx.doi.org/10.1016/j.sna.2021.112582]
[193]
Cui F, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron 2020; 165: 112349.
[http://dx.doi.org/10.1016/j.bios.2020.112349] [PMID: 32510340]
[194]
Teymoorian T, Teymourian T, Kowsari E, Ramakrishna S. Direct and indirect effects of SARS-CoV-2 on wastewater treatment. J Water Process Eng 2021; 42: 102193.
[http://dx.doi.org/10.1016/j.jwpe.2021.102193] [PMID: 35592058]
[195]
Devaraj H, Malhotra R. Effect of nanomaterial shape on fabrication of conformal circuits. 48th SME North Am Manuf Res Conf NAMRC 48. 251-5.
[http://dx.doi.org/10.1016/j.promfg.2020.05.045]
[196]
Snelling WJ, Afkhami A, Turkington HL, et al. Efficacy of single pass UVC air treatment for the inactivation of coronavirus, MS2 coliphage and Staphylococcus aureus bioaerosols. J Aerosol Sci 2022; 164: 106003.
[http://dx.doi.org/10.1016/j.jaerosci.2022.106003] [PMID: 35496770]
[197]
Musselman KP, Delumeau LV, Araujo R, Wang H, MacManus-Driscoll J. Electrochemical removal of anodic aluminium oxide templates for the production of phase-pure cuprous oxide nanorods for antimicrobial surfaces. Electrochem Commun 2020; 120: 106833.
[http://dx.doi.org/10.1016/j.elecom.2020.106833] [PMID: 32963489]
[198]
Geetha K, Sivasangari D, Kim HS, Murugadoss G, Kathalingam A. Electrospun nanofibrous ZnO/PVA/PVP composite films for efficient antimicrobial face masks. Ceram Int 2022; 48(19): 29197-204.
[http://dx.doi.org/10.1016/j.ceramint.2022.05.164]
[199]
Zhang R, Xu Q, Bai S, et al. Enhancing the filtration efficiency and wearing time of disposable surgical masks using TENG technology. Nano Energy 2021; 79: 105434.
[http://dx.doi.org/10.1016/j.nanoen.2020.105434] [PMID: 33042770]
[200]
Sayibu M, Chu J, Akintunde TY, Rufai OH, Amosun TS, George-Ufot G. Environmental conditions, mobile digital culture, mobile usability, knowledge of app in COVID-19 risk mitigation: A structural equation model analysis. Smart Health 2022; 25: 100286.
[http://dx.doi.org/10.1016/j.smhl.2022.100286] [PMID: 35600252]
[201]
Rodríguez NB, Formentini G, Favi C, Marconi M. Environmental implication of personal protection equipment in the pandemic era: LCA comparison of face masks typologies. Procedia CIRP 2021; 98: 306-11.
[http://dx.doi.org/10.1016/j.procir.2021.01.108] [PMID: 33723504]
[202]
Cheng Y, Li J, Chen M, Zhang S, He R, Wang N. Environmentally friendly and antimicrobial bilayer structured fabrics with integrated interception and sterilization for personal protective mask. Separ Purif Tech 2022; 294: 121165.
[http://dx.doi.org/10.1016/j.seppur.2022.121165]
[203]
Rahman T, Khandakar A, Qiblawey Y, et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biol Med 2021; 132: 104319.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104319] [PMID: 33799220]
[204]
Forouzandeh P, O’Dowd K, Pillai SC. Face masks and respirators in the fight against the COVID-19 pandemic: An overview of the standards and testing methods. Saf Sci 2021; 133: 104995.
[http://dx.doi.org/10.1016/j.ssci.2020.104995] [PMID: 32982065]
[205]
Wu H, Hu Z, Geng Q, et al. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments. Colloids Surf A Physicochem Eng Asp 2022; 651: 129656.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129656]
[206]
Devi S, Nagaraja KV, Thanuja L, Reddy MV, Ramakrishna S. Finite element analysis over transmission region of coronavirus in CFD analysis for the respiratory cough droplets. Ain Shams Eng J 2022; 13(6): 101766.
[http://dx.doi.org/10.1016/j.asej.2022.101766]
[207]
Akinola A, Singh G, Ndjiongue A. Frequency-domain reconfigurable antenna for COVID-19 tracking. Sensors International 2021; 2: 100094.
[http://dx.doi.org/10.1016/j.sintl.2021.100094] [PMID: 34766053]
[208]
Matsuda A. Functionalities and modification of sol–gel derived SiO2–TiO2 systems for advanced coatings and powders. J Ceram Soc Jpn 2022; 130(1): 143-62.
[http://dx.doi.org/10.2109/jcersj2.21133]
[209]
Frampton D, Rampling T, Cross A, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis 2021; 21(9): 1246-56.
[http://dx.doi.org/10.1016/S1473-3099(21)00170-5] [PMID: 33857406]
[210]
Dey N, Vickram S, Thanigaivel S, et al. Graphene materials: Armor against nosocomial infections and biofilm formation-a review. Environ Res 2022; 214(Pt 2): 113867.
[http://dx.doi.org/10.1016/j.envres.2022.113867] [PMID: 35843279]
[211]
Mattioli IA, Castro KR, Macedo LJA, et al. Graphene-based hybrid electrical-electrochemical point-of-care device for serologic COVID-19 diagnosis. Biosens Bioelectron 2022; 199: 113866.
[http://dx.doi.org/10.1016/j.bios.2021.113866] [PMID: 34915214]
[212]
Cetin AE, Kocer ZA, Topkaya SN, Yazici ZA. Handheld plasmonic biosensor for virus detection in field-settings. Sens Actuators B Chem 2021; 344: 130301.
[http://dx.doi.org/10.1016/j.snb.2021.130301] [PMID: 34149185]
[213]
Prado M, Marski SRDS, Pacheco LP, et al. Hexamethyldisiloxane coating by plasma to create a superhydrophobic surface for fabric masks. J Mater Res Technol 2022; 17: 913-24.
[http://dx.doi.org/10.1016/j.jmrt.2022.01.003]
[214]
Gu J, Yagi S, Meng J, et al. High-efficiency production of core-sheath nanofiber membrane via co-axial electro-centrifugal spinning for controlled drug release. J Membr Sci 2022; 654: 120571.
[http://dx.doi.org/10.1016/j.memsci.2022.120571]
[215]
Li IW, Fan JK, Lai AC, Lo C. Home-made masks with filtration efficiency for nano-aerosols for community mitigation of COVID-19 pandemic. Public Health 2020; 188: 42-50.
[http://dx.doi.org/10.1016/j.puhe.2020.08.018] [PMID: 33075669]
[216]
Francone A, Merino S, Retolaza A, et al. Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films. Surf Interfaces 2021; 27: 101494.
[http://dx.doi.org/10.1016/j.surfin.2021.101494] [PMID: 34957348]
[217]
Du J, Yang C, Ma X, Li Q. Insights into the conformation changes of SARS-CoV-2 spike receptor-binding domain on graphene. Appl Surf Sci 2022; 578: 151934.
[http://dx.doi.org/10.1016/j.apsusc.2021.151934] [PMID: 34866721]
[218]
Giatti LL. Integrating uncertainties through participatory approaches: On the burden of cognitive exclusion and infodemic in a post-normal pandemic. Futures 2022; 136: 102888.
[http://dx.doi.org/10.1016/j.futures.2021.102888]
[219]
Jain S, Nehra M, Kumar R, et al. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 2021; 179: 113074.
[http://dx.doi.org/10.1016/j.bios.2021.113074] [PMID: 33596516]
[220]
Roberts A, Mahari S, Shahdeo D, Gandhi S. Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode. Anal Chim Acta 2021; 1188: 339207.
[http://dx.doi.org/10.1016/j.aca.2021.339207] [PMID: 34794571]
[221]
Bhubalan K, Tamothran AM, Kee SH, et al. Leveraging blockchain concepts as watermarkers of plastics for sustainable waste management in progressing circular economy. Environ Res 2022; 213: 113631.
[http://dx.doi.org/10.1016/j.envres.2022.113631] [PMID: 35714685]
[222]
Khan S, Sharifi M, Hasan A, et al. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J Adv Res 2021; 30: 171-84.
[http://dx.doi.org/10.1016/j.jare.2020.12.001] [PMID: 34026294]
[223]
Bordbar MM, Samadinia H, Hajian A, et al. Mask assistance to colorimetric sniffers for detection of Covid-19 disease using exhaled breath metabolites. Sens Actuators B Chem 2022; 369: 132379.
[http://dx.doi.org/10.1016/j.snb.2022.132379] [PMID: 35855726]
[224]
Maheswari C, Sathyabama M, Chandrasekar S, et al. Medical applications of Couroupita guianensis Abul plant and Covid-19 best Safety measure by using Mathematical Nano topological spaces. J King Saud Univ Sci 2022; 34(6): 102163.
[http://dx.doi.org/10.1016/j.jksus.2022.102163]
[225]
Rai A, Sharma VK, Jain A, et al. Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379: 109833.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2022.109833] [PMID: 35914405]
[226]
Prabhakar A, Verma D, Dhwaj A, Mukherji S. Microchannel integrated tapered and tapered-bend waveguides, for proficient, evanescent-field absorbance based, on-chip, chemical and biological sensing operations. Sens Actuators B Chem 2021; 332: 129455.
[http://dx.doi.org/10.1016/j.snb.2021.129455]
[227]
Vaquer A, Alba-Patiño A, Adrover-Jaume C, et al. Nanoparticle transfer biosensors for the non-invasive detection of SARS-CoV-2 antigens trapped in surgical face masks. Sens Actuators B Chem 2021; 345: 130347.
[http://dx.doi.org/10.1016/j.snb.2021.130347] [PMID: 34188360]
[228]
Bhutani U, Basu T, Majumdar S. Oral Drug Delivery: Conventional to long acting new-age designs. Eur J Pharm Biopharm 2021; 162: 23-42.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.008] [PMID: 33631319]
[229]
Basak M, Mitra S, Bandyopadhyay D. Pathways to community transmission of COVID–19 due to rapid evaporation of respiratory virulets. J Colloid Interface Sci 2022; 619: 229-45.
[http://dx.doi.org/10.1016/j.jcis.2022.03.098] [PMID: 35397458]
[230]
Kaushik AK, Dhau JS. Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. Applied Surface Science Advances 2022; 9: 100236.
[http://dx.doi.org/10.1016/j.apsadv.2022.100236]
[231]
Lu W, Wang X, Zhang J, et al. Plasma boosted the conversion of waste plastics into liquid fuel by a peroxymonosulfate-hydrothermal process. Chem Eng J 2022; 446: 137236.
[http://dx.doi.org/10.1016/j.cej.2022.137236]
[232]
Toscanini MA, Limeres MJ, Garrido AV, et al. Polymeric micelles and nanomedicines: Shaping the future of next generation therapeutic strategies for infectious diseases. J Drug Deliv Sci Technol 2021; 66: 102927.
[http://dx.doi.org/10.1016/j.jddst.2021.102927]
[233]
Chong CT, Fan YV, Lee CT, Klemeš JJ. Post COVID-19 ENERGY sustainability and carbon emissions neutrality. Energy 2022; 241: 122801.
[http://dx.doi.org/10.1016/j.energy.2021.122801] [PMID: 36570560]
[234]
Andrade BF, Tritany R, dos Santos C, et al. Potential of the vegetable species mandevilla moricandiana (Apocynaceae) to combat larvae of the mosquito aedes aegypti. Rev Virtual Quím 2021; 13: 1092-9.
[http://dx.doi.org/10.21577/1984-6835.20210054]
[235]
Ahmad J, Ahmad M, Usman ARA, Al-Wabel MI. Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. J Environ Manage 2021; 298: 113486.
[http://dx.doi.org/10.1016/j.jenvman.2021.113486] [PMID: 34391102]
[236]
Bachmann P, Frutos-Bencze D R. R&D and innovation efforts during the COVID-19 pandemic: The role of universities. Journal of Innovation & Knowledge 2022; 7(4): 100238.
[http://dx.doi.org/10.1016/j.jik.2022.100238]
[237]
Singh R, Kaur J, Gupta K, Singh M, Kanaoujiya R, Kaur N. Recent advances and applications of polymeric materials in healthcare sector and COVID-19 management. Mater Today Proc 2022; 62: 2878-82.
[http://dx.doi.org/10.1016/j.matpr.2022.02.472] [PMID: 35251941]
[238]
Chappell KJ, Mordant FL, Li Z, et al. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis 2021; 21(10): 1383-94.
[http://dx.doi.org/10.1016/S1473-3099(21)00200-0] [PMID: 33887208]
[239]
Ezhilan M, Suresh I, Nesakumar N. SARS-CoV, MERS-CoV and SARS-CoV-2: A diagnostic challenge. Measurement 2021; 168: 108335.
[http://dx.doi.org/10.1016/j.measurement.2020.108335] [PMID: 33519010]
[240]
Falciola L, Barbieri M. Searching and analyzing patent-relevant COVID-19 information. World Pat Inf 2022; 68: 102094.
[http://dx.doi.org/10.1016/j.wpi.2022.102094]
[241]
Scabini LFS, Ribas LC, Neiva MB, Junior AGB, Farfán AJF, Bruno OM. Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil. Physica A 2021; 564: 125498.
[http://dx.doi.org/10.1016/j.physa.2020.125498] [PMID: 33204050]
[242]
Xiong Z, Ren K, Donnelly M, You M, Xu G. Spectrally filtered photodiode pairs for on-chip ratiometric aptasensing of cytokine dynamics. Sens Actuators B Chem 2021; 345: 130330.
[http://dx.doi.org/10.1016/j.snb.2021.130330]
[243]
Esmizadeh E, Chang BP, Jubinville D, et al. Stability of nitrile and vinyl latex gloves under repeated disinfection cycles. Materials Today Sustainability 2021; 11-12: 100067.
[http://dx.doi.org/10.1016/j.mtsust.2021.100067]
[244]
Fathizadeh H, Taghizadeh S, Safari R, et al. Study presence of COVID-19 (SARS-CoV-2) in the sweat of patients infected with Covid-19. Microb Pathog 2020; 149: 104556.
[http://dx.doi.org/10.1016/j.micpath.2020.104556] [PMID: 33031898]
[245]
Miller BS, Thomas MR, Banner M, et al. Sub-picomolar lateral flow antigen detection with two-wavelength imaging of composite nanoparticles. Biosens Bioelectron 2022; 207: 114133.
[http://dx.doi.org/10.1016/j.bios.2022.114133] [PMID: 35316759]
[246]
Yasri S, Wiwanitkit V. Sustainable materials and COVID-19 detection biosensor: A brief review. Sensors International 2022; 3: 100171.
[http://dx.doi.org/10.1016/j.sintl.2022.100171] [PMID: 35284845]
[247]
Eskikaya O, Ozdemir S, Tollu G, et al. Synthesis of two different zinc oxide nanoflowers and comparison of antioxidant and photocatalytic activity. Chemosphere 2022; 306: 135389.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135389] [PMID: 35718032]
[248]
He R, Li J, Chen M, et al. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks. J Hazard Mater 2022; 428: 128239.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128239] [PMID: 35030485]
[249]
Gold ER. The fall of the innovation empire and its possible rise through open science. Res Policy 2021; 50(5): 104226.
[http://dx.doi.org/10.1016/j.respol.2021.104226] [PMID: 34083844]
[250]
Morales-Narváez E, Dincer C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens Bioelectron 2020; 163: 112274.
[http://dx.doi.org/10.1016/j.bios.2020.112274] [PMID: 32421627]
[251]
Kilicoglu O, Kara U, Inanc I. The impact of polymer additive for N95 masks on gamma-ray attenuation properties. Mater Chem Phys 2021; 260: 124093.
[http://dx.doi.org/10.1016/j.matchemphys.2020.124093] [PMID: 33262549]
[252]
Garrido PF, Calvelo M, Blanco-González A, et al. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm 2020; 588: 119689.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119689] [PMID: 32717282]
[253]
Mohapatra S, Menon NG, Mohapatra G, et al. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. Sci Total Environ 2021; 765: 142746.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142746] [PMID: 33092831]
[254]
Wang C, Zhao J, Liu L, et al. Transformation of fibrous membranes from opaque to transparent under mechanical pressing. Engineering 2021; 19: 84-92.
[http://dx.doi.org/10.1016/j.eng.2021.02.018]
[255]
Smirnov A, Smolokurov E, Osmanov M, Tarikov V. Traveler precautions relating to Covid-19 countries. Transp Res Procedia 2022; 61: 155-63.
[http://dx.doi.org/10.1016/j.trpro.2022.01.025]
[256]
Adelodun B, Kareem KY, Kumar P, et al. Understanding the impacts of the COVID-19 pandemic on sustainable agri-food system and agroecosystem decarbonization nexus: A review. J Clean Prod 2021; 318: 128451.
[http://dx.doi.org/10.1016/j.jclepro.2021.128451] [PMID: 36570877]
[257]
Alomari MA, Heffron RJ. Utilising law in the transition of the Kingdom of Saudi Arabia to a low-carbon economy. Environ Innov Soc Transit 2021; 39: 107-18.
[http://dx.doi.org/10.1016/j.eist.2021.03.003]
[258]
Zhang T, Zhou P, Simon T, Cui T. Vibrating a sessile droplet to enhance mass transfer for high-performance electrochemical sensors. Sens Actuators B Chem 2022; 362: 131788.
[http://dx.doi.org/10.1016/j.snb.2022.131788]
[259]
Zhou H, Deng J. Vibration assisted afm-based nanomachining under elevated temperatures using soft and stiff probes. Procedia Manuf 2020; 48: 508-13.
[http://dx.doi.org/10.1016/j.promfg.2020.05.075]
[260]
Anwar T, Kumam P, Thounthong P. A comparative fractional study to evaluate thermal performance of NaAlg–MoS2–Co hybrid nanofluid subject to shape factor and dual ramped conditions. Alex Eng J 2022; 61(3): 2166-87.
[http://dx.doi.org/10.1016/j.aej.2021.06.085]
[261]
El-Sheikh SM, Osman DI, Ali OI, et al. A novel Ag/Zn bimetallic MOF as a superior sensitive biosensing platform for HCV-RNA electrochemical detection. Appl Surf Sci 2021; 562: 150202.
[http://dx.doi.org/10.1016/j.apsusc.2021.150202]
[262]
Davidson JL, Wang J, Maruthamuthu MK, et al. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. Biosensors and Bioelectronics: X 2021; 9: 100076.
[http://dx.doi.org/10.1016/j.biosx.2021.100076] [PMID: 34423284]
[263]
Zhang K, Fan Z, Ding Y, Xie M. A pH-engineering regenerative DNA tetrahedron ECL biosensor for the assay of SARS-CoV-2 RdRp gene based on CRISPR/Cas12a trans-activity. Chem Eng J 2022; 429: 132472.
[http://dx.doi.org/10.1016/j.cej.2021.132472] [PMID: 34539224]
[264]
Weinstein JB, Bates TA, Leier HC, McBride SK, Barklis E, Tafesse FG. A potent alpaca-derived nanobody that neutralizes SARS-CoV-2 variants. iScience 2022; 25(3): 103960.
[http://dx.doi.org/10.1016/j.isci.2022.103960] [PMID: 35224467]
[265]
Zamhuri SA, Soon CF, Nordin AN, et al. A review on the contamination of SARS-CoV-2 in water bodies: Transmission route, virus recovery and recent biosensor detection techniques. Sens Biosensing Res 2022; 36: 100482.
[http://dx.doi.org/10.1016/j.sbsr.2022.100482] [PMID: 35251937]
[266]
Yaman G. A Suggestion of Standard and Optimized Steps in the LOC (Lab on a Chip), LOD (Lab on a Disc), and POC (Point of Care) Development Process for Biomedical Applications: A Case Study about ESR. J Comput Appl Math 2022; 114626.
[http://dx.doi.org/10.1016/j.cam.2022.114626]
[267]
Su A, Liu Y, Cao X, Xu W, Liang C, Xu S. A universal CRISPR/Cas12a-mediated AuNPs aggregation-based surface-enhanced Raman scattering (CRISPR/Cas-SERS) platform for virus gene detection. Sens Actuators B Chem 2022; 369: 132295.
[http://dx.doi.org/10.1016/j.snb.2022.132295]
[268]
Li Y, Deng F, Goldys EM. A versatile CRISPR/Cas12a-based sensitivity amplifier suitable for commercial HRP-based ELISA kits. Sens Actuators B Chem 2021; 347: 130533.
[http://dx.doi.org/10.1016/j.snb.2021.130533]
[269]
Zhao H, Zhang Y, Chen Y, et al. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosens Bioelectron 2021; 194: 113629.
[http://dx.doi.org/10.1016/j.bios.2021.113629] [PMID: 34534949]
[270]
Chong WJ, Shen S, Li Y, Trinchi A, Pejak D. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges. J Mater Sci Technol 2022; 111: 120-51.
[http://dx.doi.org/10.1016/j.jmst.2021.09.039]
[271]
Abiko Y, Yamada Y, Hayasaki T, Kimura Y, Almarasy AA, Fujimori A. Adsorption immobilization of biomolecules from subphase on Langmuir monolayers of organo-modified single-walled carbon nanotube. Colloids Surf A Physicochem Eng Asp 2021; 621: 126559.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126559]
[272]
Kalkal A, Allawadhi P, Pradhan R, Khurana A, Bharani KK, Packirisamy G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. Sensors International 2021; 2: 100102.
[http://dx.doi.org/10.1016/j.sintl.2021.100102] [PMID: 34766058]
[273]
Axin Liang A, Huipeng Hou B, Shanshan Tang C, Liquan Sun D, Aiqin Luo E. An advanced molecularly imprinted electrochemical sensor for the highly sensitive and selective detection and determination of Human IgG. Bioelectrochemistry 2021; 137: 107671.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107671] [PMID: 32950847]
[274]
Negahdary M, Angnes L. An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta 2022; 246: 123511.
[http://dx.doi.org/10.1016/j.talanta.2022.123511] [PMID: 35500518]
[275]
Mao K, Zhang H, Yang Z. An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic. Biosens Bioelectron 2020; 169: 112617.
[http://dx.doi.org/10.1016/j.bios.2020.112617] [PMID: 32998066]
[276]
Hashemi SA, Bahrani S, Mousavi SM, et al. Antibody mounting capability of 1D/2D carbonaceous nanomaterials toward rapid-specific detection of SARS-CoV-2. Talanta 2022; 239: 123113.
[http://dx.doi.org/10.1016/j.talanta.2021.123113] [PMID: 34863060]
[277]
Qian S, Cui Y, Cai Z, Li L. Applications of smartphone-based colorimetric biosensors. Biosens Bioelectron: X 2022; 11: 100173.
[http://dx.doi.org/10.1016/j.biosx.2022.100173]
[278]
Bhardwaj T, Kumar Sharma T. Aptasensors for full body health checkup. Biosensors and Bioelectronics: X 2022; 11: 100199.
[http://dx.doi.org/10.1016/j.biosx.2022.100199]
[279]
Sreelakshmi S, Vineeth PK, Mohanan A, Ramesh NV. Ayurvedic bhasma and synthesized nanoparticles: A comparative review. Mater Today Proc 2021; 46: 3079-83.
[http://dx.doi.org/10.1016/j.matpr.2021.02.585]
[280]
Rahimi R, Solimannejad M. B3O3 monolayer with dual application in sensing of COVID-19 biomarkers and drug delivery for treatment purposes: A periodic DFT study. J Mol Liq 2022; 354: 118855.
[http://dx.doi.org/10.1016/j.molliq.2022.118855]
[281]
Rabiee N, Fatahi Y, Ahmadi S, et al. Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Sci Total Environ 2022; 825: 153902.
[http://dx.doi.org/10.1016/j.scitotenv.2022.153902] [PMID: 35182622]
[282]
Lee CH, Seok H, Jang W, et al. Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler. Biosens Bioelectron 2021; 192: 113499.
[http://dx.doi.org/10.1016/j.bios.2021.113499] [PMID: 34311208]
[283]
Garg R, Rani P, Garg R, et al. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. Environ Pollut 2022; 310: 119830.
[http://dx.doi.org/10.1016/j.envpol.2022.119830] [PMID: 35926739]
[284]
Mukherjee S, Mazumder P, Joshi M, Joshi C, Dalvi SV, Kumar M. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: A review. Environ Res 2020; 191: 110119.
[http://dx.doi.org/10.1016/j.envres.2020.110119] [PMID: 32846177]
[285]
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290: 102380.
[http://dx.doi.org/10.1016/j.cis.2021.102380] [PMID: 33819727]
[286]
Meunier V, Ania C, Bianco A, et al. Carbon science perspective in 2022: Current research and future challenges. Carbon 2022; 195: 272-91.
[http://dx.doi.org/10.1016/j.carbon.2022.04.015]
[287]
Vernerová A, Krčmová LK, Heneberk O, et al. Chromatographic method for the determination of inflammatory biomarkers and uric acid in human saliva. Talanta 2021; 233: 122598.
[http://dx.doi.org/10.1016/j.talanta.2021.122598] [PMID: 34215086]
[288]
Soares RRG, Pettke A, Robles-Remacho A, et al. Circle-to-circle amplification coupled with microfluidic affinity chromatography enrichment for in vitro molecular diagnostics of Zika fever and analysis of anti-flaviviral drug efficacy. Sens Actuators B Chem 2021; 336: 129723.
[http://dx.doi.org/10.1016/j.snb.2021.129723]
[289]
Asadi F, Shahnazari R, Bhalla N, Payam AF. Clinical evaluation of SARS-CoV-2 lung HRCT and RT-PCR Techniques: Towards risk factor based diagnosis of infectious diseases. Comput Struct Biotechnol J 2021; 19: 2699-707.
[http://dx.doi.org/10.1016/j.csbj.2021.04.058] [PMID: 33968332]
[290]
Krishnan S, Syed ZQ. Colorimetric visual sensors for point-of-needs testing. Sensor Actuat Report 2022; 4: 100078.
[http://dx.doi.org/10.1016/j.snr.2022.100078]
[291]
Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput Biol Med 2020; 119: 103670.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103670] [PMID: 32209231]
[292]
Anaya DV, Zhan K, Tao L, Lee C, Yuce MR, Alan T. Contactless tracking of humans using non-contact triboelectric sensing technology: Enabling new assistive applications for the elderly and the visually impaired. Nano Energy 2021; 90: 106486.
[http://dx.doi.org/10.1016/j.nanoen.2021.106486]
[293]
Karami A, Hasani M, Azizi Jalilian F, Ezati R. Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2. Sens Actuators B Chem 2021; 328: 128971.
[http://dx.doi.org/10.1016/j.snb.2020.128971] [PMID: 33012989]
[294]
Khan S, Tombuloglu H, Hassanein SE, et al. Coronavirus diseases 2019: Current biological situation and potential therapeutic perspective. Eur J Pharmacol 2020; 886: 173447.
[http://dx.doi.org/10.1016/j.ejphar.2020.173447] [PMID: 32763302]
[295]
Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput Biol Med 2020; 121: 103749.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103749] [PMID: 32568687]
[296]
Ma NL, Peng W, Soon CF, et al. Covid-19 pandemic in the lens of food safety and security. Environ Res 2021; 193: 110405.
[http://dx.doi.org/10.1016/j.envres.2020.110405] [PMID: 33130165]
[297]
Yin L, Man S, Ye S, Liu G, Ma L. CRISPR-Cas based virus detection: Recent advances and perspectives. Biosens Bioelectron 2021; 193: 113541.
[http://dx.doi.org/10.1016/j.bios.2021.113541] [PMID: 34418634]
[298]
Wang Y, Xue T, Wang M, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sens Actuators B Chem 2022; 362: 131765.
[http://dx.doi.org/10.1016/j.snb.2022.131765] [PMID: 35370361]
[299]
Phan QA, Truong LB, Medina-Cruz D, Dincer C, Mostafavi E. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosens Bioelectron 2022; 197: 113732.
[http://dx.doi.org/10.1016/j.bios.2021.113732] [PMID: 34741959]
[300]
Martín J, Tena N, Asuero AG. Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view. Microchem J 2021; 167: 106305.
[http://dx.doi.org/10.1016/j.microc.2021.106305] [PMID: 33897053]
[301]
Germain M, Caputo F, Metcalfe S, et al. Delivering the power of nanomedicine to patients today. J Control Release 2020; 326: 164-71.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.007] [PMID: 32681950]
[302]
Albargi H, Marnadu R, Sujithkumar G, et al. Deposition of nanostructured Sn doped Co3O4 films by a facile nebulizer spray pyrolysis method and fabrication of p-Sn doped Co3O4/n-Si junction diodes for opto-nanoelectronics. Sens Actuators A Phys 2021; 332: 113067.
[http://dx.doi.org/10.1016/j.sna.2021.113067]
[303]
Payandehpeyman J, Parvini N, Moradi K, Hashemian N. Design and finite element modeling of two–dimensional nanomechanical biosensors for SARS–CoV–2 detection. Diamond Related Materials 2022; 128: 109263.
[http://dx.doi.org/10.1016/j.diamond.2022.109263] [PMID: 35891677]
[304]
Murillo AMM, Tomé-Amat J, Ramírez Y, et al. Developing an optical interferometric detection method based biosensor for detecting specific SARS-CoV-2 immunoglobulins in Serum and Saliva, and their corresponding ELISA correlation. Sens Actuators B Chem 2021; 345: 130394.
[http://dx.doi.org/10.1016/j.snb.2021.130394] [PMID: 34248283]
[305]
Zamani M, Yalcin H, Naeini AB, Zeba G, Daim TU. Developing metrics for emerging technologies: identification and assessment. Technol Forecast Soc Change 2022; 176: 121456.
[http://dx.doi.org/10.1016/j.techfore.2021.121456]
[306]
Mert S, Sancak S, Aydın H, et al. Development of a SERS based cancer diagnosis approach employing cryosectioned thyroid tissue samples on PDMS. Nanomedicine 2022; 44: 102577.
[http://dx.doi.org/10.1016/j.nano.2022.102577] [PMID: 35716872]
[307]
Antiochia R. Developments in biosensors for CoV detection and future trends. Biosens Bioelectron 2021; 173: 112777.
[http://dx.doi.org/10.1016/j.bios.2020.112777] [PMID: 33189015]
[308]
Asif M, Xu Y, Xiao F, Sun Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. Chem Eng J 2021; 423: 130189.
[http://dx.doi.org/10.1016/j.cej.2021.130189] [PMID: 33994842]
[309]
Soares JC, Soares AC, Angelim MKSC, et al. Diagnostics of SARS-CoV-2 infection using electrical impedance spectroscopy with an immunosensor to detect the spike protein. Talanta 2022; 239: 123076.
[http://dx.doi.org/10.1016/j.talanta.2021.123076] [PMID: 34876273]
[310]
Hashemi SA, Bahrani S, Mousavi SM, et al. Differentiable detection of ethanol/methanol in biological fluids using prompt graphene-based electrochemical nanosensor coupled with catalytic complex of nickel oxide/8-hydroxyquinoline. Anal Chim Acta 2022; 1194: 339407.
[http://dx.doi.org/10.1016/j.aca.2021.339407] [PMID: 35063153]
[311]
Zhao B, Wang W, Li N, et al. Digital-resolution and highly sensitive detection of multiple exosomal small RNAs by DNA toehold probe-based photonic resonator absorption microscopy. Talanta 2022; 241: 123256.
[http://dx.doi.org/10.1016/j.talanta.2022.123256] [PMID: 35085990]
[312]
Angelopoulou M, Makarona E, Salapatas A, et al. Directly immersible silicon photonic probes: Application to rapid SARS-CoV-2 serological testing. Biosens Bioelectron 2022; 215: 114570.
[http://dx.doi.org/10.1016/j.bios.2022.114570] [PMID: 35850040]
[313]
Rodrigues VC, Soares JC, Soares AC, et al. Electrochemical and optical detection and machine learning applied to images of genosensors for diagnosis of prostate cancer with the biomarker PCA3. Talanta 2021; 222: 121444.
[http://dx.doi.org/10.1016/j.talanta.2020.121444] [PMID: 33167198]
[314]
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. Chem Eng J 2020; 127575.
[http://dx.doi.org/10.1016/j.cej.2020.127575] [PMID: 33162783]
[315]
Kumar N, Shetti NP, Jagannath S, Aminabhavi TM. Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem Eng J 2022; 430: 132966.
[http://dx.doi.org/10.1016/j.cej.2021.132966] [PMID: 34690533]
[316]
Novodchuk I, Kayaharman M, Prassas I, et al. Electronic field effect detection of SARS-CoV-2 N-protein before the onset of symptoms. Biosens Bioelectron 2022; 210: 114331.
[http://dx.doi.org/10.1016/j.bios.2022.114331] [PMID: 35512584]
[317]
Malik P, Gupta R, Malik V, Ameta RK. Emerging nanomaterials for improved biosensing. Measurement. Sensors 2021; 16: 100050.
[http://dx.doi.org/10.1016/j.measen.2021.100050]
[318]
Brodowski M, Pierpaoli M, Janik M, et al. Enhanced susceptibility of SARS-CoV-2 spike RBD protein assay targeted by cellular receptors ACE2 and CD147: Multivariate data analysis of multisine impedimetric response. Sens Actuators B Chem 2022; 370: 132427.
[http://dx.doi.org/10.1016/j.snb.2022.132427] [PMID: 35911567]
[319]
Fan Z, Yao B, Ding Y, Zhao J, Xie M, Zhang K. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens Bioelectron 2021; 178: 113015.
[http://dx.doi.org/10.1016/j.bios.2021.113015] [PMID: 33493896]
[320]
Zhang K, Fan Z, Yao B, et al. Entropy-driven electrochemiluminescence ultra-sensitive detection strategy of NF-κB p50 as the regulator of cytokine storm. Biosens Bioelectron 2021; 176: 112942.
[http://dx.doi.org/10.1016/j.bios.2020.112942] [PMID: 33401144]
[321]
Khan S, Babadaei MMN, Hasan A, et al. Enzyme–polymeric/inorganic metal oxide/hybrid nanoparticle bio-conjugates in the development of therapeutic and biosensing platforms. J Adv Res 2021; 33: 227-39.
[http://dx.doi.org/10.1016/j.jare.2021.01.012] [PMID: 34603792]
[322]
Plikusiene I, Maciulis V, Ramanaviciene A, et al. Evaluation of kinetics and thermodynamics of interaction between immobilized SARS-CoV-2 nucleoprotein and specific antibodies by total internal reflection ellipsometry. J Colloid Interface Sci 2021; 594: 195-203.
[http://dx.doi.org/10.1016/j.jcis.2021.02.100] [PMID: 33761394]
[323]
Manoto SL, El-Hussein A, Malabi R, et al. Exploring optical spectroscopic techniques and nanomaterials for virus detection. Saudi J Biol Sci 2021; 28(1): 78-89.
[http://dx.doi.org/10.1016/j.sjbs.2020.08.034] [PMID: 32868971]
[324]
Xu L, Li D, Ramadan S, Li Y, Klein N. Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron 2020; 170: 112673.
[http://dx.doi.org/10.1016/j.bios.2020.112673] [PMID: 33038584]
[325]
Ghasemi R, Mirahmadi-zare SZ, Allafchian A, Behmanesh M. Fast fluorescent screening assay and dual electrochemical sensing of bacterial infection agent (Streptococcus agalactiae) based on a fluorescent-immune nanofibers. Sens Actuators B Chem 2022; 352: 130968.
[http://dx.doi.org/10.1016/j.snb.2021.130968]
[326]
Tarighat MA, Ghorghosheh FH, Abdi G. Fe3O4@SiO2-Ag nanocomposite colorimetric sensor for determination of arginine and ascorbic acid based on synthesized small size AgNPs by cystoseria algae extract. Mater Sci Eng B 2022; 283: 115855.
[http://dx.doi.org/10.1016/j.mseb.2022.115855]
[327]
McLamore ES, Alocilja E, Gomes C, et al. FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178: 113011.
[http://dx.doi.org/10.1016/j.bios.2021.113011] [PMID: 33517232]
[328]
Righini GC, Krzak J, Lukowiak A, Macrelli G, Varas S, Ferrari M. From flexible electronics to flexible photonics: A brief overview. Opt Mater 2021; 115: 111011.
[http://dx.doi.org/10.1016/j.optmat.2021.111011]
[329]
Rai A, Bhaskar S, Ganesh KM, Ramamurthy SS. Gelucire®-mediated heterometallic AgAu nanohybrid engineering for femtomolar cysteine detection using smartphone-based plasmonics technology. Mater Chem Phys 2022; 279: 125747.
[http://dx.doi.org/10.1016/j.matchemphys.2022.125747]
[330]
Saltepe B, Bozkurt EU, Güngen MA, Çiçek AE, Şeker UÖŞ. Genetic circuits combined with machine learning provides fast responding living sensors. Biosens Bioelectron 2021; 178: 113028.
[http://dx.doi.org/10.1016/j.bios.2021.113028] [PMID: 33508538]
[331]
Du T, Zhang J, Li C, et al. Gold/Silver hybrid nanoparticles with enduring inhibition of coronavirus multiplication through multisite mechanisms. Bioconjug Chem 2020; 31(11): 2553-63.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00506] [PMID: 33073571]
[332]
Bahari D, Babamiri B, Salimi A, Rashidi A. Graphdiyne/graphene quantum dots for development of FRET ratiometric fluorescent assay toward sensitive detection of miRNA in human serum and bioimaging of living cancer cells. J Lumin 2021; 239: 118371.
[http://dx.doi.org/10.1016/j.jlumin.2021.118371]
[333]
Fu L, Mao S, Chen F, et al. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011–2021). Chemosphere 2022; 297: 134127.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134127] [PMID: 35240147]
[334]
Ali Farzin M, Abdoos H, Saber R. Graphite nanocrystals coated paper-based electrode for detection of SARS-Cov-2 gene using DNA-functionalized Au@carbon dot core–shell nanoparticles. Microchem J 2022; 179: 107585.
[http://dx.doi.org/10.1016/j.microc.2022.107585] [PMID: 35578710]
[335]
Cherkaoui D, Huang D, Miller BS, Turbé V, McKendry RA. Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings. Biosens Bioelectron 2021; 189: 113328.
[http://dx.doi.org/10.1016/j.bios.2021.113328] [PMID: 34051382]
[336]
Burg S, Roth S, Cohen M, et al. High throughput optical modulation biosensing for highly sensitive and rapid detection of biomarkers. Talanta 2022; 248: 123624.
[http://dx.doi.org/10.1016/j.talanta.2022.123624] [PMID: 35660998]
[337]
Siew QY, Pang EL, Loh HS, Tan MTT. Highly sensitive and specific graphene/TiO2 impedimetric immunosensor based on plant-derived tetravalent envelope glycoprotein domain III (EDIII) probe antigen for dengue diagnosis. Biosens Bioelectron 2021; 176: 112895.
[http://dx.doi.org/10.1016/j.bios.2020.112895] [PMID: 33358432]
[338]
Ebrahimi F, Amoli HS, Mozaffari SA. Impedimetric and single-frequency capacitance spectroscopy strategy in label-free rapid screening of lactoferrin. Sens Actuators B Chem 2022; 354: 131107.
[http://dx.doi.org/10.1016/j.snb.2021.131107]
[339]
Jansen AJG, Spaan T, Low HZ, et al. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv 2020; 4(13): 2967-78.
[http://dx.doi.org/10.1182/bloodadvances.2020001640] [PMID: 32609845]
[340]
Torrijos-Morán L, Lisboa BD, Soler M, Lechuga LM, García-Rupérez J. Integrated optical bimodal waveguide biosensors: Principles and applications. Results in Optics 2022; 9: 100285.
[http://dx.doi.org/10.1016/j.rio.2022.100285]
[341]
Pan T, Shen M, Shi J, et al. Intracellular potassium ion fluorescent nanoprobes for functional analysis of hERG channel via bioimaging. Sens Actuators B Chem 2021; 345: 130450.
[http://dx.doi.org/10.1016/j.snb.2021.130450]
[342]
Rahmati Z, Roushani M, Hosseini H, Choobin H. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate. Bioelectrochemistry 2022; 146: 108106.
[http://dx.doi.org/10.1016/j.bioelechem.2022.108106] [PMID: 35339949]
[343]
Petchakup C, Hutchinson PE, Tay HM, Leong SY, Li KHH, Hou HW. Label-free quantitative lymphocyte activation profiling using microfluidic impedance cytometry. Sens Actuators B Chem 2021; 339: 129864.
[http://dx.doi.org/10.1016/j.snb.2021.129864]
[344]
Gianti E, Percec S. Machine learning at the interface of polymer science and biology: How far can we go? Biomacromolecules 2022; 23(3): 576-91.
[http://dx.doi.org/10.1021/acs.biomac.1c01436] [PMID: 35133143]
[345]
Materón EM, Miyazaki CM, Carr O, et al. Magnetic nanoparticles in biomedical applications: A review. Appl Surfac Sci Adv 2021; 6: 100163.
[http://dx.doi.org/10.1016/j.apsadv.2021.100163]
[346]
Kad A, Pundir A, Arya SK, Puri S, Khatri M. Meta-analysis of in-vitro cytotoxicity evaluation studies of zinc oxide nanoparticles: Paving way for safer innovations. Toxicol In Vitro 2022; 83: 105418.
[http://dx.doi.org/10.1016/j.tiv.2022.105418] [PMID: 35724836]
[347]
Pina-Coronado C, Martínez-Sobrino Á, Gutiérrez-Gálvez L, et al. Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures for sensitive and selective SARS-CoV-2 sensing. Sens Actuators B Chem 2022; 369: 132217.
[http://dx.doi.org/10.1016/j.snb.2022.132217] [PMID: 35755181]
[348]
Lowdon JW, Diliën H, Singla P, et al. MIPs for commercial application in low-cost sensors and assays-an overview of the current status quo. Sens Actuators B Chem 2020; 325: 128973.
[http://dx.doi.org/10.1016/j.snb.2020.128973] [PMID: 33012991]
[349]
Ratautaite V, Boguzaite R, Brazys E, et al. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim Acta 2022; 403: 139581.
[http://dx.doi.org/10.1016/j.electacta.2021.139581] [PMID: 34898691]
[350]
Ilgar M, Baytemir G, Taşaltın N, Güllülü S, Yeşilyurt İS, Karakuş S. Multifunctional maca extract coated CuO nanoparticles with antimicrobial and dopamine sensing activities: A dual electrochemical – Smartphone colorimetric detection system. J Photochem Photobiol Chem 2022; 431: 114075.
[http://dx.doi.org/10.1016/j.jphotochem.2022.114075]
[351]
Yin K, Ding X, Xu Z, et al. Multiplexed colorimetric detection of SARS-CoV-2 and other pathogens in wastewater on a 3D printed integrated microfluidic chip. Sens Actuators B Chem 2021; 344: 130242.
[http://dx.doi.org/10.1016/j.snb.2021.130242] [PMID: 34121812]
[352]
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338: 813-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.046] [PMID: 34478750]
[353]
Santhy A, Saraswathyamma B, Parvathy Krishnan A, Luscious L. Nanomaterials incorporated electrochemical sensors for the monitoring of pyridoxine: A mini review. Mater Today Proc 2021; 46: 2998-3004.
[http://dx.doi.org/10.1016/j.matpr.2020.12.703]
[354]
Duan Y, Wang S, Zhang Q, Gao W, Zhang L. Nanoparticle approaches against SARS-CoV-2 infection. Curr Opin Solid State Mater Sci 2021; 25(6): 100964.
[http://dx.doi.org/10.1016/j.cossms.2021.100964] [PMID: 34729031]
[355]
Bhalla N, Payam AF, Morelli A, et al. Nanoplasmonic biosensor for rapid detection of multiple viral variants in human serum. Sens Actuators B Chem 2022; 365: 131906.
[http://dx.doi.org/10.1016/j.snb.2022.131906] [PMID: 35463481]
[356]
Zhao Z. Nanosurface modification of Ti64 implant by anodic fluorine-doped alumina/titania for orthopedic application. Mater Chem Phys 2022; 281: 125867.
[http://dx.doi.org/10.1016/j.matchemphys.2022.125867]
[357]
Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. New challenges in point of care electrochemical detection of clinical biomarkers. Sens Actuators B Chem 2021; 345: 130349.
[http://dx.doi.org/10.1016/j.snb.2021.130349]
[358]
González-Garnica M, Galdámez-Martínez A, Malagón F, et al. One dimensional Au-ZnO hybrid nanostructures based CO2 detection: Growth mechanism and role of the seed layer on sensing performance. Sens Actuators B Chem 2021; 337: 129765.
[http://dx.doi.org/10.1016/j.snb.2021.129765]
[359]
Huang L, Ding L, Zhou J, et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. Biosens Bioelectron 2021; 171: 112685.
[http://dx.doi.org/10.1016/j.bios.2020.112685] [PMID: 33113383]
[360]
Li L, Zhang Y, Zheng W, Li X, Zhao Y. Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection. Talanta 2022; 247: 123599.
[http://dx.doi.org/10.1016/j.talanta.2022.123599] [PMID: 35653863]
[361]
Li N, Zhao B, Stavins R, et al. Overcoming the limitations of COVID-19 diagnostics with nanostructures, nucleic acid engineering, and additive manufacturing. Curr Opin Solid State Mater Sci 2022; 26(1): 100966.
[http://dx.doi.org/10.1016/j.cossms.2021.100966] [PMID: 34840515]
[362]
Soto D, Orozco J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Anal Chim Acta 2022; 1205: 339739.
[http://dx.doi.org/10.1016/j.aca.2022.339739] [PMID: 35414399]
[363]
Serre-Miranda C, Nobrega C, Roque S, et al. Performance assessment of 11 commercial serological tests for SARS-CoV-2 on hospitalised COVID-19 patients. Int J Infect Dis 2021; 104: 661-9.
[http://dx.doi.org/10.1016/j.ijid.2021.01.038] [PMID: 33484862]
[364]
Dubey AK, Chaudhry SK, Singh HB, Gupta VK, Kaushik A. Perspectives on nano-nutraceuticals to manage pre and post COVID-19 infections. Biotechnol Rep 2022; 33: e00712.
[http://dx.doi.org/10.1016/j.btre.2022.e00712] [PMID: 35186674]
[365]
Mandal D, Indaleeb MM, Younan A, Banerjee S. Piezoelectric point-of-care biosensor for the detection of SARS-COV-2 (COVID-19) antibodies. Sens Biosensing Res 2022; 37: 100510.
[http://dx.doi.org/10.1016/j.sbsr.2022.100510] [PMID: 35855937]
[366]
van Dongen JE, Berendsen JTW, Steenbergen RDM, Wolthuis RMF, Eijkel JCT, Segerink LI. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosens Bioelectron 2020; 166: 112445.
[http://dx.doi.org/10.1016/j.bios.2020.112445] [PMID: 32758911]
[367]
Zhu J, Zhu R, Miao Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens Bioelectron 2022; 210: 114330.
[http://dx.doi.org/10.1016/j.bios.2022.114330] [PMID: 35567882]
[368]
Muduganti M, Magna G, di Zazzo L, et al. Porphyrinoids coated silica nanoparticles capacitive sensors for COVID-19 detection from the analysis of blood serum volatolome. Sens Actuators B Chem 2022; 369: 132329.
[http://dx.doi.org/10.1016/j.snb.2022.132329]
[369]
Hashmi A, Nayak V, Singh KRB, et al. Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. Materials Today Advances 2022; 13: 100208.
[http://dx.doi.org/10.1016/j.mtadv.2022.100208] [PMID: 35039802]
[370]
Zhang F, Wang Z, Vijver MG, Peijnenburg WJGM. Probing nano-QSAR to assess the interactions between carbon nanoparticles and a SARS-CoV-2 RNA fragment. Ecotoxicol Environ Saf 2021; 219: 112357.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112357] [PMID: 34044308]
[371]
Bagheri Novir S, Aram MR. Quantum mechanical studies of the adsorption of Remdesivir, as an effective drug for treatment of COVID-19, on the surface of pristine, COOH-functionalized and S-, Si- and Al- doped carbon nanotubes. Physica E 2021; 129: 114668.
[http://dx.doi.org/10.1016/j.physe.2021.114668] [PMID: 33564274]
[372]
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: A new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145: 108050.
[http://dx.doi.org/10.1016/j.bioelechem.2022.108050] [PMID: 35074732]
[373]
Rana G, Dhiman P, Kumar A, et al. Recent advances on nickel nano-ferrite: A review on processing techniques, properties and diverse applications. Chem Eng Res Des 2021; 175: 182-208.
[http://dx.doi.org/10.1016/j.cherd.2021.08.040]
[374]
Nagy-Simon T, Hada AM, Suarasan S, Potara M. Recent advances on the development of plasmon-assisted biosensors for detection of C-reactive protein. J Mol Struct 2021; 1246: 131178.
[http://dx.doi.org/10.1016/j.molstruc.2021.131178] [PMID: 36536692]
[375]
Zheng XT, Tan YN. Recent development of nucleic acid nanosensors to detect sequence-specific binding interactions: From metal ions, small molecules to proteins and pathogens. Sensors International 2020; 1: 100034.
[http://dx.doi.org/10.1016/j.sintl.2020.100034] [PMID: 34766041]
[376]
Mohankumar P, Ajayan J, Mohanraj T, Yasodharan R. Recent developments in biosensors for healthcare and biomedical applications: A review. Measurement 2021; 167: 108293.
[http://dx.doi.org/10.1016/j.measurement.2020.108293]
[377]
Roy S, Dikshit PK, Sherpa KC, Singh A, Jacob S, Chandra Rajak R. Recent nanobiotechnological advancements in lignocellulosic biomass valorization: A review. J Environ Manage 2021; 297: 113422.
[http://dx.doi.org/10.1016/j.jenvman.2021.113422] [PMID: 34351298]
[378]
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. Food Biosci 2022; 47: 101695.
[http://dx.doi.org/10.1016/j.fbio.2022.101695]
[379]
Haji Mohammadi M, Mulder S, Khashayar P, Kalbasi A, Azimzadeh M, Aref AR. Saliva Lab-on-a-chip biosensors: Recent novel ideas and applications in disease detection. Microchem J 2021; 168: 106506.
[http://dx.doi.org/10.1016/j.microc.2021.106506]
[380]
Zafar S, Nazir M, Sabah A, Jurcut AD. Securing bio-cyber interface for the internet of bio-nano things using particle swarm optimization and artificial neural networks based parameter profiling. Comput Biol Med 2021; 136: 104707.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104707] [PMID: 34375900]
[381]
Maithani Y, Choudhuri B, Mehta BR, Singh JP. Self-adhesive, stretchable, and dry silver nanorods embedded polydimethylsiloxane biopotential electrodes for electrocardiography. Sens Actuators A Phys 2021; 332: 113068.
[http://dx.doi.org/10.1016/j.sna.2021.113068]
[382]
Li N, Zhao Y, Liu Y, et al. Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. Nano Today 2021; 41: 101308.
[http://dx.doi.org/10.1016/j.nantod.2021.101308] [PMID: 34630625]
[383]
Zhang Y, Chen M, Liu C, et al. Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sens Actuators B Chem 2021; 345: 130411.
[http://dx.doi.org/10.1016/j.snb.2021.130411] [PMID: 34248284]
[384]
Hatamluyi B, Rezayi M, Amel Jamehdar S, et al. Sensitive and specific clinically diagnosis of SARS-CoV-2 employing a novel biosensor based on boron nitride quantum dots/flower-like gold nanostructures signal amplification. Biosens Bioelectron 2022; 207: 114209.
[http://dx.doi.org/10.1016/j.bios.2022.114209] [PMID: 35339072]
[385]
Chen L, Huang H, Wang Z, Deng K, Huang H. Sensitive fluorescence detection of pathogens based on target nucleic acid sequence-triggered transcription. Talanta 2022; 243: 123352.
[http://dx.doi.org/10.1016/j.talanta.2022.123352] [PMID: 35305458]
[386]
Wang K, Li T, Cao B, et al. Simulation and improvements of a magnetic flux sensor for application in immunomagnetic biosensing platforms. Sens Actuators A Phys 2022; 333: 113299.
[http://dx.doi.org/10.1016/j.sna.2021.113299]
[387]
Benelmekki M, Gasso S, Martinez LM. Simultaneous optical and magnetophoretic monitoring of DNA hybridization using superparamagnetic and plasmonic colloids. Colloids Surf B Biointerfaces 2020; 193: 111126.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111126] [PMID: 32422560]
[388]
Zhao B, Che C, Wang W, Li N, Cunningham BT. Single-step, wash-free digital immunoassay for rapid quantitative analysis of serological antibody against SARS-CoV-2 by photonic resonator absorption microscopy. Talanta 2021; 225: 122004.
[http://dx.doi.org/10.1016/j.talanta.2020.122004] [PMID: 33592744]
[389]
Albrycht P, Al-Otaibi JS, Mary YS, Mary YS, Trivedi R, Chakraborty B. Surface enhanced Raman scattering investigation of pioglitazone on silver and silver-gold metal substrates-experimental analysis and theoretical modeling. J Mol Struct 2021; 1244: 130992.
[http://dx.doi.org/10.1016/j.molstruc.2021.130992]
[390]
Latorre R, Ramírez-Garcia PD, Hegron A, et al. Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain. Biomaterials 2022; 285: 121536.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121536] [PMID: 35533442]
[391]
Borse V, Konwar AN. Synthesis and characterization of gold nanoparticles as a sensing tool for the lateral flow immunoassay development. Sensors International 2020; 1: 100051.
[http://dx.doi.org/10.1016/j.sintl.2020.100051]
[392]
Zhou Y, Liu J, Dong H, et al. Target-induced silver nanocluster generation for highly sensitive electrochemical aptasensor towards cell-secreted interferon-γ. Biosens Bioelectron 2022; 203: 114042.
[http://dx.doi.org/10.1016/j.bios.2022.114042] [PMID: 35124342]
[393]
Gaobotse G, Mbunge E, Batani J, Muchemwa B. The future of smart implants towards personalized and pervasive healthcare in Sub-Saharan Africa: Opportunities, barriers and policy recommendations. Sensors International 2022; 3: 100173.
[http://dx.doi.org/10.1016/j.sintl.2022.100173]
[394]
Mahshid SS, Flynn SE, Mahshid S. The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the rapid diagnostics of SARS-CoV-2. Biosens Bioelectron 2021; 176: 112905.
[http://dx.doi.org/10.1016/j.bios.2020.112905] [PMID: 33358285]
[395]
Chiarello F, Fantoni G, Hogarth T, Giordano V, Baltina L, Spada I. Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach. Technol Forecast Soc Change 2021; 173: 121177.
[http://dx.doi.org/10.1016/j.techfore.2021.121177]
[396]
Stark NM, Matuana LM. Trends in sustainable biobased packaging materials: A mini review. Mater Today Sustain 2021; 15: 100084.
[http://dx.doi.org/10.1016/j.mtsust.2021.100084]
[397]
Şahin Z, Meunier-Prest R, Dumoulin F, Kumar A, Isci Ü, Bouvet M. Tuning of organic heterojunction conductivity by the substituents’ electronic effects in phthalocyanines for ambipolar gas sensors. Sens Actuators B Chem 2021; 332: 129505.
[http://dx.doi.org/10.1016/j.snb.2021.129505]
[398]
Alireza Hashemi S, Bahrani S, Mojtaba Mousavi S, et al. Ultra-precise label-free nanosensor based on integrated graphene with Au nanostars toward direct detection of IgG antibodies of SARS-CoV-2 in blood. J Electroanal Chem 2021; 894: 115341.
[http://dx.doi.org/10.1016/j.jelechem.2021.115341] [PMID: 33994897]
[399]
Daoudi K, Ramachandran K, Alawadhi H, et al. Ultra-sensitive and fast optical detection of the spike protein of the SARS-CoV-2 using AgNPs/SiNWs nanohybrid based sensors. Surf Interfaces 2021; 27: 101454.
[http://dx.doi.org/10.1016/j.surfin.2021.101454] [PMID: 34957346]
[400]
Hashemi SA, Golab Behbahan NG, Bahrani S, et al. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosens Bioelectron 2021; 171: 112731.
[http://dx.doi.org/10.1016/j.bios.2020.112731] [PMID: 33075725]
[401]
Mwanza D, Mfamela N, Adeniyi O, Nyokong T, Mashazi P. Ultrasensitive detection of prostate-specific antigen using glucose-encapsulated nanoliposomes anti-PSA polyclonal antibody as detection nanobioprobes. Talanta 2022; 245: 123483.
[http://dx.doi.org/10.1016/j.talanta.2022.123483] [PMID: 35453097]
[402]
Tavakoli-Koopaei R, Javadi-Zarnaghi F, Mirhendi H. Unified-amplifier based primer exchange reaction (UniAmPER) enabled detection of SARS-CoV-2 from clinical samples. Sens Actuators B Chem 2022; 357: 131409.
[http://dx.doi.org/10.1016/j.snb.2022.131409] [PMID: 35035095]
[403]
Wang M, Lin Y, Lu J, et al. Visual naked-eye detection of SARS-CoV-2 RNA based on covalent organic framework capsules. Chem Eng J 2022; 429: 132332.
[http://dx.doi.org/10.1016/j.cej.2021.132332] [PMID: 34539223]
[404]
Panes P, Macariola MA, Niervo C, Maghanoy AG, Garcia KP, Ignacio JJ. A bibliometric approach for analyzing the potential role of waste-derived nanoparticles in the upstream oil and gas industry. Cleaner Eng Technol 2022; 8: 100468.
[http://dx.doi.org/10.1016/j.clet.2022.100468]
[405]
Muz İ, Göktaş F, Kurban M. A density functional theory study on favipiravir drug interaction with BN-doped C60 heterofullerene. Physica E 2022; 135: 114950.
[http://dx.doi.org/10.1016/j.physe.2021.114950]
[406]
Braz Gomes K, D’Souza B, Vijayanand S, Menon I, D’Souza MJ. A dual-delivery platform for vaccination using antigen-loaded nanoparticles in dissolving microneedles. Int J Pharm 2022; 613: 121393.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121393] [PMID: 34929312]
[407]
Jia H, Shang Y, Cao H, et al. A minimalist supramolecular nanovaccine forcefully propels the Tfh cell and GC B cell responses. Chem Eng J 2022; 435: 134782.
[http://dx.doi.org/10.1016/j.cej.2022.134782]
[408]
Olivera-Ugarte SM, Bolduc M, Laliberté-Gagné MÈ, et al. A nanoparticle-based COVID-19 vaccine candidate elicits broad neutralizing antibodies and protects against SARS-CoV-2 infection. Nanomedicine 2022; 44: 102584.
[http://dx.doi.org/10.1016/j.nano.2022.102584] [PMID: 35850421]
[409]
Mehta K, Sharma R, Vyas V. A quantile regression approach to study the impact of aluminium prices on manufacturing sector of India during COVID era. Mater Today Proc 2022; 65: 3506-11.
[http://dx.doi.org/10.1016/j.matpr.2022.06.087]
[410]
Pachaiappan R, Rajendran S, Senthil Kumar P, Vo D-VN, Hoang KA. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chem Eng Res Des 2022; 177: 304-20.
[http://dx.doi.org/10.1016/j.cherd.2021.11.006]
[411]
Kanwar A, Sharma A. A review on role of zinc as a potent immunity boosting agent. Mater Today Proc 2022; 68: 880-5.
[http://dx.doi.org/10.1016/j.matpr.2022.06.423]
[412]
Caputo L, Quintieri L, Bugatti V, Gorrasi G. A salicylate-functionalized PET packaging to counteract blue discoloration on mozzarella cheese under cold storage. Food Packag Shelf Life 2022; 32: 100850.
[http://dx.doi.org/10.1016/j.fpsl.2022.100850]
[413]
Riahi Z, Priyadarshi R, Rhim JW, Lotfali E, Bagheri R, Pircheraghi G. Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications. Colloids Surf B Biointerfaces 2022; 215: 112519.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112519] [PMID: 35487069]
[414]
Venkatesh G, Sixto-López Y, Vennila P, et al. An investigation on the molecular structure, interaction with metal clusters, anti-Covid-19 ability of 2-deoxy-D-glucose: DFT calculations, MD and docking simulations. J Mol Struct 2022; 1258: 132678.
[http://dx.doi.org/10.1016/j.molstruc.2022.132678]
[415]
Uwizeyimana DE. Analysing the importance of e-government in times of disruption: The case of public education in Rwanda during Covid-19 lockdown. Eval Program Plann 2022; 91: 102064.
[http://dx.doi.org/10.1016/j.evalprogplan.2022.102064] [PMID: 35306359]
[416]
Hooshmand SE, Ebadati A, Hosseini ES, et al. Antibacterial, antibiofilm, anti-inflammatory, and wound healing effects of nanoscale multifunctional cationic alternating copolymers. Bioorg Chem 2022; 119: 105550.
[http://dx.doi.org/10.1016/j.bioorg.2021.105550] [PMID: 34920337]
[417]
Dentamaro V, Giglio P, Impedovo D, Moretti L, Pirlo G. AUCO ResNet: An end-to-end network for Covid-19 pre-screening from cough and breath. Pattern Recognit 2022; 127: 108656.
[http://dx.doi.org/10.1016/j.patcog.2022.108656] [PMID: 35313619]
[418]
Niro CM, Medeiros JA, Bresolin JD, et al. Banana leathers as influenced by polysaccharide matrix and probiotic bacteria. Food Hydrocolloids for Health 2022; 2: 100081.
[http://dx.doi.org/10.1016/j.fhfh.2022.100081]
[419]
Tobaldi DM, Dvoranová D, Lajaunie L, et al. Benzene and NO photocatalytic-assisted removal using indoor lighting conditions. Mater Today Energy 2022; 25: 100974.
[http://dx.doi.org/10.1016/j.mtener.2022.100974]
[420]
Dałek P, Drabik D, Wołczańska H, et al. Bioavailability by design — Vitamin D3 liposomal delivery vehicles. Nanomedicine 2022; 43: 102552.
[http://dx.doi.org/10.1016/j.nano.2022.102552] [PMID: 35346834]
[421]
Shanmugan S, Selvaraju P, Nagaraj J, Sivakumar S, Ravichandran S. Biogenic silver nanoparticles of antibacterial activities for poly-herbal extracts in novel medicine. Mater Today Proc 2022; 51: 1107-14.
[http://dx.doi.org/10.1016/j.matpr.2021.07.107]
[422]
Song X, Tang Z, Liu W, et al. Biomaterials and regulatory science. J Mater Sci Technol 2022; 128: 221-7.
[http://dx.doi.org/10.1016/j.jmst.2022.04.018]
[423]
Antony S, Antony S, Rebello S, et al. Bioremediation of endocrine disrupting chemicals- advancements and challenges. Environ Res 2022; 213: 113509.
[http://dx.doi.org/10.1016/j.envres.2022.113509] [PMID: 35660566]
[424]
Rius-Rocabert S, Arranz-Herrero J, Fernández-Valdés A, et al. Broad virus inactivation using inorganic micro/nano-particulate materials. Mater Today Bio 2022; 13: 100191.
[http://dx.doi.org/10.1016/j.mtbio.2021.100191] [PMID: 35024597]
[425]
Xin X, Nepal J, Wright AL, Yang X, He Z. Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: Comparison of foliar spray and soil drench application. J Clean Prod 2022; 363: 132630.
[http://dx.doi.org/10.1016/j.jclepro.2022.132630]
[426]
Miranda M, Ribeiro MDMM, Spricigo PC, et al. Carnauba wax nanoemulsion applied as an edible coating on fresh tomato for postharvest quality evaluation. Heliyon 2022; 8(7): e09803.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09803] [PMID: 35800251]
[427]
Al-Hakkani MF, Gouda GA, Hassan SHA, Mohamed MMA, Nagiub AM. Cefixime wastewater management via bioengineered Hematite nanoparticles and the in-vitro synergetic potential multifunction activities of Cefixime@Hematite nanosystem. Surf Interfaces 2022; 30: 101877.
[http://dx.doi.org/10.1016/j.surfin.2022.101877]
[428]
Abbas AH, Fairouz NY. Characterization, biosynthesis of copper nanoparticles using ginger roots extract and investigation of its antibacterial activity. Mater Today Proc 2022; 61: 908-13.
[http://dx.doi.org/10.1016/j.matpr.2021.09.551]
[429]
Erdogan Eliuz EA, Yabalak E. Chicken feather hydrochar incorporated with phenolic extract of Rosa damascena Mill. to enlarge the antibacterial performance against Acinobacter baumannii and Staphylococcus aureus. J Environ Chem Eng 2022; 10(5): 108289.
[http://dx.doi.org/10.1016/j.jece.2022.108289]
[430]
Zahmatkesh S, Klemeš JJ, Bokhari A, et al. Critical role of Hyssop plant in the possible transmission of SARS-CoV-2 in contaminated human Feces and its implications for the prevention of the virus spread in sewage. Chemosphere 2022; 305: 135247.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135247] [PMID: 35688196]
[431]
Ruwan Jayakantha DNP, Bandara HMN, Gunawardana NM, et al. Design and construction of a low cost air purifier for killing harmful airborne microorganisms using a combination of a strong multi-directional electric-field and an ultra violet light. HardwareX 2022; 11: e00279.
[http://dx.doi.org/10.1016/j.ohx.2022.e00279] [PMID: 35509923]
[432]
Maślana K, Kędzierski T, Żywicka A, Zielińska B, Mijowska E. Design of self-cleaning and self-disinfecting paper-shaped photocatalysts based on wood and eucalyptus derived cellulose fibers modified with gCN/Ag nanoparticles. Environ Nanotechnol Monit Manag 2022; 17: 100656.
[http://dx.doi.org/10.1016/j.enmm.2022.100656]
[433]
Singh G, Kim S, Lee K. Development of a highly sensitive and portable particulate matter SAW sensor and interface electronics. Sens Actuators A Phys 2022; 343: 113641.
[http://dx.doi.org/10.1016/j.sna.2022.113641]
[434]
Kamalzare S, Iranpur Mobarakeh V, Mirzazadeh Tekie FS, et al. Development of a T cell-targeted siRNA delivery system against HIV-1 using modified superparamagnetic iron oxide nanoparticles: An in vitro study. J Pharm Sci 2022; 111(5): 1463-9.
[http://dx.doi.org/10.1016/j.xphs.2021.10.018] [PMID: 34673092]
[435]
Party P, Kókai D, Burián K, Nagy A, Hopp B, Ambrus R. Development of extra-fine particles containing nanosized meloxicam for deep pulmonary delivery: In vitro aerodynamic and cell line measurements. Eur J Pharm Sci 2022; 176: 106247.
[http://dx.doi.org/10.1016/j.ejps.2022.106247] [PMID: 35760279]
[436]
Sanna V, Satta S, Hsiai T, Sechi M. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Eur J Med Chem 2022; 231: 114121.
[http://dx.doi.org/10.1016/j.ejmech.2022.114121] [PMID: 35114539]
[437]
Ebrahimipour H, Haghparast-Bidgoli H, Aval SB, et al. Diagnostic and therapeutic costs of patients with a diagnosis of or suspected coronavirus disease in Iran. Value Health Reg Issues 2022; 27: 21-4.
[http://dx.doi.org/10.1016/j.vhri.2021.05.001] [PMID: 34784544]
[438]
Turcu DC, Rotolo MM. Disrupting from the Ground up: Community-Led and Place-Based Food Governance in London during COVID-19. Urban Gov 2022; 2(1): 178-87.
[http://dx.doi.org/10.1016/j.ugj.2022.04.006]
[439]
Xu L, Wang X, Wang L, Zhang D. Does technological advancement impede ecological footprint level? The role of natural resources prices volatility, foreign direct investment and renewable energy in China. Resour Policy 2022; 76: 102559.
[http://dx.doi.org/10.1016/j.resourpol.2022.102559]
[440]
Li X, Feng Y, Li H, Zhang Q. Effect of anionic groups on the antibacterial activity of magnesium oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2022; 635: 127978.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127978]
[441]
Dzieżyc M, Kazienko P. Effectiveness of research grants funded by European Research Council and Polish National Science Centre. J Informetrics 2022; 16(1): 101243.
[http://dx.doi.org/10.1016/j.joi.2021.101243]
[442]
Guarro M, Suñer F, Lecina M, Borrós S, Fornaguera C. Efficient extracellular vesicles freeze-dry method for direct formulations preparation and use. Colloids Surf B Biointerfaces 2022; 218: 112745.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112745] [PMID: 35930983]
[443]
Ghosh M, Pradhan S, Mandal S, et al. Enhanced antibacterial activity of a novel protein-arginine deiminase type-4 (PADI4) inhibitor after conjugation with a biocompatible nanocarrier. J Drug Deliv Sci Technol 2022; 74: 103549.
[http://dx.doi.org/10.1016/j.jddst.2022.103549]
[444]
Abusweireh RS, Rajamohan N, Vasseghian Y. Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors. Fuel 2022; 319: 123862.
[http://dx.doi.org/10.1016/j.fuel.2022.123862]
[445]
Zhang M, Wang L, Liu J, Pang Y. Envelope virus-mimetic nanovaccines by hybridizing bioengineered cell membranes with bacterial vesicles. iScience 2022; 25(6): 104490.
[http://dx.doi.org/10.1016/j.isci.2022.104490] [PMID: 35712077]
[446]
Moshref Javadi M, Taghdisi Hosseinzadeh M, Soleimani N, Rommasi F. Evaluating the immunogenicity of gold nanoparticles conjugated RBD with Freund’s adjuvant as a potential vaccine against SARS-CoV-2. Microb Pathog 2022; 170: 105687.
[http://dx.doi.org/10.1016/j.micpath.2022.105687] [PMID: 35917987]
[447]
Hazafa A, Jahan N, Zia MA, Rahman KU, Sagheer M, Naeem M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. Chemosphere 2022; 292: 133411.
[http://dx.doi.org/10.1016/j.chemosphere.2021.133411] [PMID: 34958785]
[448]
Lodovichi J, Landucci E, Pitto L, et al. Evaluation of the increase of the thymoquinone permeability formulated in polymeric micelles: In vitro test and in vivo toxicity assessment in Zebrafish embryos. Eur J Pharm Sci 2022; 169: 106090.
[http://dx.doi.org/10.1016/j.ejps.2021.106090] [PMID: 34864170]
[449]
Silva MD, Ray K, Gama M, Remenschneider AK, Sillankorva S. Ex vivo transtympanic permeation of the liposome encapsulated S. pneumoniae endolysin MSlys. Int J Pharm 2022; 620: 121752.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121752] [PMID: 35439573]
[450]
Parker L, Boughton S, Lawrence R, Bero L. Experts identified warning signs of fraudulent research: A qualitative study to inform a screening tool. J Clin Epidemiol 2022; 151: 1-17.
[http://dx.doi.org/10.1016/j.jclinepi.2022.07.006] [PMID: 35850426]
[451]
Moreira J, Fernandes MM, Carvalho EO, et al. Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles. Acta Biomater 2022; 139: 237-48.
[http://dx.doi.org/10.1016/j.actbio.2021.07.067] [PMID: 34358697]
[452]
Grieger K, Merck A, Kuzma J. Formulating best practices for responsible innovation of nano-agrifoods through stakeholder insights and reflection. J Responsibl Technol 2022; 10: 100030.
[http://dx.doi.org/10.1016/j.jrt.2022.100030]
[453]
Javed AR, Shahzad F, Rehman S, et al. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022; 129: 103794.
[http://dx.doi.org/10.1016/j.cities.2022.103794]
[454]
Vijayakumar N, Bhuvaneshwari VK, Ayyadurai GK, et al. Green synthesis of zinc oxide nanoparticles using Anoectochilus elatus, and their biomedical applications. Saudi J Biol Sci 2022; 29(4): 2270-9.
[http://dx.doi.org/10.1016/j.sjbs.2021.11.065] [PMID: 35531172]
[455]
Rehman FU, Liu Y, Yang Q, et al. Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy. J Control Release 2022; 345: 696-708.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.036] [PMID: 35341901]
[456]
Lin HY, Yen SC, Kang CH, et al. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. J Hazard Mater 2022; 429: 128337.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128337] [PMID: 35121295]
[457]
Hidayat SN, Julian T, Dharmawan AB, et al. Hybrid learning method based on feature clustering and scoring for enhanced COVID-19 breath analysis by an electronic nose. Artif Intell Med 2022; 129: 102323.
[http://dx.doi.org/10.1016/j.artmed.2022.102323] [PMID: 35659391]
[458]
Ammar M, Haleem A, Javaid M, Bahl S, Verma AS. Implementing Industry 4.0 technologies in self-healing materials and digitally managing the quality of manufacturing. Mater Today Proc 2022; 52: 2285-94.
[http://dx.doi.org/10.1016/j.matpr.2021.09.248]
[459]
Fagbamigbe AF, Tolba MF, Amankwaa EF, et al. Implications of WHO COVID-19 interim guideline 2020.5 on the comprehensive care for infected persons in Africa Before, during and after clinical management of cases. Sci Am 2022; 15: e01083.
[http://dx.doi.org/10.1016/j.sciaf.2021.e01083] [PMID: 34957351]
[460]
Li Y, Guo C, Chen Q, et al. Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides viai calming cytokine storm. Int J Biol Macromol 2022; 202: 691-706.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.194] [PMID: 35124019]
[461]
Nkanga CI, Ortega-Rivera OA, Shin MD, Moreno-Gonzalez MA, Steinmetz NF. injectable slow-release hydrogel formulation of a plant virus-based COVID-19 vaccine candidate. Biomacromolecules 2022; 23(4): 1812-25.
[http://dx.doi.org/10.1021/acs.biomac.2c00112] [PMID: 35344365]
[462]
Lakshmanan A, Sarngan PP, Sarkar D. Inorganic-organic nanofiber networks with antibacteria properties for enhanced particulate filtration: The critical role of amorphous titania. Chemosphere 2022; 286(Pt 2): 131671.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131671] [PMID: 34352548]
[463]
Khoza LJ, Kumar P, Dube A, Demana PH, Choonara YE. Insights into innovative therapeutics for drug-resistant tuberculosis: Host-directed therapy and autophagy inducing modified nanoparticles. Int J Pharm 2022; 622: 121893.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121893] [PMID: 35680110]
[464]
Zahmatkesh S, Amesho KTT, Sillanpaa M, Wang C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: Challenges, opportunities, and progressive research trends. Cleaner Chem Eng 2022; 3: 100036.
[http://dx.doi.org/10.1016/j.clce.2022.100036]
[465]
Zubair G, Shoaib M, Khan MI, et al. Intelligent supervised learning for viscous fluid submerged in water based carbon nanotubes with irreversibility concept. Int Commun Heat Mass Transf 2022; 130: 105790.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105790]
[466]
Chaudhary V, Channegowda M, Ansari SA, et al. Low-trace monitoring of airborne sulphur dioxide employing SnO2-CNT hybrids-based energy-efficient chemiresistor. J Mater Res Technol 2022; 20: 2468-78.
[http://dx.doi.org/10.1016/j.jmrt.2022.07.159]
[467]
Arber Raviv S, Alyan M, Egorov E, et al. Lung targeted liposomes for treating ARDS. J Control Release 2022; 346: 421-33.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.028] [PMID: 35358610]
[468]
Xu T, Gu J, Meng J, Du L, Kumar A, Xu H. Melt electrowriting reinforced composite membrane for controlled drug release. J Mech Behav Biomed Mater 2022; 132: 105277.
[http://dx.doi.org/10.1016/j.jmbbm.2022.105277] [PMID: 35617819]
[469]
Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun 2022; 58(54): 7466-82.
[http://dx.doi.org/10.1039/D2CC01772E] [PMID: 35730442]
[470]
Ahirwar A, Kesharwani K, Deka R, et al. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349: 32-46.
[http://dx.doi.org/10.1016/j.jbiotec.2022.03.012] [PMID: 35339574]
[471]
Nath SS, Villadsen J. Modeling dynamics of chemical reaction networks using electrical analogs: Application to autocatalytic reactions. Chem Eng J Adv 2022; 12: 100374.
[http://dx.doi.org/10.1016/j.ceja.2022.100374]
[472]
Dhingra K, Dinda AK, Kottarath SK, Chaudhari PK, Verma F. Mucoadhesive silver nanoparticle-based local drug delivery system for peri-implantitis management in COVID-19 era. Part 1: antimicrobial and safety in-vitro analysis. J Oral Biol Craniofac Res 2022; 12(1): 177-81.
[http://dx.doi.org/10.1016/j.jobcr.2021.11.007] [PMID: 34849334]
[473]
Astinchap B, Ghanbaripour H, Amuzgar R. Multifractal analysis of chest CT images of patients with the 2019 novel coronavirus disease (COVID-19). Chaos Solitons Fractals 2022; 156: 111820.
[http://dx.doi.org/10.1016/j.chaos.2022.111820] [PMID: 35095221]
[474]
Supramaniam J, Low DYS, Wong SK, Leo BF, Goh BH, Tang SY. Nano-engineered ZnO/CNF-based epoxidized natural rubber with enhanced strength for novel Self-healing glove fabrication. Chem Eng J 2022; 437: 135440.
[http://dx.doi.org/10.1016/j.cej.2022.135440]
[475]
Salama KF, Alnimr A, Alamri A, et al. Nano-treatment of HEPA filters in COVID-19 isolation rooms in an academic medical center in Saudi Arabia. J Infect Public Health 2022; 15(9): 937-41.
[http://dx.doi.org/10.1016/j.jiph.2022.07.004] [PMID: 35914357]
[476]
Cyganowski P, Wolska J. Nanocomposite membranes with Au nanoparticles for dialysis-based catalytic reduction-separation of nitroaromatic compounds. React Funct Polym 2022; 170: 105119.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.105119]
[477]
El Moukhtari SH, Garbayo E, Fernández-Teijeiro A, Rodríguez-Nogales C, Couvreur P, Blanco-Prieto MJ. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. J Control Release 2022; 348: 553-71.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.010] [PMID: 35705114]
[478]
Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 2022; 343: 564-83.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.047] [PMID: 35124126]
[479]
Lee SCH, Burke PJ. NanoStat: An open source, fully wireless potentiostat. Electrochim Acta 2022; 422: 140481.
[http://dx.doi.org/10.1016/j.electacta.2022.140481]
[480]
Li Y, Duan R. Nanostructures with at least one dimension in ultra-small size for the treatment of acute kidney injury. Giant 2022; 11: 100111.
[http://dx.doi.org/10.1016/j.giant.2022.100111]
[481]
Alkan-Taş B, Berksun E, Taş CE, Ünal S, Ünal H. NIR-responsive waterborne polyurethane-polydopamine coatings for light-driven disinfection of surfaces. Prog Org Coat 2022; 164: 106669.
[http://dx.doi.org/10.1016/j.porgcoat.2021.106669]
[482]
Iqbal Z, Shamair Z, Usman M, et al. One pot synthesis of UiO-66@IL composite for fabrication of CO2 selective mixed matrix membranes. Chemosphere 2022; 303(Pt 2): 135122.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135122] [PMID: 35636596]
[483]
Jaroenram W, Chatnuntawech I, Kampeera J, et al. One-step colorimetric isothermal detection of COVID-19 with AI-assisted automated result analysis: A platform model for future emerging point-of-care RNA/DNA disease diagnosis. Talanta 2022; 249: 123375.
[http://dx.doi.org/10.1016/j.talanta.2022.123375] [PMID: 35738204]
[484]
Monteiro LM, Löbenberg R, Barbosa EJ, et al. Oral administration of buparvaquone nanostructured lipid carrier enables in vivo activity against Leishmania infantum. Eur J Pharm Sci 2022; 169: 106097.
[http://dx.doi.org/10.1016/j.ejps.2021.106097] [PMID: 34910988]
[485]
Ross MM, Collins AM, McCarthy MB, Kelly AL. Overcoming barriers to consumer acceptance of 3D-printed foods in the food service sector. Food Qual Prefer 2022; 100: 104615.
[http://dx.doi.org/10.1016/j.foodqual.2022.104615]
[486]
Naseer MN, Zaidi AA, Dutta K, et al. Past, present and future of materials’ applications for CO2 capture: A bibliometric analysis. Energy Rep 2022; 8: 4252-64.
[http://dx.doi.org/10.1016/j.egyr.2022.02.301]
[487]
Jermy BR, Ravinayagam V, Almohazey D, et al. PEGylated green halloysite/spinel ferrite nanocomposites for pH sensitive delivery of dexamethasone: A potential pulmonary drug delivery treatment option for COVID-19. Appl Clay Sci 2022; 216: 106333.
[http://dx.doi.org/10.1016/j.clay.2021.106333] [PMID: 34776567]
[488]
García-Casas X, Ghaffarinejad A, Aparicio FJ, et al. Plasma engineering of microstructured piezo – Triboelectric hybrid nanogenerators for wide bandwidth vibration energy harvesting. Nano Energy 2022; 91: 106673.
[http://dx.doi.org/10.1016/j.nanoen.2021.106673]
[489]
Kim J, Mayorga-Martinez CC, Vyskočil J, Ruzek D, Pumera M. Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl Mater Today 2022; 27: 101402.
[http://dx.doi.org/10.1016/j.apmt.2022.101402] [PMID: 35155738]
[490]
Almendárez-Rodriguez C, Solis-Andrade KI, Govea-Alonso DO, Comas-Garcia M, Rosales-Mendoza S. Production and characterization of chimeric SARS-CoV-2 antigens based on the capsid protein of cowpea chlorotic mottle virus. Int J Biol Macromol 2022; 213: 1007-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.021] [PMID: 35690161]
[491]
Meena J, Singhvi P, Srichandan S, et al. RBD decorated PLA nanoparticle admixture with aluminum hydroxide elicit robust and long lasting immune response against SARS-CoV-2. Eur J Pharm Biopharm 2022; 176: 43-53.
[http://dx.doi.org/10.1016/j.ejpb.2022.05.008] [PMID: 35589003]
[492]
Long Q, Yang Y, Yang M, et al. Recombinant VLPs empower RBM peptides showing no immunogenicity in native SARS-COV-2 protein to elicit a robust neutralizing antibody response. Nanomedicine 2022; 41: 102527.
[http://dx.doi.org/10.1016/j.nano.2022.102527] [PMID: 35104670]
[493]
Spencer AC, Surnar B, Kolishetti N, Toborek M, Dhar S. Restoring the neuroprotective capacity of glial cells under opioid addiction. Addiction Neurosci 2022; 4: 100027.
[http://dx.doi.org/10.1016/j.addicn.2022.100027]
[494]
Zahmatkesh S, Sillanpää M. Review of method and a new tool for decline and inactive SARS-CoV-2 in wastewater treatment. Cleaner Chemical Engineering 2022; 3: 100037.
[http://dx.doi.org/10.1016/j.clce.2022.100037]
[495]
Choudhary N, Bharti R, Sharma R. Role of artificial intelligence in chemistry. Mater Today Proc 2022; 48: 1527-33.
[http://dx.doi.org/10.1016/j.matpr.2021.09.428]
[496]
Muhammad W, Zhu J, Zhai Z, et al. ROS-responsive polymer nanoparticles with enhanced loading of dexamethasone effectively modulate the lung injury microenvironment. Acta Biomater 2022; 148: 258-70.
[http://dx.doi.org/10.1016/j.actbio.2022.06.024] [PMID: 35724918]
[497]
Gonzaga IMD, Dória AR, Santos GOS, et al. Scale-up of Ru-based mesh anodes for the degradation of synthetic hospital wastewater. Separ Purif Tech 2022; 285: 120260.
[http://dx.doi.org/10.1016/j.seppur.2021.120260]
[498]
Yörüklü HC, Filiz BC, Figen AK, Özkaya B. Screening of biohydrogen production based on dark fermentation in the presence of nano-sized Fe2O3 doped metal oxide additives. Int J Hydrogen Energy 2022; 47(34): 15383-96.
[http://dx.doi.org/10.1016/j.ijhydene.2022.03.148]
[499]
Duan Z, Liang M, Yang C, et al. Selenium nanoparticles coupling with Astragalus Polysaccharides exert their cytotoxicities in MCF-7 cells by inhibiting autophagy and promoting apoptosis. J Trace Elem Med Biol 2022; 73: 127006.
[http://dx.doi.org/10.1016/j.jtemb.2022.127006] [PMID: 35660560]
[500]
Zhang Z, Zhao M, Su M, et al. Self-assembled 1D nanostructures for direct nanoscale detection and biosensing. Matter 2022; 5(6): 1865-76.
[http://dx.doi.org/10.1016/j.matt.2022.03.013]
[501]
Bukit BF, Frida E, Humaidi S, Sinuhaji P. Selfcleaning and antibacterial activities of textiles using nanocomposite oil palm boiler ash (OPBA), TiO2 and chitosan as coating. S Afr J Chem Eng 2022; 41: 105-10.
[http://dx.doi.org/10.1016/j.sajce.2022.05.007]
[502]
Bitencourt SB, Hatton BD, Bastos-Bitencourt NA, dos Santos DM, Pesqueira AA, De Souza GM. Silica deposition on zirconia via room-temperature atomic layer deposition (RT-ALD): Effect on bond strength to veneering ceramic. J Mech Behav Biomed Mater 2022; 129: 105142.
[http://dx.doi.org/10.1016/j.jmbbm.2022.105142] [PMID: 35259624]
[503]
Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol 2022; 198: 101-10.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.073] [PMID: 34968533]
[504]
Sajadian SA, Ardestani NS, Jouyban A. Solubility of montelukast (as a potential treatment of COVID -19) in supercritical carbon dioxide: Experimental data and modelling. J Mol Liq 2022; 349: 118219.
[http://dx.doi.org/10.1016/j.molliq.2021.118219]
[505]
Sodeifian G, Alwi RS, Razmimanesh F. Solubility of Pholcodine (antitussive drug) in supercritical carbon dioxide: Experimental data and thermodynamic modeling. Fluid Phase Equilib 2022; 556: 113396.
[http://dx.doi.org/10.1016/j.fluid.2022.113396]
[506]
Jatal R, Mendes Saraiva S, Vázquez-Vázquez C, et al. Sphingomyelin nanosystems decorated with TSP-1 derived peptide targeting senescent cells. Int J Pharm 2022; 617: 121618.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121618] [PMID: 35219823]
[507]
Matheri AN, Mohamed B, Ntuli F, Nabadda E, Ngila JC. Sustainable circularity and intelligent data-driven operations and control of the wastewater treatment plant. Phys Chem Earth Parts ABC 2022; 126: 103152.
[http://dx.doi.org/10.1016/j.pce.2022.103152]
[508]
Halimehjani AZ, Dehghan F, Tafakori V, Amini E, Hooshmand SE, Nosood YL. Synthesis of novel antibacterial and antifungal dithiocarbamate-containing piperazine derivatives via re-engineering multicomponent approach. Heliyon 2022; 8(6): e09564.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09564] [PMID: 35669544]
[509]
Xu J, Ramasamy M, Tang T, Wang Y, Zhao W, Tam KC. Synthesis of silver nanoclusters in colloidal scaffold for biolabeling and antimicrobial applications. J Colloid Interface Sci 2022; 623: 883-96.
[http://dx.doi.org/10.1016/j.jcis.2022.05.084] [PMID: 35636296]
[510]
Shanmugan S, Madupu RK, Selvaraju P, Ravichandran S. Systematic growth on antibacterial activities use of silver nanoparticles with Citrus aurantifolia. Mater Today Proc 2022; 51: 998-1005.
[http://dx.doi.org/10.1016/j.matpr.2021.07.055]
[511]
Al-Mustanjid M, Mahmud SMH, Akter F, et al. Systems biology models to identify the influence of SARS-CoV-2 infections to the progression of human autoimmune diseases. Informatics in Medicine Unlocked 2022; 32: 101003.
[http://dx.doi.org/10.1016/j.imu.2022.101003] [PMID: 35818398]
[512]
Khairiah K, Frida E, Sebayang K, Sinuhaji P, Humaidi S, Fudholi A. The development of a novel FM nanoadsorbent for heavy metal remediation in polluted water. S Afr J Chem Eng 2022; 39: 32-41.
[http://dx.doi.org/10.1016/j.sajce.2021.11.006]
[513]
Eş I, Malfatti-Gasperini AA, de la Torre LG. The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids Surf B Biointerfaces 2022; 215: 112476.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112476] [PMID: 35390597]
[514]
Yuan Y, Liu J, Gao B, Sillanpää M, Al-Farraj S. The effect of activated sludge treatment and catalytic ozonation on high concentration of ammonia nitrogen removal from landfill leachate. Bioresour Technol 2022; 361: 127668.
[http://dx.doi.org/10.1016/j.biortech.2022.127668] [PMID: 35878770]
[515]
Ruokolainen J, Igel B. The elusiveness of business networks—Why do science park firm tenants not collaborate with neighbors? Ind Mark Manage 2022; 101: 113-24.
[http://dx.doi.org/10.1016/j.indmarman.2021.11.011]
[516]
Noble SM, Mende M, Grewal D, Parasuraman A. The fifth industrial revolution: How harmonious human–machine collaboration is triggering a retail and service [R]evolution. J Retailing 2022; 98(2): 199-208.
[http://dx.doi.org/10.1016/j.jretai.2022.04.003]
[517]
Chatalova L, Korotayev A. The long cycle perspective on the emerging bio age. Futures 2022; 141: 102991.
[http://dx.doi.org/10.1016/j.futures.2022.102991]
[518]
Foong SY, Chan YH, Loy ACM, et al. The nexus between biofuels and pesticides in agroforestry: Pathways toward United Nations sustainable development goals. Environ Res 2022; 214(Pt. 1): 113751.
[http://dx.doi.org/10.1016/j.envres.2022.113751] [PMID: 35753369]
[519]
Piccarozzi M, Aquilani B. The role of Big Data in the business challenge of Covid-19: A systematic literature review in managerial studies. Procedia Comput Sci 2022; 200: 1746-55.
[http://dx.doi.org/10.1016/j.procs.2022.01.375] [PMID: 35284028]
[520]
Sharma V, Singh AP, Singh AP. Therapeutic approaches in COVID-19 followed before arrival of any vaccine. Mater Today Proc 2022; 48: 1258-64.
[http://dx.doi.org/10.1016/j.matpr.2021.08.265] [PMID: 34493973]
[521]
Ji J, Liu N, Tian Y, et al. Transparent polyurethane coating with synergistically enhanced antibacterial mechanism composed of low surface free energy and biocide. Chem Eng J 2022; 445: 136716.
[http://dx.doi.org/10.1016/j.cej.2022.136716]
[522]
Greenhawt M. True, true, and unrelated: Stop routine testing to vaccine excipients for suspected vaccine allergy. Ann Allergy Asthma Immunol 2022; 129(1): 24-6.
[http://dx.doi.org/10.1016/j.anai.2022.04.007] [PMID: 35717133]
[523]
Wang Y, Wang Q, Wu G, et al. Ultra-fast bacterial inactivation of Cu2O@halloysite nanotubes hybrids with charge adsorption and physical piercing ability for medical protective fabrics. J Mater Sci Technol 2022; 122: 1-9.
[http://dx.doi.org/10.1016/j.jmst.2021.12.059]
[524]
Marrucci L, Corcelli F, Daddi T, Iraldo F. Using a life cycle assessment to identify the risk of “circular washing” in the leather industry. Resour Conserv Recycling 2022; 185: 106466.
[http://dx.doi.org/10.1016/j.resconrec.2022.106466]
[525]
Tomás AL, Reichel A, Silva PM, et al. UV-C irradiation-based inactivation of SARS-CoV-2 in contaminated porous and non-porous surfaces. J Photochem Photobiol B 2022; 234: 112531.
[http://dx.doi.org/10.1016/j.jphotobiol.2022.112531] [PMID: 35933836]
[526]
Wang R, Li Y, Pang Y, et al. VIR-CRISPR: Visual in-one-tube ultrafast RT-PCR and CRISPR method for instant SARS-CoV-2 detection. Anal Chim Acta 2022; 1212: 339937.
[http://dx.doi.org/10.1016/j.aca.2022.339937] [PMID: 35623788]
[527]
Wang Y, Zheng X, Liu J, Chen L, Chen Q, Zhao Y. Virus-like siRNA construct dynamically responsive to sequential microenvironments for potent RNA interference. J Colloid Interface Sci 2022; 622: 938-49.
[http://dx.doi.org/10.1016/j.jcis.2022.05.006] [PMID: 35561612]
[528]
Mascuch SJ, Fakhretaha-Aval S, Bowman JC, et al. A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits. J Biol Chem 2020; 295(46): 15438-53.
[http://dx.doi.org/10.1074/jbc.RA120.015434] [PMID: 32883809]
[529]
Reis RYN, Goulart LA, Mascaro LH, Alves SA. A critical view of the contributions of photoelectrochemical technology to pharmaceutical degradation. J Environ Chem Eng 2022; 10(3): 107859.
[http://dx.doi.org/10.1016/j.jece.2022.107859]
[530]
Zhao Z, Ma X, Zhang R, et al. A novel liposome-polymer hybrid nanoparticles delivering a multi-epitope self-replication DNA vaccine and its preliminary immune evaluation in experimental animals. Nanomedicine 2020; 102338.
[http://dx.doi.org/10.1016/j.nano.2020.102338] [PMID: 33197626]
[531]
Barbosa EJ, Andrade MAB, Gubitoso MR, et al. Acoustic levitation and high-resolution synchrotron X-ray powder diffraction: A fast screening approach of niclosamide amorphous solid dispersions. Int J Pharm 2021; 602: 120611.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120611] [PMID: 33872710]
[532]
Chan Y, Ng SW, Mehta M, et al. Advanced drug delivery systems can assist in managing influenza virus infection: A hypothesis. Med Hypotheses 2020; 144: 110298.
[http://dx.doi.org/10.1016/j.mehy.2020.110298] [PMID: 33254489]
[533]
Mehta M, Prasher P, Sharma M, et al. Advanced drug delivery systems can assist in targeting coronavirus disease (COVID-19): A hypothesis. Med Hypotheses 2020; 144: 110254.
[http://dx.doi.org/10.1016/j.mehy.2020.110254] [PMID: 33254559]
[534]
Patil RB, Chougale AD. Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Mater Today Proc 2021; 47: 5520-32.
[http://dx.doi.org/10.1016/j.matpr.2021.03.384]
[535]
Megahed NA, Ghoneim EM. Antivirus-built environment: Lessons learned from Covid-19 pandemic. Sustain Cities Soc 2020; 61: 102350.
[http://dx.doi.org/10.1016/j.scs.2020.102350] [PMID: 32834930]
[536]
Caputo F, Mehn D, Clogston JD, et al. Asymmetric-flow field-flow fractionation for measuring particle size, drug loading and (in)stability of nanopharmaceuticals. The joint view of European Union Nanomedicine Characterization Laboratory and National Cancer Institute - Nanotechnology Characterization Laboratory. J Chromatogr A 2021; 1635: 461767.
[http://dx.doi.org/10.1016/j.chroma.2020.461767] [PMID: 33310281]
[537]
Robson B. Bioinformatics studies on a function of the SARS-CoV-2 spike glycoprotein as the binding of host sialic acid glycans. Comput Biol Med 2020; 122: 103849.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103849] [PMID: 32658736]
[538]
Khurana I, Allawadhi P, Khurana A, et al. Can bilirubin nanomedicine become a hope for the management of COVID-19? Med Hypotheses 2021; 149: 110534.
[http://dx.doi.org/10.1016/j.mehy.2021.110534] [PMID: 33640714]
[539]
Skariyachan S, Gopal D, Deshpande D, Joshi A, Uttarkar A, Niranjan V. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infect Genet Evol 2021; 96: 105155.
[http://dx.doi.org/10.1016/j.meegid.2021.105155] [PMID: 34823028]
[540]
Hanifehnezhad A, Kehribar EŞ, Öztop S, et al. Characterization of local SARS-CoV-2 isolates and pathogenicity in IFNAR−/- mice. Heliyon 2020; 6(9): e05116.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05116] [PMID: 33015402]
[541]
Shourni S, Javadi A, Hosseinpour N, Bahramian A, Raoufi M. Characterization of protein corona formation on nanoparticles via the analysis of dynamic interfacial properties: Bovine serum albumin-silica particle interaction. Colloids Surf A Physicochem Eng Asp 2022; 638: 128273.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128273]
[542]
Harwood S, Eaves S. Conceptualising technology, its development and future: The six genres of technology. Technol Forecast Soc Change 2020; 160: 120174.
[http://dx.doi.org/10.1016/j.techfore.2020.120174] [PMID: 32904525]
[543]
Costoya J, Surnar B, Kalathil AA, Kolishetti N, Dhar S. Controlled release nanoplatforms for three commonly used chemotherapeutics. Mol Aspects Med 2022; 83: 101043.
[http://dx.doi.org/10.1016/j.mam.2021.101043] [PMID: 34920863]
[544]
Zaheer T, Pal K, Abbas RZ, Torres MPR. COVID-19 and Ivermectin: Potential threats associated with human use. J Mol Struct 2021; 1243: 130808.
[http://dx.doi.org/10.1016/j.molstruc.2021.130808] [PMID: 34149064]
[545]
Ng KY, Gui MM. COVID-19: Development of a robust mathematical model and simulation package with consideration for ageing population and time delay for control action and resusceptibility. Physica D 2020; 411: 132599.
[http://dx.doi.org/10.1016/j.physd.2020.132599] [PMID: 32536738]
[546]
Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J Inorg Biochem 2021; 219: 111454.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111454] [PMID: 33878530]
[547]
Parvathaneni V, Shukla SK, Kulkarni NS, Gupta V. Development and characterization of inhalable transferrin functionalized amodiaquine nanoparticles – Efficacy in Non-Small Cell Lung Cancer (NSCLC) treatment. Int J Pharm 2021; 608: 121038.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121038] [PMID: 34438008]
[548]
Bande F, Arshad SS, Bejo MH, et al. Development and immunogenic potentials of chitosan-saponin encapsulated DNA vaccine against avian infectious bronchitis coronavirus. Microb Pathog 2020; 149: 104560.
[http://dx.doi.org/10.1016/j.micpath.2020.104560] [PMID: 33068733]
[549]
Longueira Y, Polo ML, Turk G, Laufer N. Dynamics of SARS-CoV-2-specific antibodies among COVID19 biobank donors in Argentina. Heliyon 2021; 7(10): e08140.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08140] [PMID: 34642643]
[550]
Pelosi C, Duce C, Wurm FR, Tinè MR. Effect of polymer hydrophilicity and molar mass on the properties of the protein in protein–polymer conjugates: The case of PPEylated myoglobin. Biomacromolecules 2021; 22(5): 1932-43.
[http://dx.doi.org/10.1021/acs.biomac.1c00058] [PMID: 33830737]
[551]
Kosal ME. Emerging life sciences and possible threats to international security. Orbis 2020; 64(4): 599-614.
[http://dx.doi.org/10.1016/j.orbis.2020.08.008] [PMID: 32994647]
[552]
Wang Y, Xie Y, Luo J, et al. Engineering a self-navigated MnARK nanovaccine for inducing potent protective immunity against novel coronavirus. Nano Today 2021; 38: 101139.
[http://dx.doi.org/10.1016/j.nantod.2021.101139] [PMID: 33758593]
[553]
Mahnam K, Lotfi M, Shapoorabadi FA. Examining the interactions scorpion venom peptides (HP1090, Meucin-13, and Meucin-18) with the receptor binding domain of the coronavirus spike protein to design a mutated therapeutic peptide. J Mol Graph Model 2021; 107: 107952.
[http://dx.doi.org/10.1016/j.jmgm.2021.107952] [PMID: 34119951]
[554]
Hou F, Teng Z, Ru J, et al. Flower-like mesoporous silica nanoparticles as an antigen delivery platform to promote systemic immune response. Nanomedicine 2022; 42: 102541.
[http://dx.doi.org/10.1016/j.nano.2022.102541] [PMID: 35181525]
[555]
Ramaiah GB, Tegegne A, Melese B. Functionality of nanomaterials and its technological aspects-used in preventing, diagnosing and treating COVID-19. Mater Today Proc 2021; 47: 2337-44.
[http://dx.doi.org/10.1016/j.matpr.2021.04.306] [PMID: 33968611]
[556]
Dunford M, Qi B. Global reset: COVID-19, systemic rivalry and the global order. Research in Globalization 2020; 2: 100021.
[http://dx.doi.org/10.1016/j.resglo.2020.100021]
[557]
Nazari E, Shahriari MH, Dadgarmoghaddam M, et al. Home quarantine is a useful strategy to prevent the coronavirus outbreak: Identifying the reasons for non-compliance in some Iranians. Informat Med Unlocked 2020; 21: 100487.
[http://dx.doi.org/10.1016/j.imu.2020.100487] [PMID: 33251325]
[558]
Souza DCS, Amorim SM, Cadamuro RD, et al. Hydrophobic cellulose-based and non-woven fabrics coated with mesoporous TiO2 and their virucidal properties under indoor light. Carbohydrate Polymer Technol Applicat 2022; 3: 100182.
[http://dx.doi.org/10.1016/j.carpta.2021.100182]
[559]
Mildner R, Hak S, Parot J, et al. Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery. Eur J Pharm Biopharm 2021; 163: 252-65.
[http://dx.doi.org/10.1016/j.ejpb.2021.03.004] [PMID: 33745980]
[560]
Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Sahebkar A, Oskuee RK, Kesharwani P, Jalili A. In silico and experimental validation of a new modified arginine-rich cell penetrating peptide for plasmid DNA delivery. Int J Pharm 2022; 624: 122005.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122005] [PMID: 35817271]
[561]
Mirmohammadi S, Kianmehr A, Sabbaghian A, et al. In silico drug repurposing against SARS-CoV-2 using an integrative transcriptomic profiling approach: Hydrocortisone and Benzhydrocodone as potential drug candidates against COVID-19. Infect Genet Evol 2022; 103: 105318.
[http://dx.doi.org/10.1016/j.meegid.2022.105318] [PMID: 35718334]
[562]
Hashemzadeh H, Iranshahy M, Iranshahi M, Raissi H. In silico exploration of disulfide derivatives of Ferula foetida oleo-gum (Covexir®) as promising therapeutics against SARS-CoV-2. Comput Biol Med 2022; 146: 105566.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105566] [PMID: 35598351]
[563]
Coelho F, Botelho C, Paris JL, Marques EF, Silva BFB. Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. J Mol Liq 2021; 344: 117930.
[http://dx.doi.org/10.1016/j.molliq.2021.117930]
[564]
Hemmati SA, Tabein S. Insect protease inhibitors; promising inhibitory compounds against SARS-CoV-2 main protease. Comput Biol Med 2022; 142: 105228.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105228] [PMID: 35051855]
[565]
Mbunge E. Integrating emerging technologies into COVID-19 contact tracing: Opportunities, challenges and pitfalls. Diabetes Metab Syndr 2020; 14(6): 1631-6.
[http://dx.doi.org/10.1016/j.dsx.2020.08.029] [PMID: 32892060]
[566]
Plikusiene I, Maciulis V, Juciute S, et al. Investigation of SARS-CoV-2 nucleocapsid protein interaction with a specific antibody by combined spectroscopic ellipsometry and quartz crystal microbalance with dissipation. J Colloid Interface Sci 2022; 626: 113-22.
[http://dx.doi.org/10.1016/j.jcis.2022.06.119] [PMID: 35780545]
[567]
Sellaoui L, Badawi M, Monari A, et al. Make it clean, make it safe: A review on virus elimination via adsorption. Chem Eng J 2021; 412: 128682.
[http://dx.doi.org/10.1016/j.cej.2021.128682] [PMID: 33776550]
[568]
Athirasala A, Patel S, Menezes PP, et al. Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomedicine 2022; 42: 102550.
[http://dx.doi.org/10.1016/j.nano.2022.102550] [PMID: 35292368]
[569]
Vora LK, Moffatt K, Tekko IA, et al. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm 2021; 159: 44-76.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.006] [PMID: 33359666]
[570]
Amani H, Shahbazi MA, D’Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Control Release 2021; 330: 185-217.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.019] [PMID: 33340568]
[571]
Milane L, Dolare S, Jahan T, Amiji M. Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine 2021; 37: 102422.
[http://dx.doi.org/10.1016/j.nano.2021.102422] [PMID: 34175455]
[572]
Asfour HZ, Alhakamy NA, Eljaaly K, et al. Molecular docking studies of HIV TAT and sitagliptin nano-formula as potential therapeutic targeting SARS-CoV2 protease. J Indian Chem Soc 2021; 98(9): 100119.
[http://dx.doi.org/10.1016/j.jics.2021.100119]
[573]
El-Ramady H, Abdalla N, Elbasiouny H, et al. Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicol Environ Saf 2021; 222: 112500.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112500] [PMID: 34274837]
[574]
Al-Ansari MM, Ranjit Singh AJA, Al-Khattaf FS, Michael JS. Nano-formulation of herbo-mineral alternative medicine from linga chenduram and evaluation of antiviral efficacy. Saudi J Biol Sci 2021; 28(3): 1596-606.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.005] [PMID: 33732045]
[575]
Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani KK. Nanoceria as a possible agent for the management of COVID-19. Nano Today 2020; 35: 100982.
[http://dx.doi.org/10.1016/j.nantod.2020.100982] [PMID: 32952596]
[576]
Chen M, Rosenberg J, Cai X, et al. Nanotraps for the containment and clearance of SARS-CoV-2. Matter 2021; 4(6): 2059-82.
[http://dx.doi.org/10.1016/j.matt.2021.04.005] [PMID: 33907732]
[577]
Hamouche W, Bisserier M, Brojakowska A, et al. Pathophysiology and pharmacological management of pulmonary and cardiovascular features of COVID-19. J Mol Cell Cardiol 2021; 153: 72-85.
[http://dx.doi.org/10.1016/j.yjmcc.2020.12.009] [PMID: 33373644]
[578]
Park HH, Kim H, Lee HS, et al. PEGylated nanoparticle albumin-bound steroidal ginsenoside derivatives ameliorate SARS-CoV-2-mediated hyper-inflammatory responses. Biomaterials 2021; 273: 120827.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120827] [PMID: 33910079]
[579]
Greydanus DE, Cabral MD, Patel DR. Pelvic inflammatory disease in the adolescent and young adult: An update. Dis Mon 2022; 68(3): 101287.
[http://dx.doi.org/10.1016/j.disamonth.2021.101287] [PMID: 34521505]
[580]
Castellani C, Radu CM, Morillas-Becerril L, et al. Poly(lipoic acid)-based nanoparticles as a new therapeutic tool for delivering active molecules. Nanomedicine 2022; 45: 102593.
[http://dx.doi.org/10.1016/j.nano.2022.102593] [PMID: 35907619]
[581]
Turuvekere Vittala Murthy N, Agrahari V, Chauhan H. Polyphenols against infectious diseases: Controlled release nano-formulations. Eur J Pharm Biopharm 2021; 161: 66-79.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.003] [PMID: 33588032]
[582]
Natesh J, Mondal P, Kaur B, Abdul Salam AA, Kasilingam S, Meeran SM. Promising phytochemicals of traditional Himalayan medicinal plants against putative replication and transmission targets of SARS-CoV-2 by computational investigation. Comput Biol Med 2021; 133: 104383.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104383] [PMID: 33915361]
[583]
Li L, Long J, Sang Y, et al. Rational preparation and application of a mRNA delivery system with cytidinyl/cationic lipid. J Control Release 2021; 340: 114-24.
[http://dx.doi.org/10.1016/j.jconrel.2021.10.023] [PMID: 34699870]
[584]
Grieger KD, Merck AW, Cuchiara M, et al. Responsible innovation of nano-agrifoods: Insights and views from U.S. stakeholders. NanoImpact 2021; 24: 100365.
[http://dx.doi.org/10.1016/j.impact.2021.100365] [PMID: 35559824]
[585]
Lim J, Cheong Y, Kim YS, et al. RNA-dependent assembly of chimeric antigen nanoparticles as an efficient H5N1 pre-pandemic vaccine platform. Nanomedicine 2021; 37: 102438.
[http://dx.doi.org/10.1016/j.nano.2021.102438] [PMID: 34256061]
[586]
Azizova LR, Kulik TV, Palianytsia BB, Telbiz GM, Kartel MT. Secondary structure of muramyl dipeptide glycoside in pristine state and immobilized on nanosilica surface. Colloids Surf A Physicochem Eng Asp 2021; 631: 127724.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127724]
[587]
Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of machine learning in healthcare: Features, pillars and applications. International Journal of Intelligent Networks 2022; 3: 58-73.
[http://dx.doi.org/10.1016/j.ijin.2022.05.002]
[588]
Puri A, Ibrahim F, O’Reilly Beringhs A, et al. Stealth oxime ether lipid vesicles promote delivery of functional DsiRNA in human lung cancer A549 tumor bearing mouse xenografts. Nanomedicine 2022; 44: 102572.
[http://dx.doi.org/10.1016/j.nano.2022.102572] [PMID: 35671983]
[589]
Farfán-Castro S, García-Soto MJ, Comas-García M, et al. Synthesis and immunogenicity assessment of a gold nanoparticle conjugate for the delivery of a peptide from SARS-CoV-2. Nanomedicine 2021; 34: 102372.
[http://dx.doi.org/10.1016/j.nano.2021.102372] [PMID: 33662593]
[590]
Abbas G, Irfan A, Ahmed I, et al. Synthesis and investigation of anti-COVID19 ability of ferrocene Schiff base derivatives by quantum chemical and molecular docking. J Mol Struct 2022; 1253: 132242.
[http://dx.doi.org/10.1016/j.molstruc.2021.132242] [PMID: 34975177]
[591]
Aubets E, Griera R, Felix AJ, et al. Synthesis and validation of DOPY: A new gemini dioleylbispyridinium based amphiphile for nucleic acid transfection. Eur J Pharm Biopharm 2021; 165: 279-92.
[http://dx.doi.org/10.1016/j.ejpb.2021.05.016] [PMID: 34033881]
[592]
Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJA. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Health 2021; 14(3): 324-30.
[http://dx.doi.org/10.1016/j.jiph.2020.12.016] [PMID: 33618277]
[593]
Rai PK, Usmani Z, Thakur VK, Gupta VK, Mishra YK. Tackling COVID-19 pandemic through nanocoatings: Confront and exactitude. Curr Res Green Sustain Chem 2020; 3: 100011.
[http://dx.doi.org/10.1016/j.crgsc.2020.100011]
[594]
Ansari MA, Jamal QMS, Rehman S, et al. TAT-peptide conjugated repurposing drug against SARS-CoV-2 main protease (3CLpro): Potential therapeutic intervention to combat COVID-19. Arab J Chem 2020; 13(11): 8069-79.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.037] [PMID: 34909057]
[595]
Hobbs JE. The Covid-19 pandemic and meat supply chains. Meat Sci 2021; 181: 108459.
[http://dx.doi.org/10.1016/j.meatsci.2021.108459] [PMID: 33602591]
[596]
Hassan SS, Choudhury PP, Dayhoff GW II, et al. The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Arch Biochem Biophys 2022; 717: 109124.
[http://dx.doi.org/10.1016/j.abb.2022.109124] [PMID: 35085577]
[597]
Mohammadi G, Sotoudehnia Koranni Z, Jebali A. The oral vaccine based on self-replicating RNA lipid nanoparticles can simultaneously neutralize both SARS-CoV-2 variants alpha and delta. Int Immunopharmacol 2021; 101(Pt B): 108231.
[http://dx.doi.org/10.1016/j.intimp.2021.108231] [PMID: 34655852]
[598]
Pandya M, Shah SMD, et al. Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach. Informatics in Medicine Unlocked 2022; 30: 100951.
[http://dx.doi.org/10.1016/j.imu.2022.100951] [PMID: 35475214]
[599]
Liu Q, Wang X, Liao YP, et al. Use of a liver-targeting nanoparticle platform to intervene in peanut-induced anaphylaxis through delivery of an Ara h2 T-cell epitope. Nano Today 2022; 42: 101370.
[http://dx.doi.org/10.1016/j.nantod.2021.101370]
[600]
Sagisaka M, Endo T, Fujita K, et al. Very low surface tensions with “Hedgehog” surfactants. Colloids Surf A Physicochem Eng Asp 2021; 631: 127690.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127690]
[601]
Chan SK, Du P, Ignacio C, Mehta S, Newton IG, Steinmetz NF. Virus-like particles as positive controls for COVID-19 RT-LAMP diagnostic assays. Biomacromolecules 2021; 22(3): 1231-43.
[http://dx.doi.org/10.1021/acs.biomac.0c01727] [PMID: 33539086]
[602]
Natarajan S, Krishnamoorthy K, Sathyaseelan A, et al. A new route for the recycling of spent lithium-ion batteries towards advanced energy storage, conversion, and harvesting systems. Nano Energy 2022; 101: 107595.
[http://dx.doi.org/10.1016/j.nanoen.2022.107595]
[603]
Abstracts. Fuel Energy Abstr 2016; 57(2): 94-191.
[http://dx.doi.org/10.1016/j.fueleneab.2016.02.002]
[604]
Luo S, Samad YA, Chan V, Liao K. Cellular Graphene: Fabrication, mechanical properties, and strain-sensing applications. Matter 2019; 1(5): 1148-202.
[http://dx.doi.org/10.1016/j.matt.2019.10.001]
[605]
Dharmasena RDIG, Cronin HM, Dorey RA, Silva SRP. Direct current contact-mode triboelectric nanogenerators via systematic phase shifting. Nano Energy 2020; 75: 104887.
[http://dx.doi.org/10.1016/j.nanoen.2020.104887]
[606]
Peng S, Li L, Kong Yoong Lee J, et al. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016; 22: 361-95.
[http://dx.doi.org/10.1016/j.nanoen.2016.02.001]
[607]
Sun Z, Wen X, Wang L, et al. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022; 2: 32-46.
[http://dx.doi.org/10.1016/j.esci.2021.12.009]
[608]
Li M, Porter AL, Wang ZL. Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling. Nano Energy 2017; 34: 93-102.
[http://dx.doi.org/10.1016/j.nanoen.2017.02.020]
[609]
Peng H, Fang X, Ranaei S, Wen Z, Porter AL. Forecasting potential sensor applications of triboelectric nanogenerators through tech mining. Nano Energy 2017; 35: 358-69.
[http://dx.doi.org/10.1016/j.nanoen.2017.04.006]
[610]
Thakur S, Dasmahapatra AK, Bandyopadhyay D. Functional liquid droplets for analyte sensing and energy harvesting. Adv Colloid Interface Sci 2021; 294: 102453.
[http://dx.doi.org/10.1016/j.cis.2021.102453] [PMID: 34120038]
[611]
Tian Y, An Y, Xu B. MXene-based materials for advanced nanogenerators. Nano Energy 2022; 101: 107556.
[http://dx.doi.org/10.1016/j.nanoen.2022.107556]
[612]
Lu MP, Lu MY, Chen LJ. p-Type ZnO nanowires: From synthesis to nanoenergy. Nano Energy 2012; 1(2): 247-58.
[http://dx.doi.org/10.1016/j.nanoen.2011.12.004]
[613]
Zhang XS, Su M, Brugger J, Kim B. Penciling a triboelectric nanogenerator on paper for autonomous power MEMS applications. Nano Energy 2017; 33: 393-401.
[http://dx.doi.org/10.1016/j.nanoen.2017.01.053]
[614]
Hu H, Pei Z, Ye C. Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Mater 2015; 1: 82-102.
[http://dx.doi.org/10.1016/j.ensm.2015.08.005]
[615]
Zou Y, Bo L, Li Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundamental Research 2021; 1(3): 364-82.
[http://dx.doi.org/10.1016/j.fmre.2021.05.002]
[616]
Rana S, Singh V, Singh B. Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. iScience 2022; 25(2): 103748.
[http://dx.doi.org/10.1016/j.isci.2022.103748] [PMID: 35118361]
[617]
Zhao J, Cong Z, Hu J, et al. Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy 2022; 93: 106893.
[http://dx.doi.org/10.1016/j.nanoen.2021.106893]
[618]
Wu M, Yao K, Li D, et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater Today Energy 2021; 21: 100786.
[http://dx.doi.org/10.1016/j.mtener.2021.100786]
[619]
Ferrie S, Le Brun AP, Krishnan G, Andersson GG, Darwish N, Ciampi S. Sliding silicon-based Schottky diodes: Maximizing triboelectricity with surface chemistry. Nano Energy 2022; 93: 106861.
[http://dx.doi.org/10.1016/j.nanoen.2021.106861]
[620]
Badatya S, Bharti DK, Srivastava AK, Gupta MK. Solution processed high performance piezoelectric eggshell membrane – PVDF layer composite nanogenerator via tuning the interfacial polarization. J Alloys Compd 2021; 863: 158406.
[http://dx.doi.org/10.1016/j.jallcom.2020.158406]
[621]
Li M, Xu B, Li Z, Gao Y, Yang Y, Huang X. Toward 3D double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing. Chem Eng J 2022; 450: 137491.
[http://dx.doi.org/10.1016/j.cej.2022.137491]
[622]
Zhu B, Lund P, Raza R, et al. A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2013; 2(6): 1179-85.
[http://dx.doi.org/10.1016/j.nanoen.2013.05.001]
[623]
Afif A, Rahman SMH, Tasfiah Azad A, Zaini J, Islan MA, Azad AK. Advanced materials and technologies for hybrid supercapacitors for energy storage-a review. J Energy Storage 2019; 25: 100852.
[http://dx.doi.org/10.1016/j.est.2019.100852]
[624]
Olabi AG, Abdelkareem MA, Wilberforce T, Sayed ET. Application of graphene in energy storage device-a review. Renew Sustain Energy Rev 2021; 135: 110026.
[http://dx.doi.org/10.1016/j.rser.2020.110026]
[625]
Kong L, Hasanbeigi A, Price L. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: A technical review. J Clean Prod 2016; 122: 5-28.
[http://dx.doi.org/10.1016/j.jclepro.2015.12.116]
[626]
Wang J. Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy 2015; 80: 509-21.
[http://dx.doi.org/10.1016/j.energy.2014.12.007]
[627]
Md Khudzari J, Kurian J, Tartakovsky B, Raghavan GSV. Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem Eng J 2018; 136: 51-60.
[http://dx.doi.org/10.1016/j.bej.2018.05.002]
[628]
Khatoon R, Attique S, Liu R, et al. Carbonized waste milk powders as cathodes for stable lithium–sulfur batteries with ultra-large capacity and high initial coulombic efficiency. Green Energy & Environment 2022; 7(5): 1071-83.
[http://dx.doi.org/10.1016/j.gee.2021.01.007]
[629]
Furszyfer Del Rio DD, Sovacool BK, Foley AM, et al. Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems. Renew Sustain Energy Rev 2022; 157: 112081.
[http://dx.doi.org/10.1016/j.rser.2022.112081]
[630]
Sadhasivam T, Kim HT, Jung S, Roh SH, Park JH, Jung HY. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review. Renew Sustain Energy Rev 2017; 72: 523-34.
[http://dx.doi.org/10.1016/j.rser.2017.01.107]
[631]
Kraia T, Wachowski S, Vøllestad E, et al. Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte. Solid State Ion 2017; 306: 31-7.
[http://dx.doi.org/10.1016/j.ssi.2017.04.010]
[632]
Patil JV, Mali SS, Kamble AS, Hong CK, Kim JH, Patil PS. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl Surf Sci 2017; 423: 641-74.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.116]
[633]
Hussain A, Arif SM, Aslam M. Emerging renewable and sustainable energy technologies: State of the art. Renew Sustain Energy Rev 2017; 71: 12-28.
[http://dx.doi.org/10.1016/j.rser.2016.12.033]
[634]
Guo Y, Bae J, Zhao F, Yu G. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem 2019; 1(3): 335-48.
[http://dx.doi.org/10.1016/j.trechm.2019.03.005]
[635]
Saritas O, Burmaoglu S. Future of sustainable military operations under emerging energy and security considerations. Technol Forecast Soc Change 2016; 102: 331-43.
[http://dx.doi.org/10.1016/j.techfore.2015.08.010]
[636]
Lee SJ, Theerthagiri J, Nithyadharseni P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renew Sustain Energy Rev 2021; 143: 110849.
[http://dx.doi.org/10.1016/j.rser.2021.110849]
[637]
Iqbal MZ, Faisal MM, Ali SR, Afzal AM. Hydrothermally synthesized zinc phosphate-rGO composites for supercapattery devices. J Electroanal Chem 2020; 871: 114299.
[http://dx.doi.org/10.1016/j.jelechem.2020.114299]
[638]
Sahoo P, Misra DK, Salvador J, et al. Microstructure and thermal conductivity of surfactant-free NiO nanostructures. J Solid State Chem 2012; 190: 29-35.
[http://dx.doi.org/10.1016/j.jssc.2012.01.052]
[639]
Kostoglou N, Koczwara C, Prehal C, et al. Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage. Nano Energy 2017; 40: 49-64.
[http://dx.doi.org/10.1016/j.nanoen.2017.07.056]
[640]
Akbari-Fakhrabadi A, Mangalaraja RV, Sanhueza FA, Avila RE, Ananthakumar S, Chan SH. Nanostructured Gd–CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting. J Power Sources 2012; 218: 307-12.
[http://dx.doi.org/10.1016/j.jpowsour.2012.07.005]
[641]
Devi N, Ray SS. Performance of bismuth-based materials for supercapacitor applications: A review. Mater Today Commun 2020; 25: 101691.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101691]
[642]
Saeidi S, Najari S, Hessel V, et al. Recent advances in CO2 hydrogenation to value-added products-current challenges and future directions. Pror Energy Combust Sci 2021; 85: 100905.
[http://dx.doi.org/10.1016/j.pecs.2021.100905]
[643]
Wang M, Zhang H, Cui J, et al. Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Mater 2021; 39: 305-46.
[http://dx.doi.org/10.1016/j.ensm.2021.04.034]
[644]
Zheng Y, Li X, Pi C, et al. Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications. FlatChem 2020; 19: 100149.
[http://dx.doi.org/10.1016/j.flatc.2019.100149]
[645]
Tran DT, Nguyen DC, Le HT, et al. Recent progress on single atom/sub-nano electrocatalysts for energy applications. Prog Mater Sci 2021; 115: 100711.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100711]
[646]
Yang S, He P, Zhou H. Research progresses on materials and electrode design towards key challenges of Li-air batteries. Energy Storage Mater 2018; 13: 29-48.
[http://dx.doi.org/10.1016/j.ensm.2017.12.020]
[647]
Zhang L, Liu X, Zhao Q, et al. Si-containing precursors for Si-based anode materials of Li-ion batteries: A review. Energy Storage Mater 2016; 4: 92-102.
[http://dx.doi.org/10.1016/j.ensm.2016.01.011]
[648]
Peng KQ, Wang X, Li L, Hu Y, Lee ST. Silicon nanowires for advanced energy conversion and storage. Nano Today 2013; 8(1): 75-97.
[http://dx.doi.org/10.1016/j.nantod.2012.12.009]
[649]
Lu Y, Cai Y, Souamy L, Song X, Zhang L, Wang J. Solid oxide fuel cell technology for sustainable development in China: An over-view. Int J Hydrogen Energy 2018; 43(28): 12870-91.
[http://dx.doi.org/10.1016/j.ijhydene.2018.05.008]
[650]
Salguero Salas MA, De Paoli JM, Linarez Pérez OE, Bajales N, Fuertes VC. Synthesis and characterization of alumina-embedded SrCo0.95V0.05O3 nanostructured perovskite: An attractive material for supercapacitor devices. Microporous Mesoporous Mater 2020; 293: 109797.
[http://dx.doi.org/10.1016/j.micromeso.2019.109797]
[651]
Ferg EE, Schuldt F, Schmidt J. The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave. J Power Sources 2019; 423: 380-403.
[http://dx.doi.org/10.1016/j.jpowsour.2019.03.063]
[652]
Pitt MP, Paskevicius M, Webb CJ, Sheppard DA, Buckley CE, Gray EM. The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2+ 0.01Nb2O5 benchmark. Int J Hydrogen Energy 2012; 37(5): 4227-37.
[http://dx.doi.org/10.1016/j.ijhydene.2011.11.114]
[653]
Cheng X, Shen Z, Jiao L, et al. Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem 2021; 3(6): 100066.
[http://dx.doi.org/10.1016/j.enchem.2021.100066]
[654]
Drozdick HK, Weiss R, Sullivan CM, Wieghold S, Nienhaus L. Widespread opportunities for materials engineering of nanocrystals: Synthetically tailorable effects and methodologies. Matter 2022; 5(6): 1645-69.
[http://dx.doi.org/10.1016/j.matt.2022.04.023]
[655]
Du X, Liu D, An K, et al. Advances in oxide semiconductors for surface enhanced Raman scattering. Appl Mater Today 2022; 29: 101563.
[http://dx.doi.org/10.1016/j.apmt.2022.101563]
[656]
Singh P, Pal K, Chakravraty A, Ikram S. Execution and viable applications of face shield “a safeguard” against viral infections of cross-protection studies: A comprehensive review. J Mol Struct 2021; 1238: 130443.
[http://dx.doi.org/10.1016/j.molstruc.2021.130443] [PMID: 33867574]
[657]
Li C, Cong S, Tian Z, et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 2019; 60: 247-56.
[http://dx.doi.org/10.1016/j.nanoen.2019.03.061]
[658]
Lethien C, Zegaoui M, Roussel P, Tilmant P, Rolland N, Rolland PA. Micro-patterning of LiPON and lithium iron phosphate material deposited onto silicon nanopillars array for lithium ion solid state 3D micro-battery. Microelectron Eng 2011; 88(10): 3172-7.
[http://dx.doi.org/10.1016/j.mee.2011.06.022]
[659]
Kim KJ, Jung H, Kim JH, Jang NS, Kim JM, Kim SH. Nanoenergetic material-on-multiwalled carbon nanotubes paper chip as compact and flexible igniter. Carbon 2017; 114: 217-23.
[http://dx.doi.org/10.1016/j.carbon.2016.12.021]
[660]
Manohar A, Vijayakanth V, Prabhakar Vattikuti SV, Kim KH. Synthesis and characterization of Mg2+ substituted MnFe2O4 nanoparticles for supercapacitor applications. Ceram Int 2022; 48(20): 30695-703.
[http://dx.doi.org/10.1016/j.ceramint.2022.07.018]
[661]
Ezugwu AE, Ikotun AM, Oyelade OO, et al. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell 2022; 110: 104743.
[http://dx.doi.org/10.1016/j.engappai.2022.104743]
[662]
Norder K, Emich K, Kanar A, Sawhney A, Behrend TS. A house divided: A multilevel bibliometric review of the job search literature 1973–2020. J Bus Res 2022; 151: 100-17.
[http://dx.doi.org/10.1016/j.jbusres.2022.06.036]
[663]
Manlhiot C, van den Eynde J, Kutty S, Ross HJ. A primer on the present state and future prospects for machine learning and artificial intelligence applications in cardiology. Can J Cardiol 2022; 38(2): 169-84.
[http://dx.doi.org/10.1016/j.cjca.2021.11.009] [PMID: 34838700]
[664]
Andrade Cruz I, Chuenchart W, Long F, et al. Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresour Technol 2022; 345: 126433.
[http://dx.doi.org/10.1016/j.biortech.2021.126433] [PMID: 34848330]
[665]
Lim SY, Selvaraji S, Lau H, Li SFY. Application of omics beyond the central dogma in coronary heart disease research: A bibliometric study and literature review. Comput Biol Med 2022; 140: 105069.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105069] [PMID: 34847384]
[666]
Filom S, Amiri AM, Razavi S. Applications of machine learning methods in port operations-a systematic literature review. Transp Res, Part E Logist Trans Rev 2022; 161: 102722.
[http://dx.doi.org/10.1016/j.tre.2022.102722]
[667]
Zabin A, González VA, Zou Y, Amor R. Applications of machine learning to BIM: A systematic literature review. Adv Eng Inform 2022; 51: 101474.
[http://dx.doi.org/10.1016/j.aei.2021.101474]
[668]
Ahmed S, Alshater MM, Ammari AE, Hammami H. Artificial intelligence and machine learning in finance: A bibliometric review. Res Int Bus Finance 2022; 61: 101646.
[http://dx.doi.org/10.1016/j.ribaf.2022.101646]
[669]
Debrah C, Chan APC, Darko A. Artificial intelligence in green building. Autom Construct 2022; 137: 104192.
[http://dx.doi.org/10.1016/j.autcon.2022.104192]
[670]
Huang Y, Xu C, Zhang X, Li L. Bibliometric analysis of landslide research based on the WOS database. Nat Hazards Rev 2022; 2(2): 49-61.
[http://dx.doi.org/10.1016/j.nhres.2022.02.001]
[671]
Dalavi AM, Gomes A, Javed Husain A. Bibliometric analysis of nature inspired optimization techniques. Comput Ind Eng 2022; 169: 108161.
[http://dx.doi.org/10.1016/j.cie.2022.108161]
[672]
Souza L, Bueno C. City Information Modelling as a support decision tool for planning and management of cities: A systematic literature review and bibliometric analysis. Build Environ 2022; 207: 108403.
[http://dx.doi.org/10.1016/j.buildenv.2021.108403]
[673]
Di Vaio A, Hassan R, Alavoine C. Data intelligence and analytics: A bibliometric analysis of human–Artificial intelligence in public sector decision-making effectiveness. Technol Forecast Soc Change 2022; 174: 121201.
[http://dx.doi.org/10.1016/j.techfore.2021.121201]
[674]
Carballo-Meilan A, McDonald L, Pragot W, Starnawski LM, Saleemi AN, Afzal W. Development of a data-driven scientific methodology: From articles to chemometric data products. Chemom Intell Lab Syst 2022; 225: 104555.
[http://dx.doi.org/10.1016/j.chemolab.2022.104555]
[675]
Perez-Vega R, Hopkinson P, Singhal A, Mariani MM. From CRM to social CRM: A bibliometric review and research agenda for consumer research. J Bus Res 2022; 151: 1-16.
[http://dx.doi.org/10.1016/j.jbusres.2022.06.028]
[676]
Zhang F, Chan APC, Darko A, Chen Z, Li D. Integrated applications of building information modeling and artificial intelligence techniques in the AEC/FM industry. Autom Construct 2022; 139: 104289.
[http://dx.doi.org/10.1016/j.autcon.2022.104289]
[677]
Liu T. Knowledge tracing: A bibliometric analysis. Computers and Education: Artif Intell 2022; 3: 100090.
[http://dx.doi.org/10.1016/j.caeai.2022.100090]
[678]
Arora S, Majumdar A. Machine learning and soft computing applications in textile and clothing supply chain: Bibliometric and network analyses to delineate future research agenda. Expert Syst Appl 2022; 200: 117000.
[http://dx.doi.org/10.1016/j.eswa.2022.117000]
[679]
Kumbure MM, Lohrmann C, Luukka P, Porras J. Machine learning techniques and data for stock market forecasting: A literature review. Expert Syst Appl 2022; 197: 116659.
[http://dx.doi.org/10.1016/j.eswa.2022.116659]
[680]
Niyogisubizo J, Liao L, Nziyumva E, Murwanashyaka E, Nshimyumukiza PC. Predicting student’s dropout in university classes using two-layer ensemble machine learning approach: A novel stacked generalization. Comput Educ Artif Intell 2022; 3: 100066.
[http://dx.doi.org/10.1016/j.caeai.2022.100066]
[681]
Qin J, Hu F, Liu Y, et al. Research and application of machine learning for additive manufacturing. Addit Manuf 2022; 52: 102691.
[http://dx.doi.org/10.1016/j.addma.2022.102691]
[682]
Zhou J, Guo Y, Sun J, Yu E, Wang R. Review of bike-sharing system studies using bibliometrics method. J Traffic Transp Eng Engl 2022.
[http://dx.doi.org/10.1016/j.jtte.2021.08.003]
[683]
Wang C, Geng H, Sun R, Song H. Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining. Resour Policy 2022; 77: 102636.
[http://dx.doi.org/10.1016/j.resourpol.2022.102636]
[684]
Suero-Abreu GA, Hamid A, Akbilgic O, Brown SA. Trends in cardiology and oncology artificial intelligence publications. American Heart Journal Plus: Cardiol Res Pract 2022; 17: 100162.
[http://dx.doi.org/10.1016/j.ahjo.2022.100162]
[685]
Duong QH, Zhou L, Meng M, Nguyen TV, Ieromonachou P, Nguyen DT. Understanding product returns: A systematic literature review using machine learning and bibliometric analysis. Int J Prod Econ 2022; 243: 108340.
[http://dx.doi.org/10.1016/j.ijpe.2021.108340]
[686]
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010; 84(2): 523-38.
[http://dx.doi.org/10.1007/s11192-009-0146-3] [PMID: 20585380]
[687]
Annual Energy Outlook - U.S. Energy Information Administration (EIA).
[688]
USA national science and technology council 2021 national nanotechnology initiative strategic plan-National nanotechnology initiative. 2021. Available from: https://www.nano.gov/2021 strategicplan [Accessed on 9th March, 2022].
[689]
Matar GH, Akyüz G, Kaymazlar E, Andac M. An investigation of green synthesis of silver nanoparticles using turkish honey against pathogenic bacterial strains. Biointerface Res Appl Chem 2022; 13(2): 195.
[http://dx.doi.org/10.33263/BRIAC132.195]
[690]
Aldosary SK, El-Rahman SNA, Al-Jameel SS, Alromihi NM. Antioxidant and antimicrobial activities of Thymus vulgaris essential oil contained and synthesis thymus (Vulgaris) silver nanoparticles. Braz J Biol 2023; 83: e244675.
[http://dx.doi.org/10.1590/1519-6984.244675] [PMID: 34586190]
[691]
Zhou W, Bai T, Wang L, et al. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater 2023; 20: 64-80.
[http://dx.doi.org/10.1016/j.bioactmat.2022.05.015] [PMID: 35633877]
[692]
Dikbas C, Yavuz O, Ay H, Andac M. Green synthesis of silver nanoparticles using common poppy (Papaver rhoeas L.) and evaluation of their potential antibacterial activity. Vet Stn 2022; 54(1): 47-58.
[http://dx.doi.org/10.46419/vs.54.1.2]
[693]
Emelyanov VM, Dobrovolskaya TA, Yemelyanov VV. Mathematical transformation of multidimensional correlated data into uncorrelated raman spectra to increase the sensitivity of identification with silver nanoparticles. Biointerface Res Appl Chem 2022; 13(2): 139.
[http://dx.doi.org/10.33263/BRIAC132.139]
[694]
Wang Z, Zhang L, Wang X. Molecular toxicity and defense mechanisms induced by silver nanoparticles in Drosophila melanogaster. J Environ Sci 2023; 125: 616-29.
[http://dx.doi.org/10.1016/j.jes.2021.12.027] [PMID: 36375944]
[695]
De Oliveira Bianchi JR, De Souza SM, Santos IJB. Post-Harvest application of tara gum coating incorporated with silver nanoparticles for preservation of banana. Biointerface Res Appl Chem 2022; 13(1): 81.
[http://dx.doi.org/10.33263/BRIAC131.081]
[696]
Waiezi S, Malek NANN, Asraf MH, Sani NS. Preparation, characterization, and antibacterial activity of green-biosynthesised silver nanoparticles using clinacanthus nutans extract. Biointerface Res Appl Chem 2022; 13(2): 171.
[http://dx.doi.org/10.33263/BRIAC132.171]
[697]
Akyüz G, Kaymazlar E, Ay H, Andaç M, Andaç Ö. Use of silver nanoparticles loaded locust bean gum coatings to extend the shelf-life of fruits. Biointerface Res Appl Chem 2022; 13(3): 289.
[http://dx.doi.org/10.33263/BRIAC133.289]
[698]
Rasheed M, Asghar R, Firdoos S, et al. A Systematic review of circulatory microRNAs in major depressive disorder: Potential biomarkers for disease prognosis. Int J Mol Sci 2022; 23(3): 1294.
[http://dx.doi.org/10.3390/ijms23031294] [PMID: 35163214]
[699]
Davydova A, Vorobyeva M. Aptamer-based biosensors for the colorimetric detection of blood biomarkers: Paving the way to clinical laboratory testing. Biomedicines 2022; 10(7): 1606.
[http://dx.doi.org/10.3390/biomedicines10071606] [PMID: 35884911]
[700]
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ, Chen H. Exosomal RNAs: Novel potential biomarkers for diseases-a review. Int J Mol Sci 2022; 23(5): 2461.
[http://dx.doi.org/10.3390/ijms23052461] [PMID: 35269604]
[701]
Davarinejad O, Najafi S, Zhaleh H, et al. MiR-574-5P, miR-1827, and miR-4429 as potential biomarkers for schizophrenia. J Mol Neurosci 2022; 72(2): 226-38.
[http://dx.doi.org/10.1007/s12031-021-01945-0] [PMID: 34811713]
[702]
Dar MA, Arafah A, Bhat KA, et al. Multiomics technologies: Role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; elac017.
[http://dx.doi.org/10.1093/bfgp/elac017] [PMID: 35809340]
[703]
Liu J, Jiao L, Zhong X, et al. Platelet activating factor receptor exaggerates microglia-mediated microenvironment by IL10-STAT3 signaling: A novel potential biomarker and target for diagnosis and treatment of Alzheimer’s Disease. Front Aging Neurosci 2022; 14: 856628.
[http://dx.doi.org/10.3389/fnagi.2022.856628] [PMID: 35572136]
[704]
Wang X, Wang L, Yu B. UBE2D1 and COX7C as potential biomarkers of diabetes-related sepsis. BioMed Res Int 2022; 2022: 9463717.
[http://dx.doi.org/10.1155/2022/9463717] [PMID: 35445133]
[705]
Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat Rev Genet 2016; 17(5): 257-71.
[http://dx.doi.org/10.1038/nrg.2016.10] [PMID: 26996076]
[706]
Kim DW, Lee JH, Kim JK, Jeong U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 2020; 12(1): 6.
[http://dx.doi.org/10.1038/s41427-019-0176-0]
[707]
Moßhammer M, Kühl M, Koren K. Possibilities and challenges for quantitative optical sensing of hydrogen peroxide. Chemosensors 2017; 5(4): 28.
[http://dx.doi.org/10.3390/chemosensors5040028]
[708]
Zhang Y, Fu YY, Zhu DF, Xu JQ, He QG, Cheng JG. Recent advances in fluorescence sensor for the detection of peroxide explosives. Chin Chem Lett 2016; 27(8): 1429-36.
[http://dx.doi.org/10.1016/j.cclet.2016.05.019]
[709]
Rajput N. Development of nanotechnology in India: A review. IOSR J Appl Physics 2017; 9(3): 45-50.
[http://dx.doi.org/10.9790/4861-0903034550]
[710]
Kumar A. Research; Countries, IS for D Nanotechnology Development in India: An Overview; RIS discussion papers. New Delhi: Research and Information System for Developing Countries 2014.
[711]
Ahmad S, Majhi PK, Kothari R, Singh RP. Industrial Wastewater Footprinting: A Need for Water Security in Indian Context. In: Shukla V, Kumar N, Eds. Environmental Concerns and Sustainable Development. Singapore: Springer 2020; pp. 197-212.
[http://dx.doi.org/10.1007/978-981-13-5889-0_10]
[712]
Lee S, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. Int J Mol Sci 2019; 20(4): 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[713]
Gmeiner WH, Ghosh S. Nanotechnology for cancer treatment. Nanotechnol Rev 2014; 3(2): 111-22.
[http://dx.doi.org/10.1515/ntrev-2013-0013] [PMID: 26082884]
[714]
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9(2): 79-89.
[http://dx.doi.org/10.1007/s12551-016-0246-2] [PMID: 28510082]
[715]
Nikore M, Mittal M. Arresting India’s Water Crisis: The economic case for wastewater use. New Delhi: Observer Research Foundation 2021.
[716]
Patnaik R. Impact of industrialization on environment and sustainable solutions-reflections from a South Indian Region. IOP Conf Ser Earth Environ Sci 2018; 120: 012016.
[http://dx.doi.org/10.1088/1755-1315/120/1/012016]
[717]
Pal J, Pramanik AK, Goswami M, Saha AK, Sen B. Regular clocking based emerging technique in QCA targeting low power nano circuit. Int J Electron 2021; 1550-72.
[http://dx.doi.org/10.1080/00207217.2021.1972473]
[718]
Kavitha SS, Kaulgud N. Quantum Dot Cellular Automata (QCA) Design for the Realization of Basic Logic Gates. Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017; 314-7.
[http://dx.doi.org/10.1109/ICEECCOT.2017.8284519]
[719]
Yang Y, Alencar LMR, Pijeira MSO, et al. [223 Ra] RaCl2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era. Drug Deliv 2022; 29(1): 186-91.
[http://dx.doi.org/10.1080/10717544.2021.2005719] [PMID: 35191342]
[720]
Pal K, Asthana N, Aljabali AA, et al. de A critical review on multifunctional smart materials ‘Nanographene’ emerging avenue: Nano-imaging and biosensor applications. Crit Rev Solid State Mater Sci 2021; 0: 1-17.
[http://dx.doi.org/10.1080/10408436.2021.1935717]
[721]
Ricardo Barbosa de Lima N, Gomes Souza Junior F,, Gaëlle Roullin V, Pal K. Amphipathic Au-sulfur-poly (ethylene glycol)-b-poly (butylene succinate) system prepared by interfacial reaction as in-silico photosensitizer and antineoplastic carrier. J Drug Deliv Sci Technol 2021; 64: 102584.
[http://dx.doi.org/10.1016/j.jddst.2021.102584]
[722]
v R, Pal K, Zaheer T, et al. Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Ther Deliv 2020; 11(8): 521-34.
[http://dx.doi.org/10.4155/tde-2020-0071]
[723]
de Lima NRB, de Souza FG. Junior, Roullin VG, Pal K, da Silva ND. Head and neck cancer treatments from chemotherapy to magnetic systems: Perspectives and challenges. Curr Radiopharm 2022; 15(1): 2-20.
[http://dx.doi.org/10.2174/1874471014999210128183231] [PMID: 33511961]
[724]
Moraes RS, Saez V, Hernandez JAR, de Souza Júnior FG. Hyperthermia system based on extrinsically magnetic poly (Butylene Succinate). Macromol Symp 2018; 381(1): 1800108.
[http://dx.doi.org/10.1002/masy.201800108]
[725]
de Araújo Segura TC, Pereira ED, Icart LP, Fernandes E, Esperandio de Oliveira G, Gomes de Souza F Jr. Hyperthermic agent prepared by one-pot modification of maghemite using an aliphatic polyester model. Polym Sci Ser B 2018; 60(6): 806-15.
[http://dx.doi.org/10.1134/S1560090418060106]
[726]
Magne TM, da Silva de Barros AO, de Almeida Fechine PB, Alencar LMR, Ricci-Junior E, Santos-Oliveira R. Lycopene as a multifunctional platform for the treatment of cancer and inflammation. Rev Bras Farmacogn 2022; 32(3): 321-30.
[http://dx.doi.org/10.1007/s43450-022-00250-0]
[727]
Lange J, Souza FG Jr, Nele M, et al. Molecular dynamic simulation of oxaliplatin diffusion in Poly(Lactic Acid-Co-Glycolic Acid). Part A: Parameterization and validation of the force-field CVFF. Macromol Theory Simul 2015.
[http://dx.doi.org/10.1002/mats.201500049]
[728]
Neto WS, Simões Dutra GV, de Sousa Brito Neta M, et al. Nanodispersions of magnetic poly(vinyl pivalate) for biomedical applications: Synthesis and in vitro evaluation of its cytotoxicity in cancer cells. Mater Today Commun 2021; 27: 102333.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102333]
[729]
Souza BNRF, Ribeiro ERFR, da Silva de Barros AO, et al. Nanomicelles of radium dichloride [223Ra]RaCl2 co-loaded with radioactive gold [198Au]Au nanoparticles for targeted alpha–beta radionuclide therapy of osteosarcoma. Polymers 2022; 14(7): 1405.
[http://dx.doi.org/10.3390/polym14071405] [PMID: 35406278]
[730]
Peña Icart L, Fernandes dos Santos E, Agüero Luztonó L, et al. Paclitaxel-Loaded PLA/PEG/Magnetite anticancer and hyperthermic agent prepared from materials obtained by the Ugi’s multicomponent reaction. Macromol Symp 2018; 380(1): 1800094.
[http://dx.doi.org/10.1002/masy.201800094]
[731]
Charelli LE, de Mattos GC, de Jesus Sousa-Batista A, Pinto JC, Balbino TA. Polymeric nanoparticles as therapeutic agents against coronavirus disease. J Nanopart Res 2022; 24(1): 12.
[http://dx.doi.org/10.1007/s11051-022-05396-5] [PMID: 35035277]
[732]
Neto W, Peña L, Ferreira G, Junior F, Machado F. Target delivery from modified polymers to cancer treatment. Curr Org Chem 2016; 21(1): 4-20.
[http://dx.doi.org/10.2174/1385272820666160510151442]
[733]
Fg SJ. The use of biosensor as a new trend in cancer: Bibliometric analysis from 2007 to 2017. Res Dev Mat Sci 2018; 7(5): 1-15.
[http://dx.doi.org/10.31031/RDMS.2018.07.000675]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy