Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Biomedical Application of Chitosan and Chitosan Derivatives: A Comprehensive Review

Author(s): Yash Kankariya and Bappaditya Chatterjee*

Volume 29, Issue 17, 2023

Published on: 13 June, 2023

Page: [1311 - 1325] Pages: 15

DOI: 10.2174/1381612829666230524153002

Price: $65

Abstract

Chitosan (CS) is a widely known naturally occurring polysaccharide made of chitin. The Low solubility of chitosan in water restricts its use in medical applications. However, several chemical modifications have made chitosan superior in solubility, biocompatibility, biodegradability, stability, and easy functionalization ability. All these favourable properties have increased chitosan’s application in drug delivery and biomedical fields. Chitosan-based nanoparticles or biodegradable controlled-release systems are of great interest to scientists. Layer -by-layer technique is employed to develop hybrid chitosan composites. Such modified chitosan is widely used in wound healing and several tissue engineering approaches. This review brings together the potential of chitosan and its modified form in biomedical applications.

Next »
[1]
Ranjan N. Chitosan with PVC polymer for biomedical applications: A bibliometric analysis. Mater Today Proc 2021.
[http://dx.doi.org/10.1016/j.matpr.2021.04.274]
[2]
Wankhade V. Animal-derived biopolymers in food and biomedical technology. Biopolym Formul Biomed Food Appl 2020; 139-52.
[http://dx.doi.org/10.1016/B978-0-12-816897-4.00006-0]
[3]
Hoang TT, Binh DTT, Phuong LT. Self-antibacterial chitosan/Aloe barbadensis Miller hydrogels releasing nitrite for biomedical applications. J Ind Eng Chem 2021; 103: 175-86.
[4]
Gönenmiş DE, Özcan Y. Preparation of diatom-doped bio-nanocomposite materials for bone tissue scaffolds. Mater Res 2022; 25: e20220234.
[http://dx.doi.org/10.1590/1980-5373-mr-2022-0234]
[5]
Andonegi M, Heras KL, Santos-Vizcaíno E, et al. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr Polym 2020; 237: 116159.
[http://dx.doi.org/10.1016/j.carbpol.2020.116159] [PMID: 32241409]
[6]
Kristó K, Szekeres M, Makai Z, et al. Preparation and investigation of core-shell nanoparticles containing human interferon-α. Int J Pharm 2020; 573: 118825.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118825] [PMID: 31715360]
[7]
Bharathi R, Ganesh SS, Harini G, et al. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222(Pt A): 132-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.058] [PMID: 36108752]
[8]
Bombaldi de Souza RF, Bombaldi de Souza FC, Thorpe A, Mantovani D, Popat KC, Moraes ÂM. Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. Int J Biol Macromol 2020; 143: 619-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.004] [PMID: 31811849]
[9]
Bombaldi de Souza FC, Bombaldi de Souza RF, Drouin B, Mantovani D, Moraes ÂM. Comparative study on complexes formed by chitosan and different polyanions: Potential of chitosan-pectin biomaterials as scaffolds in tissue engineering. Int J Biol Macromol 2019; 132: 178-89.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.187] [PMID: 30926498]
[10]
Tamimi M, Rajabi S, Pezeshki-Modaress M. Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. Int J Biol Macromol 2020; 164: 389-402.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.134] [PMID: 32702419]
[11]
Abdelhamid HN, Dowaidar M, Langel Ü. Carbonized chitosan encapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticles for gene delivery. Microporous Mesoporous Mater 2020; 302: 110200.
[http://dx.doi.org/10.1016/j.micromeso.2020.110200]
[12]
Chang HK, Yang DH, Ha MY, et al. 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydr Polym 2022; 287: 119328.
[http://dx.doi.org/10.1016/j.carbpol.2022.119328] [PMID: 35422276]
[13]
Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 2022; 282: 119100.
[http://dx.doi.org/10.1016/j.carbpol.2022.119100] [PMID: 35123739]
[14]
Hu B, Guo Y, Li H, Liu X, Fu Y, Ding F. Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydr Polym 2021; 271: 118427.
[http://dx.doi.org/10.1016/j.carbpol.2021.118427] [PMID: 34364567]
[15]
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci 2006; 31(7): 603-32.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[16]
Hahn T, Roth A, Ji R, Schmitt E, Zibek S. Chitosan production with larval exoskeletons derived from the insect protein production. J Biotechnol 2020; 310: 62-7.
[http://dx.doi.org/10.1016/j.jbiotec.2019.12.015] [PMID: 31877336]
[17]
Jantzen da SLA, Quadro OE, Leão GCH, Martín LH, Dias MSC, Prentice C. Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chem 2021; 343: 128550.
[http://dx.doi.org/10.1016/j.foodchem.2020.128550] [PMID: 33191008]
[18]
Rashid TU, Rahman MM, Kabir S, Shamsuddin SM, Khan MA. A new approach for the preparation of chitosan from γ-irradiation of prawn shell: effects of radiation on the characteristics of chitosan. Polym Int 2012; 61(8): 1302-8.
[http://dx.doi.org/10.1002/pi.4207]
[19]
Methacanon P, Prasitsilp M, Pothsree T, Pattaraarchachai J. Heterogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr Polym 2003; 52(2): 119-23.
[http://dx.doi.org/10.1016/S0144-8617(02)00300-4]
[20]
Cai J, Yang J, Du Y, et al. Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr Polym 2006; 64(2): 151-7.
[http://dx.doi.org/10.1016/j.carbpol.2005.11.004]
[21]
Vigneshwaran S, Karthikeyan P, Sirajudheen P, Meenakshi S. Optimization of sustainable chitosan/Moringa oleifera as coagulant aid for the treatment of synthetic turbid water – A systemic study. Environ Toxicol Chem 2020; 2: 132-40.
[http://dx.doi.org/10.1016/j.enceco.2020.08.002]
[22]
Lim C, Hwang DS, Lee DW. Intermolecular interactions of chitosan: Degree of acetylation and molecular weight. Carbohydr Polym 2021; 259: 117782.
[http://dx.doi.org/10.1016/j.carbpol.2021.117782] [PMID: 33674019]
[23]
Kwok KCM, Koong LF, Chen G, McKay G. Mechanism of arsenic removal using chitosan and nanochitosan. J Colloid Interface Sci 2014; 416: 1-10.
[http://dx.doi.org/10.1016/j.jcis.2013.10.031] [PMID: 24370394]
[24]
Ansari MT, Murteza S, Ahsan MN, Hasnain MS, Nayak AK. Chitosan as a responsive biopolymer in drug delivery. Chitosan Drug Deliv 2022; 2022: 389-410.
[http://dx.doi.org/10.1016/B978-0-12-819336-5.00002-9]
[25]
Dai M, Zheng X, Xu X, et al. Chitosan-alginate sponge: Preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 2009; 2009: 1-8.
[http://dx.doi.org/10.1155/2009/595126] [PMID: 19918372]
[26]
Hafsa J, Smach MA, Mrid RB, Sobeh M, Majdoub H, Yasri A. Functional properties of chitosan derivatives obtained through Maillard reaction: A novel promising food preservative. Food Chem 2021; 349: 129072.
[http://dx.doi.org/10.1016/j.foodchem.2021.129072] [PMID: 33556729]
[27]
Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 2008; 43(5): 401-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.09.007] [PMID: 18838086]
[28]
Zhao Y, Park RD, Muzzarelli RAA. Chitin deacetylases: Properties and applications. Mar Drugs 2010; 8(1): 24-46.
[http://dx.doi.org/10.3390/md8010024] [PMID: 20161969]
[29]
Cohen E. Chitin Biochemistry. Adv Insect Physiol 2010; 38: 5-74.
[http://dx.doi.org/10.1016/S0065-2806(10)38005-2]
[30]
Yamada M, Kurano M, Inatomi S, Taguchi G, Okazaki M, Shimosaka M. Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris. FEMS Microbiol Lett 2008; 289(2): 130-7.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01361.x] [PMID: 19054103]
[31]
Schipper P, van der Maaden K, Groeneveld V, et al. Diphtheria toxoid and N -trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice. J Control Release 2017; 262: 28-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.017] [PMID: 28710002]
[32]
Paris AL, Caridade S, Colomb E, et al. Sublingual protein delivery by a mucoadhesive patch made of natural polymers. Acta Biomater 2021; 128: 222-35.
[http://dx.doi.org/10.1016/j.actbio.2021.04.024] [PMID: 33878475]
[33]
Keong LC, Halim AS. In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management. Int J Mol Sci 2009; 10(3): 1300-13.
[http://dx.doi.org/10.3390/ijms10031300] [PMID: 19399250]
[34]
Escobar-Bedia FJ, Martin-Diaconescu V, Simonelli L, Sabater MJ, Concepción P. Chitosan-silica as a cheap carrier and green soft ligand for improved ru-catalyzed hydroformylation. ChemCatChem 2022; 14(24): e202200861.
[http://dx.doi.org/10.1002/cctc.202200861]
[35]
Madera-Santana TJ, Herrera-Méndez CH, Rodríguez-Núñez JR. An overview of the chemical modifications of chitosan and their advantages. Green Mater 2018; 6(4): 131-42.
[http://dx.doi.org/10.1680/jgrma.18.00053]
[36]
Mittal H, Ray SS, Kaith BS, et al. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018; 109: 402-34.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.013]
[37]
Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr Res 2021; 506: 108368.
[http://dx.doi.org/10.1016/j.carres.2021.108368] [PMID: 34111686]
[38]
Snyman D, Hamman JH, Kotze JS, Rollings JE, Kotzé AF. The relationship between the absolute molecular weight and the degree of quaternisation of N-trimethyl chitosan chloride. Carbohydr Polym 2002; 50(2): 145-50.
[http://dx.doi.org/10.1016/S0144-8617(02)00008-5]
[39]
Sarmento B, Goycoolea FM, Sosnik A, das Neves J. Chitosan and chitosan derivatives for biological applications: Chemistry and functionalization. Int J Carbohydr Chem 2011; 2011: 1-1.
[http://dx.doi.org/10.1155/2011/802693]
[40]
Sutirman ZA, Sanagi MM, Abd KKJ, Wan IWA. Preparation of methacrylamide-functionalized crosslinked chitosan by free radical polymerization for the removal of lead ions. Carbohydr Polym 2016; 151: 1091-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.076] [PMID: 27474659]
[41]
Yao CH, Chen KY, Cheng MH, Chen YS, Huang CH. Effect of genipin crosslinked chitosan scaffolds containing SDF-1 on wound healing in a rat model. Mater Sci Eng C 2020; 109: 110368.
[http://dx.doi.org/10.1016/j.msec.2019.110368] [PMID: 32228920]
[42]
Zhu Y, Cankova Z, Iwanaszko M, Lichtor S, Mrksich M, Ameer GA. Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc Natl Acad Sci 2018; 115(26): 6816-21.
[http://dx.doi.org/10.1073/pnas.1804262115] [PMID: 29891655]
[43]
Hung SY, Tsai JS, Yeh JT, et al. Amino acids and wound healing in people with limb-threatening diabetic foot ulcers. J Diabetes Complications 2019; 33(10): 107403.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.06.008] [PMID: 31375421]
[44]
Xu W, Wang Z, Liu Y, et al. Carboxymethyl chitosan/gelatin/ hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr Polym 2018; 192: 240-50.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.033] [PMID: 29691018]
[45]
Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Mater Sci Eng C 2017; 77: 1349-62.
[http://dx.doi.org/10.1016/j.msec.2017.03.198] [PMID: 28532012]
[46]
Kalaithong W, Molloy R, Nalampang K, Somsunan R. Design and optimization of polymerization parameters of carboxymethyl chitosan and sodium 2-acrylamido-2-methylpropane sulfonate hydrogels as wound dressing materials. Eur Polym J 2021; 143: 110186.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110186]
[47]
Yin L, Fei L, Cui F, Tang C, Yin C. Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 2007; 28(6): 1258-66.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.008] [PMID: 17118443]
[48]
Khor E, Wu H, Lim LY, Guo CM. Chitin-methacrylate: Preparation, characterization and hydrogel formation. Materials 2011; 4(10): 1728-46.
[http://dx.doi.org/10.3390/ma4101728] [PMID: 28824104]
[49]
Jayakumar R, Reis RL, Mano JF. Chemistry and applications of phosphorylated chitin and chitosan. E-Polymers 2006; 6(1): 1-16.
[http://dx.doi.org/10.1515/epoly.2006.6.1.447]
[50]
Mourya VK, Inamdar NN. Chitosan-modifications and applications: Opportunities galore. React Funct Polym 2008; 68(6): 1013-51.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2008.03.002]
[51]
Mesas FA, Terrile MC, Silveyra MX, et al. The water-soluble chitosan derivative, n-methylene phosphonic chitosan, is an effective fungicide against the phytopathogen fusarium eumartii. Plant Pathol J 2021; 37(6): 533-42.
[http://dx.doi.org/10.5423/PPJ.OA.06.2021.0090] [PMID: 34897246]
[52]
Heras A, Rodríguez NM, Ramos VM, Agulló E. N-methylene phosphonic chitosan: A novel soluble derivative. Carbohydr Polym 2001; 44(1): 1-8.
[http://dx.doi.org/10.1016/S0144-8617(00)00195-8]
[53]
Ehterami A, Salehi M, Farzamfar S, et al. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol 2018; 117: 601-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.184] [PMID: 29807077]
[54]
Ribeiro MC, Correa VLR, Silva FKL, et al. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. Eur J Pharm Sci 2020; 150: 105330.
[http://dx.doi.org/10.1016/j.ejps.2020.105330] [PMID: 32268198]
[55]
Hu Y, Zhang Z, Li Y, et al. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol Rapid Commun 2018; 39(20): 1800069.
[http://dx.doi.org/10.1002/marc.201800069] [PMID: 29855096]
[56]
Albaugh VL, Mukherjee K, Barbul A. Proline precursors and collagen synthesis: Biochemical challenges of nutrient supplementation and wound healing. J Nutr 2017; 147(11): 2011-7.
[http://dx.doi.org/10.3945/jn.117.256404] [PMID: 28978679]
[57]
Aydin H, Tatar C, Savas OA, et al. The effects of local and systemic administration of proline on wound healing in rats. J Invest Surg 2019; 32(6): 523-9.
[http://dx.doi.org/10.1080/08941939.2018.1441342] [PMID: 29494267]
[58]
Thangavel P, Ramachandran B, Kannan R, Muthuvijayan V. Biomimetic hydrogel loaded with silk and L -proline for tissue engineering and wound healing applications. J Biomed Mater Res B Appl Biomater 2017; 105(6): 1401-8.
[http://dx.doi.org/10.1002/jbm.b.33675] [PMID: 27080564]
[59]
Liu H, Wang C, Li C, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances 2018; 8(14): 7533-49.
[http://dx.doi.org/10.1039/C7RA13510F] [PMID: 35539132]
[60]
Li L, Yang L, Li M, Zhang L. A cell-penetrating peptide mediated chitosan nanocarriers for improving intestinal insulin delivery. Carbohydr Polym 2017; 174: 182-9.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.061] [PMID: 28821057]
[61]
Trinca RB, Westin CB, da Silva JAF, Moraes ÂM. Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 2017; 88: 161-70.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.021]
[62]
Aleem AR, Shahzadi L, Tehseen S, et al. Amino acids loaded chitosan/collagen based new membranes stimulate angiogenesis in chorioallantoic membrane assay. Int J Biol Macromol 2019; 140: 401-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.095] [PMID: 31421178]
[63]
Zhou T, Wang N, Xue Y, et al. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces 2016; 143: 415-22.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.052] [PMID: 27037778]
[64]
Hoseinpour Najar M, Minaiyan M, Taheri A. Preparation and in vivo evaluation of a novel gel-based wound dressing using arginine–alginate surface-modified chitosan nanofibers. J Biomater Appl 2018; 32(6): 689-701.
[http://dx.doi.org/10.1177/0885328217739562] [PMID: 29119880]
[65]
Yuan Y, Tang YL, Yuan L, Shi B. Quantum chemical investigations on spectral and dissociation properties of L-glutamic acid. Chem Phys Lett 2020; 738: 136865.
[http://dx.doi.org/10.1016/j.cplett.2019.136865]
[66]
Liu X, Xie W, Yang X, Zhan X, Xia W. Antimicrobial polymer with enhanced activity and reduced toxicity upon grafting to chitosan oligosaccharide. Arab J Sci Eng 2019; 45: 29-40.
[67]
Mehta J, Bhardwaj N, Bhardwaj SK, Kim KH, Deep A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coord Chem Rev 2016; 322: 30-40.
[http://dx.doi.org/10.1016/j.ccr.2016.05.007]
[68]
Mortazavi S, Aghaei H. Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. Int J Biol Macromol 2020; 164: 1-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.103] [PMID: 32679334]
[69]
Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 2012; 30(3): 512-23.
[http://dx.doi.org/10.1016/j.biotechadv.2011.09.005] [PMID: 21963605]
[70]
Oliveira ALB, Francisco TTC, Katerine da DM, et al. Chitosan nanoparticle: Alternative for sustainable agriculture. Nanomater Nanotechnol 2021; 95-132.
[http://dx.doi.org/10.1007/978-981-33-6056-3_4]
[71]
Monier M, Youssef I, Abdel-Latif DA. Synthesis of photo-responsive chitosan-cinnamate for efficient entrapment of β-galactosidase enzyme. React Funct Polym 2018; 124: 129-38.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.01.012]
[72]
Ma HF, Meng G, Cui BK, Si J, Dai YC. Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes: Laccase immobilization and characterization. Chem Eng Res Des 2018; 132: 664-76.
[http://dx.doi.org/10.1016/j.cherd.2018.02.008]
[73]
Aljawish A, Muniglia L, Klouj A, Jasniewski J, Scher J, Desobry S. Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocoll 2016; 60: 551-8.
[http://dx.doi.org/10.1016/j.foodhyd.2016.04.032]
[74]
Huang GQ, Zhang ZK, Cheng LY, Xiao JX. Intestine-targeted delivery potency of O-carboxymethyl chitosan–coated layer-by-layer microcapsules: An in vitro and in vivo evaluation. Mater Sci Eng C 2019; 105: 110129.
[http://dx.doi.org/10.1016/j.msec.2019.110129] [PMID: 31546375]
[75]
Jamshidzadeh F, Mohebali A, Abdouss M. Three-ply biocompatible pH-responsive nanocarriers based on HNT sandwiched by chitosan/pectin layers for controlled release of phenytoin sodium. Int J Biol Macromol 2020; 150: 336-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.029] [PMID: 32057852]
[76]
Rocha Neto JBM, Lima GG, Fiamingo A, et al. Controlling antimicrobial activity and drug loading capacity of chitosan-based layer-by-layer films. Int J Biol Macromol 2021; 172: 154-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.218] [PMID: 33428951]
[77]
Romero R, Travers JK, Asbury E, et al. Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect. J Biomed Mater Res A 2017; 105(3): 900-11.
[http://dx.doi.org/10.1002/jbm.a.35965] [PMID: 27874253]
[78]
Chen J, Cheng G, Liu R, et al. Enhanced physical and biological properties of silk fibroin nanofibers by layer-by-layer deposition of chitosan and rectorite. J Colloid Interface Sci 2018; 523: 208-16.
[http://dx.doi.org/10.1016/j.jcis.2018.03.093] [PMID: 29625323]
[79]
Ma X, Wu G, Dai F, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polym 2021; 251: 117058.
[http://dx.doi.org/10.1016/j.carbpol.2020.117058] [PMID: 33142610]
[80]
Li D, Dai F, Li H, et al. Chitosan and collagen layer-by-layer assembly modified oriented nanofibers and their biological properties. Carbohydr Polym 2021; 254: 117438.
[http://dx.doi.org/10.1016/j.carbpol.2020.117438] [PMID: 33357911]
[81]
Huang R, Li W, Lv X, et al. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 2015; 53: 58-75.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.076] [PMID: 25890707]
[82]
Li L, Wang X, Li D, et al. LBL deposition of chitosan/heparin bilayers for improving biological ability and reducing infection of nanofibers. Int J Biol Macromol 2020; 154: 999-1006.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.152] [PMID: 32198036]
[83]
Biopolymers: New materials for sustainable films and coatings. 1st Ed. Wiley Online Liberary, John Wiley & Sons, Ltd. 2011.
[http://dx.doi.org/10.1002/9781119994312]
[84]
Raeisi M, Kazerouni Y, Mohammadi A, et al. Superhydrophobic cotton fabrics coated by chitosan and titanium dioxide nanoparticles with enhanced antibacterial and UV-protecting properties. Int J Biol Macromol 2021; 171: 158-65.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.220] [PMID: 33418040]
[85]
Castleberry SA, Almquist BD, Li W, et al. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater 2016; 28(9): 1809-17.
[http://dx.doi.org/10.1002/adma.201503565] [PMID: 26695434]
[86]
Choi M, Xiangde L, Park JH, et al. Superhydrophilic coatings with intricate nanostructure based on biotic materials for antifogging and antibiofouling applications. Chem Eng J 2017; 309: 463-70.
[http://dx.doi.org/10.1016/j.cej.2016.10.052]
[87]
Beldarrain-Iznaga T, Villalobos-Carvajal R, Sevillano-Armesto E, Leiva-Vega J. Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion. Food Res Int 2021; 141: 110136.
[http://dx.doi.org/10.1016/j.foodres.2021.110136] [PMID: 33642003]
[88]
Anselmo AC, McHugh KJ, Webster J, Langer R, Jaklenec A. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv Mater 2016; 28(43): 9486-90.
[http://dx.doi.org/10.1002/adma.201603270] [PMID: 27616140]
[89]
Speth MT, Repnik U, Griffiths G. Layer-by-layer nanocoating of live Bacille-Calmette-Guérin mycobacteria with poly(I:C) and chitosan enhances pro-inflammatory activation and bactericidal capacity in murine macrophages. Biomaterials 2016; 111: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.027] [PMID: 27716523]
[90]
Ji M, Li H, Guo H, et al. A novel porous aspirin-loaded (GO/CTS-HA) n nanocomposite films: Synthesis and multifunction for bone tissue engineering. Carbohydr Polym 2016; 153: 124-32.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.078] [PMID: 27561479]
[91]
Azzaroni O, Lau KHA. Layer-by-layer assemblies in nanoporous templates: Nano-organized design and applications of soft nanotechnology. Soft Matter 2011; 7(19): 8709-24.
[http://dx.doi.org/10.1039/c1sm05561e] [PMID: 22216060]
[92]
Johnston APR, Mitomo H, Read ES, Caruso F. Compositional and structural engineering of DNA multilayer films. Langmuir 2006; 22(7): 3251-8.
[http://dx.doi.org/10.1021/la052581h] [PMID: 16548585]
[93]
Cho J, Quinn JF, Caruso F. Fabrication of polyelectrolyte multilayer films comprising nanoblended layers. J Am Chem Soc 2004; 126(8): 2270-1.
[http://dx.doi.org/10.1021/ja039830d] [PMID: 14982407]
[94]
Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[95]
Hani Z, Pausader B, Tzvetkov N, Visciglia N. Growing Sobolev norms for the cubic defocusing Schrödinger equation. Seminar Laurent Schwartz — EDP Appl 2013; 1-11.
[http://dx.doi.org/10.5802/slsedp.60]
[96]
Fujita M, Kinoshita M, Ishihara M, et al. Inhibition of vascular prosthetic graft infection using a photocrosslinkable chitosan hydrogel. J Surg Res 2004; 121(1): 135-40.
[http://dx.doi.org/10.1016/j.jss.2004.04.010] [PMID: 15313387]
[97]
Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 2008; 9(1): 349-54.
[http://dx.doi.org/10.1021/bm7009015] [PMID: 18067266]
[98]
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013; 49(4): 780-92.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[99]
Chen KS, Ku Y-A, Lee C-H, Lin H-R, Lin F-H, Chen T-M. Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface. Mater Sci Eng C 2005; 25(4): 472-8.
[http://dx.doi.org/10.1016/j.msec.2004.12.006]
[100]
Zhang L, Wang J, Chi H, Wang S. Local anesthetic lidocaine delivery system: Chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles. Drug Deliv 2016; 23: 3529-37.
[http://dx.doi.org/10.1080/10717544.2016.1204569]
[101]
Tanodekaew S, Prasitsilp M, Swasdison S, Thavornyutikarn B, Pothsree T, Pateepasen R. Preparation of acrylic grafted chitin for wound dressing application. Biomaterials 2004; 25(7-8): 1453-60.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.020] [PMID: 14643620]
[102]
Jardim KV, Palomec-Garfias AF, Andrade BYG, et al. Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Mater Sci Eng C 2018; 92: 184-95.
[http://dx.doi.org/10.1016/j.msec.2018.06.039] [PMID: 30184741]
[103]
Mi FL, Shyu SS, Chen CT, Schoung JY. Porous chitosan microsphere for controlling the antigen release of Newcastle disease vaccine: Preparation of antigen-adsorbed microsphere and in vitro release. Biomaterials 1999; 20(17): 1603-12.
[http://dx.doi.org/10.1016/S0142-9612(99)00064-2] [PMID: 10482415]
[104]
Hendrik JRL, Josias HH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv 2013; 10(1): 103-14.2002;
[105]
Gomes SR, Rodrigues G, Martins GG, et al. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Mater Sci Eng C 2015; 46: 348-58.
[http://dx.doi.org/10.1016/j.msec.2014.10.051] [PMID: 25491997]
[106]
Singh BN, Panda NN, Mund R, Pramanik K. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym 2016; 151: 335-47.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.088] [PMID: 27474575]
[107]
Sarhan WA, Azzazy HME, El-Sherbiny IM. Honey/chitosan nanofiber wound dressing enriched with allium sativum and cleome droserifolia : Enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 2016; 8(10): 6379-90.
[http://dx.doi.org/10.1021/acsami.6b00739] [PMID: 26909753]
[108]
Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 2011; 29(3): 322-37.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[109]
Zhou Y, Dong Q, Yang H, et al. Photocrosslinked maleilated chitosan/methacrylated poly (vinyl alcohol) bicomponent nanofibrous scaffolds for use as potential wound dressings. Carbohydr Polym 2017; 168: 220-6.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.044] [PMID: 28457444]
[110]
Wu Z, Zhou W, Deng W, Xu C, Cai Y, Wang X. Antibacterial and hemostatic thiol-modified chitosan-immobilized agnps composite sponges. ACS Appl Mater Interfaces 2020; 12(18): 20307-20.
[http://dx.doi.org/10.1021/acsami.0c05430] [PMID: 32298570]
[111]
Liang D, Lu Z, Yang H, Gao J, Chen R. Novel asymmetric wettable AgNPs/chitosan wound dressing: In vitro and in vivo evaluation. ACS Appl Mater Interfaces 2016; 8(6): 3958-68.
[http://dx.doi.org/10.1021/acsami.5b11160] [PMID: 26800283]
[112]
Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences 2016; 10(1): 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[113]
Shi Y, Zhang H, Zhang X, Chen Z, Zhao D, Ma J. A comparative study of two porous sponge scaffolds prepared by collagen derived from porcine skin and fish scales as burn wound dressings in a rabbit model. Regen Biomater 2020; 7(1): 63-70.
[http://dx.doi.org/10.1093/rb/rbz036] [PMID: 32153992]
[114]
Taghavi SM, Momenpour M, Azarian M, et al. Effects of nanoparticles on the environment and outdoor workplaces. Electron Physician 2013; 5(4): 706-12.
[PMID: 26120406]
[115]
Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care 2014; 3(8): 511-29.
[http://dx.doi.org/10.1089/wound.2012.0401] [PMID: 25126472]
[116]
Yang Y, Zhang Y, Yan Y, et al. A sponge-like double-layer wound dressing with chitosan and decellularized bovine amniotic membrane for promoting diabetic wound healing. Polymers 2020; 12(3): 535.
[http://dx.doi.org/10.3390/polym12030535] [PMID: 32131412]
[117]
Prabaharan M, Sivashankari P R. Prospects of bioactive chitosan-based scaffolds in tissue engineering and regenerative medicine. Chitin Chitosan Regen Med 2015; 41-59.
[http://dx.doi.org/10.1007/978-81-322-2511-9_2]
[118]
Leena R, Vairamani M, Selvamurugan N. Alginate/Gelatin scaffolds incorporated with Silibinin-loaded Chitosan nanoparticles for bone formation in vitro. Colloids Surf B Biointerfaces 2017; 158: 308-18.
[119]
Li B, Hu QL, et al. Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in situ precipitation for internal fixation of bone fracture. Acta Polymerica Sinica 2002; 6(6): 828-33.
[120]
Kar S, Kaur T. Microwave-assisted synthesis of porous chitosan–modified montmorillonite–hydroxyapatite composite scaffolds. Int J Biol Macromol 2016; 82: 628-36.
[121]
Bhowmick A, Banerjee S, Pramanik N, et al. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Int J Biol Macromol 2018; 106: 11-9.
[122]
Morille M, Van-Thanh T, Garric X, et al. New PLGA–P188–PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells. J Control Release 2013; 170(1): 99-110.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.017] [PMID: 23648834]
[123]
Kuo CY, Chen CH, Hsiao CY, Chen JP. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Carbohydr Polym 2015; 117: 722-30.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.056] [PMID: 25498693]
[124]
Kaviani A, Zebarjad S M, Javadpour S, Ayatollahi M, Bazargan-Lari R. Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. Int J Polym Anal 2019; 24: 191-203.
[http://dx.doi.org/10.1080/1023666X.2018.1562477]
[125]
Choi B, Kim S, Lin B, Wu BM, Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 2014; 6(22): 20110-21.
[http://dx.doi.org/10.1021/am505723k] [PMID: 25361212]
[126]
Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol 2018; 191(19): 19-30.
[127]
Madni A, Kousar R, Naeem N, Wahid F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. JBioresour Bioprod 2021; 6(1): 11-25.
[128]
Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 2012; 29(1): 48-56.
[http://dx.doi.org/10.1016/j.foodhyd.2012.02.013]
[129]
Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech 2010; 11(1): 362-71.
[http://dx.doi.org/10.1208/s12249-010-9390-3] [PMID: 20232266]
[130]
Salama A, Hasanin M, Hesemann P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym 2020; 241: 116363.
[http://dx.doi.org/10.1016/j.carbpol.2020.116363] [PMID: 32507164]
[131]
Petkova P, Francesko A, Fernandes MM, et al. Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 2014; 6(2): 1164-72.
[http://dx.doi.org/10.1021/am404852d] [PMID: 24383795]
[132]
Song S, You B, Zhu Y, Lin Y, Wu Y, Ge X. Nanocrystal-organic hybrid antifungal agent: High level oriented assembly of zinc hydroxide carbonate nanocrystals in chitosan. Cryst Growth Des 2014; 14(1): 38-45.
[http://dx.doi.org/10.1021/cg401047a]
[133]
Marangon CA, Martins VCA, Ling MH, et al. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces 2020; 12(5): 5488-99.
[http://dx.doi.org/10.1021/acsami.9b19253] [PMID: 31927982]
[134]
Dutta J, Devi N. Preparation, optimization, and characterization of chitosan-sepiolite nanocomposite films for wound healing. Int J Biol Macromol 2021; 186: 244-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.020] [PMID: 34245736]
[135]
Arkoun M, Daigle F, Heuzey MC, Ajji A. Antibacterial electrospun chitosan-based nanofibers: A bacterial membrane perforator. Food Sci Nutr 2017; 5(4): 865-74.
[http://dx.doi.org/10.1002/fsn3.468] [PMID: 28748074]
[136]
Hu D, Wang H, Wang L. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. Lebensm Wiss Technol 2016; 65: 398-405.
[http://dx.doi.org/10.1016/j.lwt.2015.08.033]
[137]
Wang Z, Yan F, Pei H, Li J, Cui Z, He B. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration. Carbohydr Polym 2018; 198: 241-8.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.090] [PMID: 30092996]
[138]
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 2010; 56(3): 290-9.
[http://dx.doi.org/10.1016/j.yrtph.2009.09.015] [PMID: 19788905]
[139]
Liu J, Meng C, Liu S, Kan J, Jin C. Preparation and characterization of protocatechuic acid grafted chitosan films with antioxidant activity. Food Hydrocoll 2017; 63: 457-66.
[http://dx.doi.org/10.1016/j.foodhyd.2016.09.035]
[140]
Opanasopit P, Polawan A, Jarija K, et al. Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharm Dev Technol 2008; 12(5): 447-55.
[http://dx.doi.org/10.1080/10837450701555901]
[141]
Ishihara M, Nakanishi K, Ono K, et al. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 2002; 23(3): 833-40.
[http://dx.doi.org/10.1016/S0142-9612(01)00189-2] [PMID: 11771703]
[142]
Tapola NS, Lyyra ML, Kolehmainen RM, Sarkkinen ES, Schauss AG. Safety aspects and cholesterol-lowering efficacy of chitosan tablets. J Am Coll Nutr 2008; 27(1): 22-30.
[http://dx.doi.org/10.1080/07315724.2008.10719671] [PMID: 18460478]
[143]
Kurakula M, Naveen NR. In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. Mar Drugs 2020; 18(4): 201.
[http://dx.doi.org/10.3390/md18040201] [PMID: 32283782]
[144]
Chitosan Market Siz Global Industry Analysis Report, 2020-2027. https://www.grandviewresearch.com/industry-analysis/global-chitosan-market.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy