Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Regioselective Functionalization of the para-Positions at the Calix[4]arene Upper Rim

Author(s): Oleksandr A. Yesypenko*, Oleksandr O. Trybrat, Yevgen A. Karpichev and Vitaly I. Kalchenko

Volume 27, Issue 6, 2023

Published on: 21 June, 2023

Page: [510 - 525] Pages: 16

DOI: 10.2174/1385272827666230524120812

Price: $65

Abstract

This review summarized and systematized the currently known methods of substituting phenolic fragments of calix[4]arenes in the para-position, mainly focusing on the conditions of regioselective carrying out such processes. The reactions of the further transformation of the inserted functional groups, which allows the expansion of the family of para-substituted calixarenes, are also considered. These reactions can be used in the synthesis of inherently chiral calix[4]arenes with asymmetric substitution on the upper rim.

Graphical Abstract

[1]
Gutsche, C.D. Ed.; Calixarenes: An Introduction; The Royal Society of Chemistry: Cambridge, 2008.
[2]
Mokhtari, B.; Pourabdollah, K.; Dalali, N. Analytical applications of calixarenes from 2005 up-to-date. J. Incl. Phenom. Macrocycl. Chem., 2011, 69(1-2), 1-55.
[http://dx.doi.org/10.1007/s10847-010-9848-7]
[3]
Naseer, M.M.; Ahmed, M.; Hameed, S. Functionalized calix[4]arenes as potential therapeutic agents. Chem. Biol. Drug Des., 2017, 89(2), 243-256.
[http://dx.doi.org/10.1111/cbdd.12818] [PMID: 28205403]
[4]
Fuller, R.O.; Koutsantonis, G.A.; Ogden, M.I. Magnetic properties of calixarene-supported metal coordination clusters. Coord. Chem. Rev., 2020, 402, 213066.
[http://dx.doi.org/10.1016/j.ccr.2019.213066]
[5]
Cai, X.; Zhao, Q. A mini review: Supramolecular gels based on calix[4]arene derivatives. J. Incl. Phenom. Macrocycl. Chem., 2021, 99(1-2), 13-22.
[http://dx.doi.org/10.1007/s10847-020-01032-8]
[6]
Szumna, A. Inherently chiral concave molecules—from synthesis to applications. Chem. Soc. Rev., 2010, 39(11), 4274-4285.
[http://dx.doi.org/10.1039/b919527k] [PMID: 20882239]
[7]
Zheng, Y.S.; Luo, J. Inherently chiral calixarenes: A decade’s review. J. Incl. Phenom. Macrocycl. Chem., 2011, 71(1-2), 35-56.
[http://dx.doi.org/10.1007/s10847-011-9935-4]
[8]
Li, S.Y.; Xu, Y.W.; Liu, J.M.; Su, C.Y. Inherently chiral calixarenes: Synthesis, optical resolution, chiral recognition and asymmetric catalysis. Int. J. Mol. Sci., 2011, 12(1), 429-455.
[http://dx.doi.org/10.3390/ijms12010429] [PMID: 21339996]
[9]
Arnott, G.E. Inherently chiral calixarenes: Synthesis and applications. Chemistry, 2018, 24(8), 1744-1754.
[http://dx.doi.org/10.1002/chem.201703367] [PMID: 28809457]
[10]
Durmaz, M.; Halay, E.; Bozkurt, S. Recent applications of chiral calixarenes in asymmetric catalysis. Beilstein J. Org. Chem., 2018, 14, 1389-1412.
[http://dx.doi.org/10.3762/bjoc.14.117] [PMID: 29977403]
[11]
Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature, 1996, 382(6591), 522-524.
[http://dx.doi.org/10.1038/382522a0]
[12]
Luo, J.; Zheng, Q.Y.; Chen, C.F.; Huang, Z.T. Facile synthesis and optical resolution of inherently chiral fluorescent calix[4]crowns: enantioselective recognition to-wards chiral leucinol. Tetrahedron, 2005, 61(35), 8517-8528.
[http://dx.doi.org/10.1016/j.tet.2005.06.015]
[13]
Karakucuk, A.; Durmaz, M.; Sirit, A.; Yilmaz, M.; Demir, A.S. Synthesis and chiral recognition properties of two novel chiral calix[4]arene tartaric ester derivatives. Tetrahedron Asymmetry, 2006, 17(13), 1963-1968.
[http://dx.doi.org/10.1016/j.tetasy.2006.07.011]
[14]
Krawinkler, K.H.; Maier, N.M.; Ungaro, R.; Sansone, F.; Casnati, A.; Lindner, W. Novel cinchona carbamate selectors with complementary enantioseparation characteris-tics for N-acylated amino acids. Chirality, 2003, 15(S1), S17-S29.
[http://dx.doi.org/10.1002/chir.10257] [PMID: 12884371]
[15]
Kalchenko, O.; Lipkowski, J.; Kalchenko, V. Supramolecular and analytical chemistry of calixarenes. Comp. Supramol. Chem. II., 2017, 2, 239-261.
[16]
He, Y.; Xiao, Y.; Meng, L.; Zeng, Z.; Wu, X.; Wu, C.T. New type chiral calix[4](aza)crowns: synthesis and chiral recognition. Tetrahedron Lett., 2002, 43(35), 6249-6253.
[http://dx.doi.org/10.1016/S0040-4039(02)01322-9]
[17]
Narumi, F.; Hattori, T.; Matsumura, N.; Onodera, T.; Katagiri, H.; Kabuto, C.; Kameyama, H.; Miyano, S. Synthesis of an inherently chiral O,O′-bridged thia-calix[4]crowncarboxylic acid and its application to a chiral solvating agent. Tetrahedron, 2004, 60(36), 7827-7833.
[http://dx.doi.org/10.1016/j.tet.2004.06.074]
[18]
Lavendomme, R.; Zahim, S.; De Leener, G.; Inthasot, A.; Mattiuzzi, A.; Luhmer, M.; Reinaud, O.; Jabin, I. Rational strategies for the selective functionalization of ca-lixarenes. Asian J. Org. Chem., 2015, 4(8), 710-722.
[http://dx.doi.org/10.1002/ajoc.201500178]
[19]
Fernandes, R.; Mulay, S. Chiral cups (Calixarenes) via Dötz benzannulation. Synthesis, 2014, 46(14), 1836-1846.
[http://dx.doi.org/10.1055/s-0033-1339122]
[20]
Neri, P.; Sessler, J.L.; Wang, M-X. Calixarenes and beyond; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-31867-7]
[21]
van Loon, J.D.; Arduini, A.; Verboom, W.; Ungaro, R.; van Hummel, G.J.; Harkema, S.; Reinhoudt, D.N. Selective functionalization of calix[4]arenes at the upper rim. Tetrahedron Lett., 1989, 30(20), 2681-2684.
[http://dx.doi.org/10.1016/S0040-4039(00)99097-X]
[22]
Van Loon, J.D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt, D.N. Selective functionalization of calix[4]arenes at the upper rim. J. Org. Chem., 1990, 55(21), 5639-5646.
[http://dx.doi.org/10.1021/jo00308a024]
[23]
Böhmer, V. Calixarenes, macrocycles with(almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl., 1995, 34(7), 713-745.
[http://dx.doi.org/10.1002/anie.199507131]
[24]
Thondorf, I.; Shivanyuk, A.; Böhmer, V. Chemical Modification of Calix[ 4]arenes and Resorcarenes. In: Calixarenes; Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, 2001, pp. 26-53.
[25]
Kelderman, E.; Verboom, W.; Engbersen, J.F.J.; Reinhoudt, D.N.; Heesink, G.J.T.; van Hulst, N.F.; Derhaeg, L.; Persoons, A. Nitrocalix [4]arenes as molecules for sec-ond-order nonlinear optics. Angew. Chem. Int. Ed. Engl., 1992, 31(8), 1075-1077.
[http://dx.doi.org/10.1002/anie.199210751]
[26]
Verboom, W.; Durie, A.; Egberink, R.J.M.; Asfari, Z.; Reinhoudt, D.N. Ipso nitration of p-tert-butylcalix[4]arenes. J. Org. Chem., 1992, 57(4), 1313-1316.
[http://dx.doi.org/10.1021/jo00030a050]
[27]
Kumar, S.; Varadarajan, R.; Chawla, H.M.; Hundal, G.; Hundal, M.S. Preparation of p-nitrocalix[n]arene methyl ethers via ipso-nitration and crystal structure of tetra-methoxytetra-p-nitrocalix[4]arene. Tetrahedron, 2004, 60(4), 1001-1005.
[http://dx.doi.org/10.1016/j.tet.2003.11.057]
[28]
Kenis, P.J.A.; Noordman, O.F.J.; Schönherr, H.; Kerver, E.G.; Snellink-Ruël, B.H.M.; van Hummel, G.J.; Harkema, S.; van der Vorst, C.P.J.M.; Hare, J.; Picken, S.J.; Eng-bersen, J.F.J.; van Hulst, N.F.; Vancso, G.J.; Reinhoudt, D.N. Supramolecular materials: Molecular packing of tetranitrotetrapropoxycalix[4]arene in highly stable films with second-order nonlinear optical properties. Chemistry, 1998, 4(7), 1225-1234.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19980710)4:7<1225:AID-CHEM1225>3.0.CO;2-6]
[29]
Brake, M.; Böhmer, V.; Krämer, P.; Vogt, W.; Wortmann, R. O-Alkylated p-nitrocalix[4]arenes, synthesis, LB-monolayers and NLO-properties. Supramol. Chem., 1993, 2(1), 65-70.
[http://dx.doi.org/10.1080/10610279308027509]
[30]
Rashidi-Ranjbar, P.; Taghvaei-Ganjali, S.; Shaabani, B.; Akbari, K. Selective ipso-nitration of tert-Butylcalix[4]arene tripropylether. Molecules, 2000, 5(12), 941-944.
[http://dx.doi.org/10.3390/50700941]
[31]
Jankowski, C.K.; Van Calsteren, M-R.; Aychet, N.; Dozol, J.F.; Moulin, C.; Lamouroux, C. Study of the nitration of di- n -octylcrown-6 calix[4]arene using LC–MS, NMR, and molecular modelling. Can. J. Chem., 2005, 83(8), 1098-1113.
[http://dx.doi.org/10.1139/v05-126]
[32]
Zhang, W.C.; Zheng, Y.S.; Huang, Z.T. New synthetic method of p-nitrocalixarenes. Synth. Commun., 1997, 27(21), 3763-3767.
[http://dx.doi.org/10.1080/00397919708007300]
[33]
Gagnon, J.; Drouin, M.; Harvey, P.D. Upper-rim functionalization of calix[4]arene by chloro(isocyanide)gold(I) groups: An entry to polymetallic architecture. Inorg. Chem., 2001, 40(23), 6052-6056.
[http://dx.doi.org/10.1021/ic010640i] [PMID: 11681925]
[34]
Sansone, F.; Dudič, M.; Donofrio, G.; Rivetti, C.; Baldini, L.; Casnati, A.; Cellai, S.; Ungaro, R. DNA condensation and cell transfection properties of guanidinium ca-lixarenes: Dependence on macrocycle lipophilicity, size, and conformation. J. Am. Chem. Soc., 2006, 128(45), 14528-14536.
[http://dx.doi.org/10.1021/ja0634425] [PMID: 17090036]
[35]
Struck, O.; Chrisstoffels, L.A.J.; Lugtenberg, R.J.W.; Verboom, W.; van Hummel, G.J.; Harkema, S.; Reinhoudt, D.N. Head-to-Head linked double Calix[4]arenes: Con-venient synthesis and complexation properties. J. Org. Chem., 1997, 62(8), 2487-2493.
[http://dx.doi.org/10.1021/jo962138z] [PMID: 11671587]
[36]
Beer, P. D.; Drew, M. G. B.; Hazlewood, C.; Hesek, D.; Jana Hodacova, J.; Stokes, S. E. Dicarboxylate anion recognition by a redox-responsive ditopic Bis(coba1ticinium) Calix[4]arene receptor molecule. JCS Chem. Comm., 1993, 229-231.
[37]
Alvarenga, M.E.; Guimarães, F.F.; da Silva, C.M.; Alves, R.B.; Lara, T.V.C.; Maia, L.J.Q.; de Santana, R.C.; Martins, F.T. Joining a host-guest platform and a light-emission motif: Pyrazinamide-calixarene hybrids. J. Mol. Struct., 2022, 1258, 132694.
[http://dx.doi.org/10.1016/j.molstruc.2022.132694]
[38]
Botha, F.; Budka, J.; Eigner, V.; Hudeček, O.; Vrzal, L.; Císařová, I.; Lhoták, P. Recognition of chiral anions using calix[4]arene-based ureido receptor in the 1,3-alternate conformation. Tetrahedron, 2014, 70(2), 477-483.
[http://dx.doi.org/10.1016/j.tet.2013.11.030]
[39]
Nam, K.C.; Kim, D.S. Selective nitration of Calix[4]arene. Bull. Korean Chem. Soc., 1994, 15, 284-286.
[40]
Ana Rita, N.S.R.; Ayer, M.; Fracassi, A.; Ebert, M-O.; Aroua, S.; Yamakoshi, Y. Conformationally selective synthesis of Mononitrocalix[4]arene in cone or partial cone. Helv. Chim. Acta, 2017, 100, e1600391.
[41]
Kumar, S.; Kurur, N.D.; Chawla, H.M.; Varadarajan, R. A convenient one pot one step synthesis of p -nitrocalixarenes via ipsonitration. Synth. Commun., 2001, 31(5), 775-779.
[http://dx.doi.org/10.1081/SCC-100103269]
[42]
Blond, P.; Mattiuzzi, A.; Valkenier, H.; Troian-Gautier, L.; Bergamini, J.F.; Doneux, T.; Goormaghtigh, E.; Raussens, V.; Jabin, I. Grafting of Oligo(ethylene glycol)-Functionalized Calix[4]arene-tetradiazonium salts for antifouling germanium and gold surfaces. Langmuir, 2018, 34(21), 6021-6027.
[http://dx.doi.org/10.1021/acs.langmuir.8b00464] [PMID: 29724105]
[43]
Sun, T.; Qi, L.; Li, W.; Li, Y.; Shuai, X.; Cai, Z.; Chen, H.; Qiao, X.; Ma, L. Amphiphilic calix[4]arenes as a highly selective gas chromatographic stationary phase for aromatic amine isomers. J. Chromatogr. A, 2019, 1601, 310-318.
[http://dx.doi.org/10.1016/j.chroma.2019.04.068] [PMID: 31054832]
[44]
Mogck, O.; Böhmer, V.; Ferguson, G.; Vogt, W. Selective ipso-nitration of tert-butylcalix[4]arene 1,3-diethers: X-ray structure of an unexpected side product. JCS Perk. Tr1., 1996, 1711-1715.1996.
[45]
Creaven, B.S.; Gernon, T.L.; McGinley, J.; Moore, A.M.; Toftlund, H. Wide- and narrow-rim functionalised calix[4]arenes: synthesis and characterisation. Tetrahedron, 2006, 62(38), 9066-9071.
[http://dx.doi.org/10.1016/j.tet.2006.06.096]
[46]
Burilov, V.A.; Fatikhova, G.A.; Dokuchaeva, M.N.; Nugmanov, R.I.; Mironova, D.A.; Dorovatovskii, P.V.; Khrustalev, V.N.; Solovieva, S.E.; Antipin, I.S. Synthesis of new p-tert -butylcalix[4]arene-based polyammonium triazolyl amphiphiles and their binding with nucleoside phosphates. Beilstein J. Org. Chem., 2018, 14, 1980-1993.
[http://dx.doi.org/10.3762/bjoc.14.173] [PMID: 30202452]
[47]
Horáčková, T.; Budka, J.; Eigner, V.; Chung, W.S.; Cuřínová, P.; Lhoták, P. Chiral anion recognition using calix[4]arene-based ureido receptors in a 1,3-alternate con-formation. Beilstein J. Org. Chem., 2020, 16, 2999-3007.
[http://dx.doi.org/10.3762/bjoc.16.249] [PMID: 33363668]
[48]
Bitter, I.; Grün, A.; Tóth, G.; Szöll’´osy, Á.; Horváth, G.; Ágai, B.; T’´oke, L. Novel chromogenic pyridinium derivatives of calix[4]arenes, I. Tetrahedron, 1996, 52(2), 639-646.
[http://dx.doi.org/10.1016/0040-4020(95)00914-0]
[49]
Hudecek, O.; Curinova, P.; Budka, J.; Lhoták, P. Regioselective upper rim substitution of calix[4]arenes. Tetrahedron, 2011, 67(29), 5213-5218.
[http://dx.doi.org/10.1016/j.tet.2011.05.049]
[50]
Hudecek, O.; Budka, J.; Eigner, V.; Lhoták, P. Regioselective ipso-nitration of calix[4]arenes. Tetrahedron, 2012, 68(22), 4187-4193.
[http://dx.doi.org/10.1016/j.tet.2012.03.102]
[51]
Wang, J.H.; Chen, Y.C.; Zheng, Y.S.; Shen, C.H. Selective nitration of calix[4]arenes that easily gave inherently chiral calix[4]arenes. J. Incl. Phenom. Macrocycl. Chem., 2014, 80(3-4), 449-455.
[http://dx.doi.org/10.1007/s10847-014-0413-7]
[52]
Jurisch, C.D.; Arnott, G.E. Attempted synthesis of a meta -metalated calix[4]arene. Beilstein J. Org. Chem., 2019, 15, 1996-2002.
[http://dx.doi.org/10.3762/bjoc.15.195] [PMID: 31501666]
[53]
Zeng, C.C.; Zheng, Q.Y.; Tang, Y.L.; Huang, Z.T. Synthesis of new calix[4]arenes containing nucleoside bases. Tetrahedron, 2003, 59(14), 2539-2548.
[http://dx.doi.org/10.1016/S0040-4020(03)00251-5]
[54]
Li, Z.; Ma, J.; Chen, J.; Pan, Y.; Qiang, J.; Wang, L. High-performance liquid chromatography study of the nitration course of tetrabutoxycalix[4]arene at the upper rim: Determination of the optimum conditions for the preparation of 5,11,17-Trinitro-25,26,27,28-tetrabutoxycalix[4]arene. Chin. J. Chem., 2009, 27(10), 2031-2036.
[http://dx.doi.org/10.1002/cjoc.200990341]
[55]
van Wageningen, A. M. A.; Snip, E.; Verboom, W.; Reinhoudt, D. N.; Boerrigter, H. Synthesis and application of Iso(thio)cyanate-functionalized calix[4]arenes. Lieb. Ann., 1997, 2235-2245.
[56]
Hocquelet, C.; Jankowski, C.K.; Mauclaire, L. New tubular products from calixarene–cyclodextrin coupling. Tetrahedron, 2007, 63(44), 10834-10839.
[http://dx.doi.org/10.1016/j.tet.2007.06.121]
[57]
Valkenier, H.; Malytskyi, V.; Blond, P.; Retout, M.; Mattiuzzi, A.; Goole, J.; Raussens, V.; Jabin, I.; Bruylants, G. Controlled functionalization of gold nanoparticles with mixtures of calix[4]arenes revealed by infrared spectroscopy. Langmuir, 2017, 33(33), 8253-8259.
[http://dx.doi.org/10.1021/acs.langmuir.7b02140] [PMID: 28727432]
[58]
Kajouj, S.; Marcelis, L.; Mattiuzzi, A.; Grassin, A.; Dufour, D.; Van Antwerpen, P.; Boturyn, D.; Defrancq, E.; Surin, M.; De Winter, J.; Gerbaux, P.; Jabin, I.; Moucheron, C. Synthesis and photophysical studies of a multivalent photoreactive Ru II -calix[4]arene complex bearing RGD-containing cyclopentapeptides. Beilstein J. Org. Chem., 2018, 14, 1758-1768.
[http://dx.doi.org/10.3762/bjoc.14.150] [PMID: 30112081]
[59]
Blond, P.; Bevernaegie, R.; Troian-Gautier, L.; Lagrost, C.; Hubert, J.; Reniers, F.; Raussens, V.; Jabin, I. Ready-to-Use Germanium surfaces for the development of FTIR-based biosensors for proteins. Langmuir, 2020, 36(40), 12068-12076.
[http://dx.doi.org/10.1021/acs.langmuir.0c02681] [PMID: 33007158]
[60]
Matvieiev, Y.; Kulinich, A.; Ryabitskii, A.; Shishkina, S.; Shishkin, O.; Pivovarenko, V.; Kalchenko, V. The upper rim functionalized calixarene ketocyanines: Synthe-sis, structure and fluorescence properties. Macroheterocycles, 2016, 9(3), 288-293.
[http://dx.doi.org/10.6060/mhc160533k]
[61]
Sharma, S.K.; Gutsche, C.D. Upper rim substitution of Calix[4]arenes via their upper rim A,C dinitro compounds. J. Org. Chem., 1999, 64(3), 998-1003.
[http://dx.doi.org/10.1021/jo980903z] [PMID: 11674175]
[62]
Da Silva, C.M.; da Silva, D.L.; Magalhães, T.F.F.; Alves, R.B.; de Resende-Stoianoff, M.A.; Martins, F.T.; de Fatima, Â. Iminecalix[4]arenes: Microwave-assisted synthe-sis, X-ray crystal structures, and anticandidal activity. Arab. J. Chem., 2016, 9, 4365-4376.
[63]
Hosseinzadeh, R.; Maliji, F.; Golchoubian, H.; Bekhradnia, A. A novel ferrocene‐based Calix[4]arene as an efficient optical and electrochemical sensor for highly selec-tive fluoride recognition. ChemistrySelect, 2019, 4(13), 3914-3920.
[http://dx.doi.org/10.1002/slct.201900241]
[64]
Mattiuzzi, A.; Troian-Gautier, L.; Mertens, J.; Reniers, F.; Bergamini, J.F.; Lenne, Q.; Lagrost, C.; Jabin, I. Robust hydrophobic gold, glass and polypropylene surfaces obtained through a nanometric covalently bound organic layer. RSC Advances, 2020, 10(23), 13553-13561.
[http://dx.doi.org/10.1039/D0RA01011A] [PMID: 35492995]
[65]
Romero, J.; Barberá, J.; Blesa, M.J.; Concellón, A.; Romero, P.; Serrano, J.L.; Marcos, M. Liquid crystal organization of calix[4]arene-appended schiff bases and recogni-tion towards Zn 2+. ChemistrySelect, 2017, 2(1), 101-109.
[http://dx.doi.org/10.1002/slct.201601826]
[66]
Mogck, O.; Pons, M.; Böhmer, V.; Vogt, W. NMR studies of the reversible dimerization and guest exchange processes of tetra urea calix[4]arenes using a derivative with lower symmetry. J. Am. Chem. Soc., 1997, 119(24), 5706-5712.
[http://dx.doi.org/10.1021/ja970078o]
[67]
Zhang, Z.; Li, L.; An, D.; Li, H.; Zhang, X. Triazine-based covalent organic polycalix[4]arenes for highly efficient and reversible iodine capture in water. J. Mater. Sci., 2020, 55(4), 1854-1864.
[http://dx.doi.org/10.1007/s10853-019-04164-6]
[68]
Iuliano, V.; Della Sala, P.; Talotta, C.; Liguori, L.; Monaco, G.; Tiberio, E.; Gaeta, C.; Neri, P. Chromogenic properties of p -Pyridinium- and p -Viologen-Calixarenes and their cation-sensing abilities. J. Org. Chem., 2021, 86(18), 13001-13010.
[http://dx.doi.org/10.1021/acs.joc.1c01687] [PMID: 34469156]
[69]
Dondoni, A.; Ghiglione, C.; Marra, A.; Scoponi, M. Synthesis of Calix[4]arenylvinylene and Calix[4]arenylphenylene oligomers by stille and suzuki cross-coupling reactions. J. Org. Chem., 1998, 63(25), 9535-9539.
[http://dx.doi.org/10.1021/jo980868w]
[70]
Araki, K.; Watanabe, T.; Oda, M.; Hayashida, H.; Yasutake, M.; Shinmyozu, T. Synthesis of biscalix[4]arene with enhanced binding ability to a cationic guest. Tetrahedron Lett., 2001, 42(42), 7465-7468.
[http://dx.doi.org/10.1016/S0040-4039(01)01577-5]
[71]
Stastny, V.; Lhoták, P.; Michlová, V.; Stibor, I.; Sykora, J. Novel biscalix[4]arene-based anion receptors. Tetrahedron, 2002, 58(36), 7207-7211.
[http://dx.doi.org/10.1016/S0040-4020(02)00799-8]
[72]
Smukste, I.; House, B.E.; Smithrud, D.B. Host-[2]rotaxane: Advantage of converging functional groups for guest recognition. J. Org. Chem., 2003, 68(7), 2559-2571.
[http://dx.doi.org/10.1021/jo026522+] [PMID: 12662024]
[73]
Son, P.; Arora, G.; Crawford, J.D.; Lee, E.K.; Hope-Weeks, L.J.; Surowiec, K.; Bartsch, R.A. New 5,17-(di-ionizable)-25,26,27,28-tetraalkoxycalix[4]arene ligands: Synthesis and selected divalent metal ion extractions. J. Incl. Phenom. Macrocycl. Chem., 2015, 81(3-4), 451-464.
[http://dx.doi.org/10.1007/s10847-015-0474-2]
[74]
Genorio, B. The synthesis of diquinone and dihydroquinone derivatives of Calix[4]arene and electrochemical characterization on Au(111) surface. Acta Chim. Slov., 2016, 63(3), 496-508.
[http://dx.doi.org/10.17344/acsi.2016.2289] [PMID: 27640377]
[75]
Malytskyi, V.; Troian-Gautier, L.; Mattiuzzi, A.; Lambotte, S.; Cornelio, B.; Lagrost, C.; Jabin, I. Synthesis of a Calix[4]arene-monodiazonium salt for surface modifica-tion. Eur. J. Org. Chem., 2018, 2018(46), 6590-6595.
[http://dx.doi.org/10.1002/ejoc.201801253]
[76]
Puccini, M.; Guazzelli, L.; Tasca, A.L.; Mezzetta, A.; Pomelli, C.S. Development of a chemosensor for the in situ monitoring of thallium in the water network; Water Air Soil. Pol, 2018, pp. 1-8.
[77]
Pham, X.Q.; Jonusauskaite, L.; Depauw, A.; Kumar, N.; Lefevre, J.P.; Perrier, A.; Ha-Thi, M.H.; Leray, I. New water-soluble fluorescent sensors based on calix[4]arene biscrown-6 for selective detection of cesium. J. Photochem. Photobiol. Chem., 2018, 364, 355-362.
[http://dx.doi.org/10.1016/j.jphotochem.2018.06.017]
[78]
Casnati, A.; Fochi, M.; Minari, P.; Pochini, A.; Reggiani, M.; Ungaro, R. Upper-rim urea-derivatized calix[4]arenes as neutral receptors for monocarboxylate anions. Gaz. Chem. Ital., 1996, 126, 99-106.
[79]
Shetty, D.; Boutros, S.; Eskhan, A.; De Lena, A.M.; Skorjanc, T.; Asfari, Z.; Traboulsi, H.; Mazher, J.; Raya, J.; Banat, F.; Trabolsi, A. Thioether-Crown-Rich Calix[4]arene porous polymer for highly efficient removal of mercury from water. ACS Appl. Mater. Interfaces, 2019, 11(13), 12898-12903.
[http://dx.doi.org/10.1021/acsami.9b02259] [PMID: 30852896]
[80]
Bauer, D.; Stipurin, S.; Köckerling, M.; Mamat, C. Formation of calix[4]arenes with acyloxycarboxylate functions. Tetrahedron, 2020, 76(34), 131395.
[http://dx.doi.org/10.1016/j.tet.2020.131395]
[81]
Sharma, V.S.; Shah, P.A.; Sharma, A.S.; Subba Rao Ganga, V.; Shrivastav, P.S.; Prajapat, V. Upper/lower rim functionalized calixarene based AIE-active liquid crystals with self-assembly behavior: Photophysical and electrochemical studies. J. Mol. Liq., 2022, 348, 118047.
[http://dx.doi.org/10.1016/j.molliq.2021.118047]
[82]
Clark, T.E.; Makha, M.; Sobolev, A.N.; Rohrs, H.; Atwood, J.L.; Raston, C.L. Engineering nanorafts of calixarene polyphosphonates. Chemistry, 2008, 14(13), 3931-3938.
[http://dx.doi.org/10.1002/chem.200701472] [PMID: 18335428]
[83]
Peng, Z.; Linfei, D.; Dongxiang, Z.; Shi, L.; Yang, H.; Li, J.; Yaling, W.; Tarasov, V.V. Efficient extraction of Nd(III) by calix[4]arene derivatives containing diethyl phosphite. Hydrometallurgy, 2017, 169, 47-58.
[http://dx.doi.org/10.1016/j.hydromet.2016.12.005]
[84]
Shirakawa, S.; Kimura, T.; Murata, S.; Shimizu, S. Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: The effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions. J. Org. Chem., 2009, 74(3), 1288-1296.
[http://dx.doi.org/10.1021/jo8024412] [PMID: 19099418]
[85]
Gutsche, C.D.; Pagoria, P.F. Calixarenes. 16. Functionalized calixarenes: The direct substitution route. J. Org. Chem., 1985, 50(26), 5795-5802.
[http://dx.doi.org/10.1021/jo00350a071]
[86]
Larsen, M.; Jørgensen, M. Selective halogen−lithium exchange reaction of bromine-substituted 25,26,27,28-tetrapropoxycalix[4]arene. J. Org. Chem., 1996, 61(19), 6651-6655.
[http://dx.doi.org/10.1021/jo9609440] [PMID: 11667536]
[87]
Ikeda, A.; Yoshimura, M.; Lhotak, P.; Shinkai, S. Synthesis and optical resolution of naphthalene-containing inherently chiral calix[4]arenes derived by intramolecular ring closure or stapling of proximal phenyl units. JCS. Perk. Tr1., 1996, 1945-1950.
[88]
Shimizu, S.; Moriyama, A.; Kito, K.; Sasaki, Y. Selective synthesis and isolation of all possible conformational isomers of proximally para-disubstituted calix[4]arene. J. Org. Chem., 2003, 68(6), 2187-2194.
[http://dx.doi.org/10.1021/jo0267293] [PMID: 12636379]
[89]
Sato, T.; Kawakami, Y.; Tanaka, K.; Suzuno, K.; Takaya, Y.; Kabe, Y. Silanol-modified calix[4]arene conformers: syntheses, structures, and properties. Chem. Lett., 2017, 46(2), 175-177.
[http://dx.doi.org/10.1246/cl.160981]
[90]
Matvieiev, Y.; Solovyov, A.; Shishkina, S.; Shishkin, O.; Katz, A.; Boiko, V.; Kalchenko, V. Upper-rim calixarene phosphines consisting of multiple lower-rim OH functional groups: synthesis and characterisation. Supramol. Chem., 2014, 26(10-12), 825-835.
[http://dx.doi.org/10.1080/10610278.2014.882511]
[91]
Snayer, T.M.; Bose, S.; Arnott, G.E. ipso-Bromination of tert-butylcalix[4]arenes. ARKIVOC, 2020, 2020(5), 108-118.
[http://dx.doi.org/10.24820/ark.5550190.p011.389]
[92]
Shimizu, K.D.; Rebek, J. Jr Synthesis and assembly of self-complementary calix[4]arenes. Proc. Natl. Acad. Sci. USA, 1995, 92(26), 12403-12407.
[http://dx.doi.org/10.1073/pnas.92.26.12403] [PMID: 8618910]
[93]
García, O.; Nicolás, E.; Albericio, F. o-Formylation of electron-rich phenols with dichloromethyl methyl ether and TiCl4. Tetrahedron Lett., 2003, 44(27), 4961-4963.
[http://dx.doi.org/10.1016/S0040-4039(03)01168-7]
[94]
Arduini, A.; Manfredi, G.; Pochini, A.; Sicuri, A. R.; Ungaro, R. Selective formylation of calix[4larenes at the “Upper Rim” and synthesis of New Cavitands. JCS Chem. Comm., 1991, 936-937.
[95]
Arduini, A.; Fabbi, M.; Mantovani, M.; Mirone, L.; Pochini, A.; Secchi, A.; Ungaro, R. Calix[4]arenes blocked in a rigid cone conformation by selective functionalization at the lower rim. J. Org. Chem., 1995, 60(5), 1454-1457.
[http://dx.doi.org/10.1021/jo00110a055]
[96]
Molenveld, P.; Engbersen, J.F.J.; Kooijman, H.; Spek, A.L.; Reinhoudt, D.N. Efficient catalytic phosphate diester cleavage by the synergetic action of two Cu(II) centers in a dinuclear Cis -Diaqua Cu(II) Calix[4]arene enzyme model. J. Am. Chem. Soc., 1998, 120(27), 6726-6737.
[http://dx.doi.org/10.1021/ja9805324]
[97]
Zajícová, M.; Eigner, V.; Budka, J.; Lhoták, P. Intramolecular bridging of calix[4]arene dialdoximes. Tetrahedron Lett., 2015, 56(41), 5529-5532.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.032]
[98]
Sartori, A.; Casnati, A.; Mandolini, L.; Sansone, F.; Reinhoudt, D.N.; Ungaro, R. The first synthesis and characterisation of elusive cone 1,2-diformyl tetralkoxyca-lix[4]arenes and their derivatives. Tetrahedron, 2003, 59(29), 5539-5544.
[http://dx.doi.org/10.1016/S0040-4020(03)00808-1]
[99]
Segura, M.; Bricoli, B.; Casnati, A.; Muñoz, E.M.; Sansone, F.; Ungaro, R.; Vicent, C. A prototype calix[4]arene-based receptor for carbohydrate recognition containing peptide and phosphate binding groups. J. Org. Chem., 2003, 68(16), 6296-6303.
[http://dx.doi.org/10.1021/jo034471q] [PMID: 12895063]
[100]
Casnati, A.; Sartori, A.; Pirondini, L.; Bonetti, F.; Pelizzi, N.; Sansone, F.; Ugozzoli, F.; Ungaro, R. Calix[4]arene anion receptors bearing 2,2,2-trifluoroethanol groups at the Upper Rim. Supramol. Chem., 2006, 18(3), 199-218.
[http://dx.doi.org/10.1080/10610270500450499]
[101]
Zhu, J.M.; Chen, L.X.; Chen, K.; Zeng, X.; Tao, Z. Synthesis of a functionalised calix[4]arene and its interactions with hemicucurbit[6,7]urils and cucurbit[8]uril. Tetrahedron, 2018, 74(30), 4095-4099.
[http://dx.doi.org/10.1016/j.tet.2018.06.020]
[102]
Fang, J.A.; Zhao, J.L.; Liao, X.; Zeng, X.; Chen, K.; Wei, X.Y.; Su, S.B.; Luo, Q.Y.; Redshaw, C.; Jin, Z. Molecular tweezers-like calix[4]arene based alkaline earth metal cation (Ca2+, Sr2+, and Ba2+) chemosensor and its imaging in living cells and zebrafish. Inorg. Chem., 2019, 58(21), 14720-14727.
[http://dx.doi.org/10.1021/acs.inorgchem.9b02364] [PMID: 31613605]
[103]
Mei, Y.; Quan, J.; Gu, Y.; Yang, Y.; Huang, J.; Sun, K.; Li, H. Chiral selective adhesion of protein droplets on Calix[4]arene-enantiomer-modified surfaces. ACS Appl. Bio Mater., 2020, 3(2), 1226-1232.
[http://dx.doi.org/10.1021/acsabm.9b01114] [PMID: 35019323]
[104]
Smith, W.E. Formylation of aromatic compounds with hexamethylenetetramine and trifluoroacetic acid. J. Org. Chem., 1972, 37(24), 3972-3973.
[http://dx.doi.org/10.1021/jo00797a057]
[105]
Molenveld, P.; Stikvoort, W.M.G.; Kooijman, H.; Spek, A.L.; Engbersen, J.F.J.; Reinhoudt, D.N. Dinuclear and trinuclear Zn(II) calix[4]arene complexes as models for hydrolytic metallo-enzymes. synthesis and catalytic activity in phosphate diester transesterification. J. Org. Chem., 1999, 64(11), 3896-3906.
[http://dx.doi.org/10.1021/jo982201f]
[106]
Zhang, X.; Yang, Y.; Gu, Y.; Zhang, J.; Cheng, J.; Wang, J.; Sun, K.; Li, H. Chiral galactose responsive S-phenethylamine calix [4] arene-based sensing surface. Sens. Actuators B Chem., 2019, 297, 126662.
[http://dx.doi.org/10.1016/j.snb.2019.126662]
[107]
Chawla, H.M.; Pant, N.; Srivastava, B.; Upreti, S. Convenient direct synthesis of bisformylated calix[4]arenes via ipso substitution. Org. Lett., 2006, 8(11), 2237-2240.
[http://dx.doi.org/10.1021/ol0605124] [PMID: 16706495]
[108]
Sap, A.; Tabakci, B.; Yilmaz, A. Calix[4]arene-based Mannich and Schiff bases as versatile receptors for dichromate anion extraction: Synthesis and comparative studies. Tetrahedron, 2012, 68(42), 8739-8745.
[http://dx.doi.org/10.1016/j.tet.2012.08.015]
[109]
Temel, F. One novel calix[4]arene based QCM sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature. Talanta, 2020, 211, 120725.
[http://dx.doi.org/10.1016/j.talanta.2020.120725] [PMID: 32070583]
[110]
Ozkan, S.C.; Aksakal, F.; Yilmaz, A. Synthesis of novel calix[4]arene p -benzazole derivatives and investigation of their DNA binding and cleavage activities with molecular docking and experimental studies. RSC Advances, 2020, 10(63), 38695-38708.
[http://dx.doi.org/10.1039/D0RA07486A] [PMID: 35517565]
[111]
Zhu, F.; Yang, G.; Dhinakaran, M.K.; Wang, R.; Song, M.; Li, H. A pyrophosphate-activated nanochannel inspired by a TRP ion channel. Chem. Commun., 2019, 55(85), 12833-12836.
[http://dx.doi.org/10.1039/C9CC06615B] [PMID: 31595893]
[112]
Gokoglan, T.C.; Soylemez, S.; Kesik, M.; Unay, H.; Sayin, S.; Yildiz, H.B.; Cirpan, A.; Toppare, L. A novel architecture based on a conducting polymer and calixarene derivative: Its synthesis and biosensor construction. RSC Advances, 2015, 5(45), 35940-35947.
[http://dx.doi.org/10.1039/C5RA03933A]
[113]
Sahin, O.; Eymur, S.; Uyanik, A.; Akceylan, E.; Yilmaz, M. Chiral Calix[4]arenes-bearing prolinamide functionality as organocatalyst for asymmetric direct aldol reac-tions in water. Polycycl. Aromat. Compd., 2018, 38(2), 168-179.
[http://dx.doi.org/10.1080/10406638.2016.1176058]
[114]
Temel, F.; Erdemir, S.; Tabakci, B.; Akpinar, M.; Tabakci, M. Selective chiral recognition of alanine enantiomers by chiral calix[4]arene coated quartz crystal microbalance sensors. Anal. Bioanal. Chem., 2019, 411(12), 2675-2685.
[http://dx.doi.org/10.1007/s00216-019-01705-5] [PMID: 30931505]
[115]
Temel, F. Real-time and selective recognition of erythromycin by self-assembly of calix[4]arene on QCM sensor. J. Mol. Liq., 2020, 297, 111818.
[http://dx.doi.org/10.1016/j.molliq.2019.111818]
[116]
Samanta, K.; Rao, C.P. A bifunctional thioether linked coumarin appended Calix[4]arene acquires selectivity toward Cu2+ sensing on going from solution to SAM on gold. ACS Appl. Mater. Interfaces, 2016, 8(5), 3135-3142.
[http://dx.doi.org/10.1021/acsami.5b10481] [PMID: 26771103]
[117]
Temel, F.; Erdemir, S.; Ozcelik, E.; Tabakci, B.; Tabakci, M. Rapid and real-time detection of arginine enantiomers by QCM sensor having a Calix[4]arene receptor bearing asymmetric centers. Talanta, 2019, 204, 172-181.
[http://dx.doi.org/10.1016/j.talanta.2019.05.093] [PMID: 31357279]
[118]
Arora, L.S.; Chawla, H.M.; Pant, N. Synthesis and evaluation of multitopic bisbenzothiazolyl calix[4]arenes for ionic toxicants. Supramol. Chem., 2016, 28(5-6), 506-516.
[http://dx.doi.org/10.1080/10610278.2015.1126590]
[119]
Jain, V.K.; Handa, A.; Pandya, R.; Shrivastav, P.; Agrawal, Y.K. Polymer supported calix[4]arene-semicarbazone derivative for separation and preconcentration of La(III), Ce(III), Th(IV) and U(VI). React. Funct. Polym., 2002, 51(2-3), 101-110.
[http://dx.doi.org/10.1016/S1381-5148(02)00030-5]
[120]
Sansone, F.; Barboso, S.; Casnati, A.; Fabbi, M.; Pochini, A.; Ugozzoli, F.; Ungaro, R. Synthesis and structure of chiral Cone Calix[4]arenes functionalized at the upper rim with L-Alanine units. Eur. J. Org. Chem., 1998, 1998(5), 897-905.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199805)1998:5<897:AID-EJOC897>3.0.CO;2-K]
[121]
Lindgren, B.O.; Nilsson, T.; Husebye, S.; Mikalsen, Ø.; Leander, K.; Swahn, C-G. Preparation of carboxylic acids from aldehydes (Including Hydroxylated Benzalde-hydes) by oxidation with chlorite. Acta Chem. Scand., 1973, 27, 888-890.
[http://dx.doi.org/10.3891/acta.chem.scand.27-0888]
[122]
Li, Z.Y.; Chen, Y.; Zheng, C.Q.; Yin, Y.; Wang, L.; Sun, X.Q. Highly enantioselective aldol reactions catalyzed by reusable upper rim-functionalized calix[4]arene-based l -proline organocatalyst in aqueous conditions. Tetrahedron, 2017, 73(1), 78-85.
[http://dx.doi.org/10.1016/j.tet.2016.11.052]
[123]
Dondoni, A.; Marra, A.; Scherrmann, M.C.; Casnati, A.; Sansone, F.; Ungaro, R. Synthesis and properties ofO-Glycosyl Calix[4]Arenes (Calixsugars). Chemistry, 1997, 3(11), 1774-1782.
[http://dx.doi.org/10.1002/chem.19970031108]
[124]
Spencer, D.J.E.; Johnson, B.J.; Johnson, B.J.; Tolman, W.B. Calix[4]arenes linked to multiple bidentate N-donors: potential ligands for synthetic modeling of multinu-clear metalloenzymes. Org. Lett., 2002, 4(8), 1391-1393.
[http://dx.doi.org/10.1021/ol025715g] [PMID: 11950370]
[125]
Manfredi, N.; Decavoli, C.; Boldrini, C.L.; Dolla, T.H.; Faroldi, F.; Sansone, F.; Montini, T.; Baldini, L.; Fornasiero, P.; Abbotto, A. Multibranched Calix[4]arene‐Based sensitizers for efficient photocatalytic hydrogen production. Eur. J. Org. Chem., 2021, 2021(2), 284-288.
[http://dx.doi.org/10.1002/ejoc.202001296]
[126]
Shirakawa, S.; Moriyama, A.; Shimizu, S. Synthesis, optical resolution and enantiomeric recognition ability of novel, inherently chiral Calix[4]arenes: Trial application to asymmetric reactions as organocatalysts. Eur. J. Org. Chem., 2008, 2008(35), 5957-5964.
[http://dx.doi.org/10.1002/ejoc.200800850]
[127]
Almi, M.; Arduini, A.; Casnati, A.; Pochini, A.; Ungaro, R. Chloromethylation of calixarenes and synthesis of new water soluble macrocyclic hosts. Tetrahedron, 1989, 45(7), 2177-2182.
[http://dx.doi.org/10.1016/S0040-4020(01)80077-6]
[128]
Berthalon, S.; Regnouf-de-Vains, J.B.; Lamartine, R. Mono-functionalization of the tris-(p-tert-butyl)calix[4]arene. Tetrahedron Lett., 1997, 38(49), 8527-8528.
[http://dx.doi.org/10.1016/S0040-4039(97)10305-7]
[129]
Xie, D.; Gutsche, C.D. Synthesis and reactivity of calix[4]arene-based copper complexes. J. Org. Chem., 1998, 63(25), 9270-9278.
[http://dx.doi.org/10.1021/jo981038l]
[130]
Bayrakci, M.; Ertul, Ş.; Yilmaz, M. Synthesis of new water-soluble phosphonate calixazacrowns and their use as drug solubilizing agents. J. Incl. Phenom. Macrocycl. Chem., 2012, 74(1-4), 293-303.
[http://dx.doi.org/10.1007/s10847-012-0115-y]
[131]
Rodik, R.V.; Klymchenko, A.S.; Jain, N.; Miroshnichenko, S.I.; Richert, L.; Kalchenko, V.I.; Mély, Y. Virus-sized DNA nanoparticles for gene delivery based on mi-celles of cationic calixarenes. Chemistry, 2011, 17(20), 5526-5538.
[http://dx.doi.org/10.1002/chem.201100154] [PMID: 21503994]
[132]
Podyachev, S.N.; Gimazetdinova, G.S.; Sudakova, S.N.; Shamsutdinova, N.A.; Lapaev, D.V.; Syakaev, V.V.; Gubaidullin, A.T.; Nagimov, R.N.; Mustafina, A.R. Influ-ence of upper rim dibromo-substitution in bis-1,3-diketone calix[4]arenes on spectral properties of ligands and their lanthanide complexes. Tetrahedron, 2017, 73(36), 5397-5407.
[http://dx.doi.org/10.1016/j.tet.2017.07.043]
[133]
Akpinar, M.; Temel, F.; Tabakci, B.; Ozcelik, E.; Tabakci, M. A phenyl glycinol appended calix[4]arene film for chiral detection of ascorbic acid on gold surface. Anal. Biochem., 2019, 583, 113373.
[http://dx.doi.org/10.1016/j.ab.2019.113373] [PMID: 31344347]
[134]
Nagasaki, T.; Sisido, K.; Arimura, T.; Shinkai, S. Novel conformational isomerism of water-soluble calix[4]arenes. Tetrahedron, 1992, 48(5), 797-804.
[http://dx.doi.org/10.1016/S0040-4020(01)88184-9]
[135]
Huang, Z.T.; Wang, G.Q.; Yang, L.M.; Lou, Y.X. The selective chloromethylation of 25, 27-Dihydroxy-26, 28-Dimethoxycalix4arene and nucleophilic substitution therefrom. Synth. Commun., 1995, 25(8), 1109-1118.
[http://dx.doi.org/10.1080/00397919508012675]
[136]
Burilov, V.A.; Garipova, R.I.; Solovieva, S.E.; Antipin, I.S. Synthesis of bifunctional derivatives of Calix[4]arene bearing azidoalkyl fragments in cone stereoisomeric form. Dokl. Chem., 2020, 490(1), 1-5.
[http://dx.doi.org/10.1134/S0012500820010012]
[137]
Burilov, V.; Garipova, R.; Sultanova, E.; Mironova, D.; Grigoryev, I.; Solovieva, S.; Antipin, I. New amphiphilic imidazolium/benzimidazolium calix[4]arene deriva-tives: Synthesis, aggregation behavior and decoration of DPPC vesicles for suzuki coupling in aqueous media. Nanomaterials, 2020, 10(6), 1143.
[http://dx.doi.org/10.3390/nano10061143] [PMID: 32532131]
[138]
Arduini, A.; Casnati, A.; Fabbi, M.; Minari, P.; Pochini, A.; Sicuri, A.R.; Ungaro, R. New artificial receptors from selectively functionalized calix[4]arenes. Supramol. Chem., 1993, 1(3-4), 235-246.
[http://dx.doi.org/10.1080/10610279308035166]
[139]
Bullough, E.K.; Kilner, C.A.; Little, M.A.; Willans, C.E. Tetrakis(methylimidazole) and tetrakis(methylimidazolium) calix[4]arenes: Competitive anion binding and deprotonation. Org. Biomol. Chem., 2012, 10(14), 2824-2829.
[http://dx.doi.org/10.1039/c2ob07025a] [PMID: 22383110]
[140]
O’Toole, L.; McGinley, J.; Creaven, B.S. Self-assembly of calix[4]arene amine derivatives. Tetrahedron, 2013, 69(35), 7220-7226.
[http://dx.doi.org/10.1016/j.tet.2013.06.103]
[141]
Podyachev, S.N.; Sudakova, S.N.; Gimazetdinova, G.S.; Shamsutdinova, N.A.; Syakaev, V.V.; Barsukova, T.A.; Iki, N.; Lapaev, D.V.; Mustafina, A.R. Synthesis, metal binding and spectral properties of novel bis-1,3-diketone calix[4]arenes. New J. Chem., 2017, 41(4), 1526-1537.
[http://dx.doi.org/10.1039/C6NJ03381D]
[142]
Gutsche, C.D.; Nam, K.C. Calixarenes. 22. Synthesis, properties, and metal complexation of aminocalixarenes. J. Am. Chem. Soc., 1988, 110(18), 6153-6162.
[http://dx.doi.org/10.1021/ja00226a034] [PMID: 22148794]
[143]
Alam, I.; Sharma, S.K.; Gutsche, C.D. The quinone methide route to mono- and tetrasubstituted calix[4]arenes. J. Org. Chem., 1994, 59(13), 3716-3720.
[http://dx.doi.org/10.1021/jo00092a041]
[144]
Zhang, X.; Zhao, H.; Cao, X.; Feng, N.; Tian, D.; Li, H. Hg2+ wettability and fluorescence dual-signal responsive switch based on a cysteine complex of piperidine-calix[4]arene. Org. Biomol. Chem., 2013, 11(47), 8262-8268.
[http://dx.doi.org/10.1039/c3ob41794h] [PMID: 24170030]
[145]
Zhang, X.; Zhao, H.; Tian, D.; Deng, H.; Li, H. A photoresponsive wettability switch based on a dimethylamino calix[4]arene. Chemistry, 2014, 20(30), 9367-9371.
[http://dx.doi.org/10.1002/chem.201402476] [PMID: 24820202]
[146]
Sayin, S. Fabrication of efficient calix[4]arene-adorned magnetic nanoparticles for the removal of Cr(VI)/As(V) anions from aqueous solutions. Polyc. Arom. Comp., 2020, 40, 1-12.
[147]
Sayin, S.; Ozcan, F.; Yilmaz, M. Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobi-lized onto magnetic nanoparticles. J. Hazard. Mater., 2010, 178(1-3), 312-319.
[http://dx.doi.org/10.1016/j.jhazmat.2010.01.080] [PMID: 20133056]
[148]
Gardiner, W.H.; Camilleri, M.; Martinez-Lozano, L.A.; Bew, S.P.; Stephenson, G.R. Upper-rim monofunctionalisation in the synthesis of triazole- and disulfide-linked multicalix[4]- and -[6]arenes. Chemistry, 2018, 24(71), 19089-19097.
[http://dx.doi.org/10.1002/chem.201804755] [PMID: 30325070]
[149]
Shimizu, H.; Iwamoto, K.; Fujimoto, K.; Shinkai, S. Chromogenic calix[4]arene. Chem. Lett., 1991, 20(12), 2147-2150.
[http://dx.doi.org/10.1246/cl.1991.2147]
[150]
Halouani, H.; Dumazet-Bonnamour, I.; Lamartine, R. Synthesis of novel chromogenic bi- and tri-functionalized calix[4]arenes. Tetrahedron Lett., 2002, 43(21), 3785-3788.
[http://dx.doi.org/10.1016/S0040-4039(02)00690-1]
[151]
Kim, J.Y.; Kim, G.; Kim, C.R.; Lee, S.H.; Lee, J.H.; Kim, J.S. UV band Splitting of chromogenic azo-coupled calix[4]crown upon cation complexation. J. Org. Chem., 2003, 68(5), 1933-1937.
[http://dx.doi.org/10.1021/jo020684o] [PMID: 12608813]
[152]
Morita, Y.; Agawa, T.; Nomura, E.; Taniguchi, H. Syntheses and NMR behavior of calix[4]quinone and calix[4]hydroquinone. J. Org. Chem., 1992, 57(13), 3658-3662.
[http://dx.doi.org/10.1021/jo00039a027]
[153]
Şener, I.; Karci, F.; Kiliç, E.; Deligöz, H. Azocalixarenes. 3: synthesis and investigation of the absorption spectra of hetarylazo disperse dyes derived from calix[4]arene. Dyes&Pigm., 2004, 62, 141-148.
[154]
Chawla, H.M.; Singh, S.P.; Sahu, S.N.; Upreti, S. Shaping the cavity of calixarene architecture for molecular recognition: Synthesis and conformational properties of new azocalix[4]arenes. Tetrahedron, 2006, 62(33), 7854-7865.
[http://dx.doi.org/10.1016/j.tet.2006.05.040]
[155]
Chawla, H.M.; Singh, S.P.; Upreti, S. Synthesis of cesium selective pyridyl azocalix[n]arenes. Tetrahedron, 2006, 62(12), 2901-2911.
[http://dx.doi.org/10.1016/j.tet.2006.01.022]
[156]
Chawla, H.M.; Singh, S.P.; Upreti, S. Synthesis of calix[4]arene(amido)monocrowns and their photoresponsive derivatives. Tetrahedron, 2006, 62(41), 9758-9768.
[http://dx.doi.org/10.1016/j.tet.2006.07.047]
[157]
Chang, K.C.; Su, I.H.; Lee, G.H.; Chung, W.S. Triazole- and azo-coupled calix[4]arene as a highly sensitive chromogenic sensor for Ca2+ and Pb2+ ions. Tetrahedron Lett., 2007, 48(41), 7274-7278.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.045]
[158]
Karakuş, Ö.Ö.; Deligöz, H. Azocalixarenes.8: Synthesis and investigation of the absorption spectra of di-substituted azocalix[4]arenes containing chromogenic groups. J. Incl. Phenom. Macrocycl. Chem., 2008, 61(3-4), 289-296.
[http://dx.doi.org/10.1007/s10847-008-9421-9]
[159]
Zhu, F.; Tan, S.; Dhinakaran, M.K.; Cheng, J.; Li, H. The light-driven macroscopic directional motion of a water droplet on an azobenzene–calix[4]arene modified surface. Chem. Commun., 2020, 56(74), 10922-10925.
[http://dx.doi.org/10.1039/D0CC00519C] [PMID: 32808622]
[160]
Karakuş, Ö.Ö.; Deligöz, H. Azocalixarenes 7: Synthesis and study of the absorption properties of novel mono-azo substituted chromogenic calix[4]arenes. Turk. J. Chem., 2011, 35, 87-98.
[161]
Shu, C.; Yuan, T.; Ku, M.; Ho, Z.; Liu, W.; Tang, F.; Lin, L. Diallylbis(arylazo)calix[4]arenes: the syntheses of calix[4]arenes with two different para-substituents. Tetrahedron, 1996, 52(29), 9805-9818.
[http://dx.doi.org/10.1016/0040-4020(96)00512-1]
[162]
Wang, N.J.; Sun, C.M.; Chung, W.S. A specific and ratiometric chemosensor for Hg2+ based on triazole coupled ortho-methoxyphenylazocalix[4]arene. Tetrahedron, 2011, 67(42), 8131-8139.
[http://dx.doi.org/10.1016/j.tet.2011.08.052]
[163]
Fan, P.; Wan, L.; Shang, Y.; Wang, J.; Liu, Y.; Sun, X.; Chen, C. Spectroscopic investigation of the interaction of water-soluble azocalix[4]arenes with bovine serum albumin. Bioorg. Chem., 2015, 58, 88-95.
[http://dx.doi.org/10.1016/j.bioorg.2014.12.002] [PMID: 25549320]
[164]
Gassoumi, B.; Echabaane, M.; Ben Mohamed, F.E.; Nouar, L.; Madi, F.; Karayel, A.; Ghalla, H.; Castro, M.E.; Melendez, F.J.; Özkınalı, S.; Rouis, A.; Ben Chaabane, R. Azo-methoxy-calix[4]arene complexes with metal cations for chemical sensor applications: Characterization, QTAIM analyses and dispersion-corrected DFT- computa-tions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 264, 120242.
[http://dx.doi.org/10.1016/j.saa.2021.120242] [PMID: 34358783]
[165]
Pang, H.; Xu, P.; Li, C.; Zhan, Y.; Zhang, Z.; Zhang, W.; Yang, G.; Sun, Y.; Li, H. A photo-responsive macroscopic switch constructed using a chiral azo-calix[4]arene functionalized silicon surface. Chem. Commun., 2018, 54(24), 2978-2981.
[http://dx.doi.org/10.1039/C8CC01196F] [PMID: 29504616]
[166]
Ali, Y.; Muhamad Bunnori, N.; Susanti, D.; Muhammad Alhassan, A.; Abd Hamid, S. Synthesis, in-Vitro and in silico studies of azo-based calix[4]arenes as antibacteri-al agent and neuraminidase inhibitor: A new look into an old scaffold. Front Chem., 2018, 6, 210.
[http://dx.doi.org/10.3389/fchem.2018.00210] [PMID: 29946538]
[167]
Deligöz, H. Azocalixarenes: Synthesis, characterization, complexation, extraction, absorption properties and thermal behaviours. J. Incl. Phenom. Macrocycl. Chem., 2006, 55(3-4), 197-218.
[http://dx.doi.org/10.1007/s10847-006-9096-z]
[168]
Shinkai, S.; Araki, K.; Tsubaki, T.; Arimura, T.; Manabe, O. New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. J. Chem. Soc., Perkin Trans. 1, 1987, I, 2297-2299.
[http://dx.doi.org/10.1039/p19870002297]
[169]
Khokhar, T. S.; Memon, S.; Memon, A. A.; Bhatti, A. A.; Bhatti, A. A. Improved solubility of morin using p-sulphonatocalix[4]arene as encapsulating agent: HPLC analysis and their molecular modelling. Policycl. Arom. Comp., 2018, 1-13.
[170]
Morzherin, Y.; Rudkevich, D.M.; Verboom, W.; Reinhoudt, D.N. Chlorosulfonylated calix[4]arenes: Precursors for neutral anion receptors with a selectivity for hydro-gen sulfate. J. Org. Chem., 1993, 58(26), 7602-7605.
[http://dx.doi.org/10.1021/jo00078a052]
[171]
Taghvaei-Ganjali, S.; Zadmard, R.; Saber-Tehrani, M. Immobilization of Chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification. Appl. Surf. Sci., 2012, 258(16), 5925-5932.
[http://dx.doi.org/10.1016/j.apsusc.2011.09.019]
[172]
Mirmoeini, M.S.; Nikje, M.M.A.; Rasouli-Saniabadi, M.; Taghvaei-Ganjali, S. Synthesis and characterization of functionalized calix[4]arene derivatives and preparation of rigid polyurethane foams by the incorporation of calixarene. Macromol. Symp., 2017, 373(1), 1600101.
[http://dx.doi.org/10.1002/masy.201600101]
[173]
Gutsche, C.D.; Lin, L.G. Calixarenes 12. Tetrahedron, 1986, 42(6), 1633-1640.
[http://dx.doi.org/10.1016/S0040-4020(01)87580-3]
[174]
Huang, Z.T.; Wang, G.Q. Study of Calixarenes, V. Friedel‐crafts reaction of calixarenes. Chem. Ber., 1994, 127(3), 519-523.
[http://dx.doi.org/10.1002/cber.19941270310]
[175]
Delnavaz Shahr, A.; Nasuhi Pur, F.; Akbari Dilmaghani, K. Calixapap: Calixarene-based cluster of acetaminophen as a novel antiradical agent. Iran. J. Pharm. Res., 2019, 18(1), 30-33.
[PMID: 31089341]
[176]
Ghaffarzadeh, J.; Nasuhi Pur, F. Calixarbutin: A novel calixarene-based potential water-soluble anti-tyrosinase agent with high anti-melanoma activity. Iran. J. Pharm. Res., 2020, 19(2), 236-241.
[PMID: 33224228]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy