Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders?

Author(s): Liliana Dell'Osso, Benedetta Nardi*, Leonardo Massoni, Davide Gravina, Francesca Benedetti, Ivan Mirko Cremone and Barbara Carpita

Volume 31, Issue 23, 2024

Published on: 07 July, 2023

Page: [3447 - 3472] Pages: 26

DOI: 10.2174/0929867330666230523155728

Price: $65

Abstract

Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.

Next »
[1]
Scott, D.F. The history of epileptic therapy: an account of how medication was developed; CRC Press, 2001.
[2]
Goodwin, G.M. Evidence-based guidelines for treating bipolar disorder: recommendations from the British Association for Psychopharmacology. J. Psychopharmacol., 2003, 17(2), 149-173.
[http://dx.doi.org/10.1177/0269881103017002003] [PMID: 12870562]
[3]
Lopes da Silva, F.; Post, R.M. Evaluation and prediction of effects of antiepileptic drugs in a variety of other CNS disorders. Epilepsy Res., 2002, 50(1-2), 191-193.
[http://dx.doi.org/10.1016/S0920-1211(02)00079-7] [PMID: 12151128]
[4]
Calabresi, P.; Cupini, L.M.; Centonze, D.; Pisani, F.; Bernardi, G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann. Neurol., 2003, 53(6), 693-702.
[http://dx.doi.org/10.1002/ana.10603] [PMID: 12783414]
[5]
Meldrum, B.S. Implications for neuroprotective treatments. Prog. Brain Res.,, 2002, 135, 487-495.
[http://dx.doi.org/10.1016/S0079-6123(02)35046-5] [PMID: 12143367]
[6]
Trojnar, M.K.; Małek, R.; Chrościńska, M.; Nowak, S.; Błaszczyk, B.; Czuczwar, S.J. Neuroprotective effects of antiepileptic drugs Pol. J. Pharmacol., 2002, 54(6), 557-566.
[PMID: 12866709]
[7]
Pitkänen, A. Drug-mediated neuroprotection and antiepileptogenesis: Animal data. Neurology, 2002, 59(S5), S27-S33.
[http://dx.doi.org/10.1212/WNL.59.9_suppl_5.S27] [PMID: 12428029]
[8]
Leker, R.R.; Neufeld, M.Y. Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. Brain Res. Brain Res. Rev., 2003, 42(3), 187-203.
[http://dx.doi.org/10.1016/S0165-0173(03)00170-X] [PMID: 12791439]
[9]
Walker, M.C.; White, H.S.; Sander, J.W.A.S. Disease modification in partial epilepsy. Brain, 2002, 125(9), 1937-1950.
[http://dx.doi.org/10.1093/brain/awf203] [PMID: 12183340]
[10]
Kanner, A.M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol., 2016, 12(2), 106-116.
[http://dx.doi.org/10.1038/nrneurol.2015.243] [PMID: 26782334]
[11]
Beydoun, A.; DuPont, S.; Zhou, D.; Matta, M.; Nagire, V.; Lagae, L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure, 2020, 83, 251-263.
[http://dx.doi.org/10.1016/j.seizure.2020.10.018] [PMID: 33334546]
[12]
Rajkowska, G. Cell pathology in bipolar disorder. Bipolar Disord., 2002, 4(2), 105-116.
[http://dx.doi.org/10.1034/j.1399-5618.2002.01149.x] [PMID: 12071508]
[13]
Knable, M.B.; Barci, B.M.; Webster, M.J.; Meador-Woodruff, J.; Torrey, E.F. Molecular abnormalities of the hippocampus in severe psychiatric illness: Postmortem findings from the stanley neuropathology consortium. Mol. Psychiat., , 2004, 9(6), 609-620. 544
[http://dx.doi.org/10.1038/sj.mp.4001471] [PMID: 14708030]
[14]
Lyoo, I.K.; Sung, Y.H.; Dager, S.R.; Friedman, S.D.; Lee, J.Y.; Kim, S.J.; Kim, N.; Dunner, D.L.; Renshaw, P.F. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord., 2006, 8(1), 65-74.
[http://dx.doi.org/10.1111/j.1399-5618.2006.00284.x] [PMID: 16411982]
[15]
Sutula, T. Antiepileptic drugs to prevent neural degeneration associated with epilepsy: Assessing the prospects for neuroprotection. Epilepsy Res., 2002, 50(1-2), 125-129.
[http://dx.doi.org/10.1016/S0920-1211(02)00074-8] [PMID: 12151123]
[16]
During, M.J.; Spencer, D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet, 1993, 341(8861), 1607-1610.
[http://dx.doi.org/10.1016/0140-6736(93)90754-5] [PMID: 8099987]
[17]
Ueda, Y.; Yokoyama, H.; Nakajima, A.; Tokumaru, J.; Doi, T.; Mitsuyama, Y. Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp. Brain Res., 2002, 147(2), 219-226.
[http://dx.doi.org/10.1007/s00221-002-1224-4] [PMID: 12410337]
[18]
Choi, D. Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1988, 1(8), 623-634.
[http://dx.doi.org/10.1016/0896-6273(88)90162-6] [PMID: 2908446]
[19]
Kito, M.; Maehara, M.; Watanabe, K. Antiepileptic drugs-calcium current interaction in cultured human neuroblastoma cells. Seizure, 1994, 3(2), 141-149.
[http://dx.doi.org/10.1016/S1059-1311(05)80205-5] [PMID: 8081641]
[20]
Stefani, A.; Calabresi, P.; Pisani, A.; Mercuri, N.B.; Siniscalchi, A.; Bernardi, G. Felbamate inhibits dihydropyridinesensitive calcium channels in central neurons J. Pharmacol. Exp. Ther., 1996, 277(1), 121-127.
[PMID: 8613908]
[21]
Zhang, X.; Velumian, A.A.; Jones, O.T.; Carlen, P.L. Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia, 2000, 41(s1), 52-60.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb02173.x] [PMID: 10768302]
[22]
Fink, K.; Dooley, D.J.; Meder, W.P.; Suman-Chauhan, N.; Duffy, S.; Clusmann, H.; Göthert, M. Inhibition of neuronal Ca2+ influx by gabapentin and pregabalin in the human neocortex. Neuropharmacology, 2002, 42(2), 229-236.
[http://dx.doi.org/10.1016/S0028-3908(01)00172-1] [PMID: 11804619]
[23]
Calabresi, P.; Murtas, M.D.; Stefani, A.; Pisani, A.; Sancesario, G.; Mercuri, N.B.; Bernardi, G. Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. I. Modulation of corticostriatal synaptic transmission. Epilepsia, 1995, 36(10), 990-996.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb00957.x] [PMID: 7555963]
[24]
DeLorenzo, R.J. Calmodulin in neurotransmitter release and synaptic function Fed. Proc., 1982, 41(7), 2265-2272.
[PMID: 6122609]
[25]
Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev., 1999, 79(4), 1431-1568.
[http://dx.doi.org/10.1152/physrev.1999.79.4.1431] [PMID: 10508238]
[26]
Rataud, J.; Debarnot, F.; Mary, V.; Pratt, J.; Stutzmann, J.M. Comparative study of voltage-sensitive sodium channel blockers in focal ischaemia and electric convulsions in rodents. Neurosci. Lett., 1994, 172(1-2), 19-23.
[http://dx.doi.org/10.1016/0304-3940(94)90652-1] [PMID: 8084530]
[27]
Pitkänen, A. Efficacy of current antiepileptics to prevent neurodegeneration in epilepsy models. Epilepsy Res., 2002, 50(1-2), 141-160.
[http://dx.doi.org/10.1016/S0920-1211(02)00076-1] [PMID: 12151125]
[28]
Pitkänen, A.; Kubova, H. Antiepileptic drugs in neuroprotection. Expert Opin. Pharmacother., 2004, 5(4), 777-798.
[http://dx.doi.org/10.1517/14656566.5.4.777] [PMID: 15102563]
[29]
Hao, Y.; Creson, T.; Zhang, L.; Li, P.; Du, F.; Yuan, P.; Gould, T.D.; Manji, H.K.; Chen, G. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci., 2004, 24(29), 6590-6599.
[http://dx.doi.org/10.1523/JNEUROSCI.5747-03.2004] [PMID: 15269271]
[30]
Laeng, P.; Pitts, R.L.; Lemire, A.L.; Drabik, C.E.; Weiner, A.; Tang, H.; Thyagarajan, R.; Mallon, B.S.; Altar, C.A. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J. Neurochem., 2004, 91(1), 238-251.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02725.x] [PMID: 15379904]
[31]
Pavone, A.; Cardile, V. An in vitro study of new antiepileptic drugs and astrocytes. Epilepsia, 2003, 44(s10), 34-39.
[http://dx.doi.org/10.1046/j.1528-1157.44.s10.5.x] [PMID: 14511393]
[32]
Manford, M. Recent advances in epilepsy. J. Neurol., 2017, 264(8), 1811-1824.
[http://dx.doi.org/10.1007/s00415-017-8394-2] [PMID: 28120042]
[33]
Carmassi, C.; Del Grande, C.; Gesi, C.; Musetti, L.; Dell’Osso, L. A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatr. Dis. Treat., 2016, 12, 1687-1703.
[http://dx.doi.org/10.2147/NDT.S106479] [PMID: 27468233]
[34]
Won, E.; Kim, Y.K. An oldie but goodie: Lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int. J. Mol. Sci., 2017, 18(12), 2679.
[http://dx.doi.org/10.3390/ijms18122679] [PMID: 29232923]
[35]
Howes, O.D.; Barnes, T.R.E.; Lennox, B.R.; Markham, S.; Natesan, S. Time to re-evaluate the risks and benefits of valproate and a call for action. Br. J. Psychiat., 2022, 221(6), 711-713.
[http://dx.doi.org/10.1192/bjp.2022.94] [PMID: 35795925]
[36]
Jochim, J.; Rifkin-Zybutz, R.P.; Geddes, J.; Cipriani, A. Valproate for acute mania. Cochrane Database Syst. Rev., 2019, 10(10), CD004052.
[PMID: 31621892]
[37]
Kishi, T.; Ikuta, T.; Matsuda, Y.; Sakuma, K.; Okuya, M.; Nomura, I.; Hatano, M.; Iwata, N. Pharmacological treatment for bipolar mania: A systematic review and network meta-analysis of double-blind randomized controlled trials. Mol. Psychiat., 2022, 27(2), 1136-1144.
[http://dx.doi.org/10.1038/s41380-021-01334-4] [PMID: 34642461]
[38]
Tseng, P.T.; Chen, Y.W.; Chung, W.; Tu, K.Y.; Wang, H.Y.; Wu, C.K.; Lin, P.Y. Significant effect of valproate augmentation therapy in patients with Schizophrenia. Medicine , 2016, 95(4), e2475.
[http://dx.doi.org/10.1097/MD.0000000000002475] [PMID: 26825886]
[39]
Wang, J.F.; Shao, L.; Sun, X.; Young, L.T. Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons. J. Neurochem., 2004, 88(6), 1477-1484.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02276.x] [PMID: 15009649]
[40]
Wang, J.F.; Bown, C.; Young, L.T. Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78 Mol. Pharmacol., 1999, 55(3), 521-527.
[PMID: 10051536]
[41]
Chen, G.; Zeng, W.Z.; Yuan, P.X.; Huang, L.D.; Jiang, Y.M.; Zhao, Z.H.; Manji, H.K. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem., 1999, 72(2), 879-882.
[http://dx.doi.org/10.1046/j.1471-4159.1999.720879.x] [PMID: 9930766]
[42]
Wang, J.F.; Azzam, J.E.; Young, L.T. Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience, 2003, 116(2), 485-489.
[http://dx.doi.org/10.1016/S0306-4522(02)00655-3] [PMID: 12559103]
[43]
Shao, L.; Young, L.T.; Wang, J.F. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol. Psychiat., 2005, 58(11), 879-884.
[http://dx.doi.org/10.1016/j.biopsych.2005.04.052] [PMID: 16005436]
[44]
Lee, J.Y.; Maeng, S.; Kang, S.R.; Choi, H.Y.; Oh, T.H.; Ju, B.G.; Yune, T.Y. Valproic acid protects motor neuron death by inhibiting oxidative stress and endoplasmic reticulum stress-mediated cytochrome C release after spinal cord injury. J. Neurotrauma, 2014, 31(6), 582-594.
[http://dx.doi.org/10.1089/neu.2013.3146] [PMID: 24294888]
[45]
Frey, B.N.; Valvassori, S.S.; Réus, G.Z.; Martins, M.R.; Petronilho, F.C.; Bardini, K.; Dal-Pizzol, F.; Kapczinski, F.; Quevedo, J. EEffects of lithium and valproate on amphetamine- induced oxidative stress generation in an animal model of mania J. Psychiat. Neurosci., 2006, 31(5), 326-332.
[PMID: 16951735]
[46]
Edalatmanesh, M.A.; Hosseini, M.; Ghasemi, S.; Golestani, S.; Sadeghnia, H.R.; Mousavi, S.M.; Vafaee, F. Valproic acid-mediated inhibition of trimethyltin-induced deficits in memory and learning in the rat does not directly depend on its anti-oxidant properties. Ir. J. Med. Sci., 2016, 185(1), 75-84.
[http://dx.doi.org/10.1007/s11845-014-1224-y] [PMID: 25638225]
[47]
Yasuda, S.; Liang, M.H.; Marinova, Z.; Yahyavi, A.; Chuang, D.M. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol. Psychiat., 2009, 14(1), 51-59.
[http://dx.doi.org/10.1038/sj.mp.4002099] [PMID: 17925795]
[48]
Croce, N.; Mathé, A.A.; Gelfo, F.; Caltagirone, C.; Bernardini, S.; Angelucci, F. Effects of lithium and valproic acid on BDNF protein and gene expression in an in vitro human neuron-like model of degeneration. J. Psychopharmacol., 2014, 28(10), 964-972.
[http://dx.doi.org/10.1177/0269881114529379] [PMID: 24699060]
[49]
Frey, B.N.; Andreazza, A.C.; Ceresér, K.M.M.; Martins, M.R.; Valvassori, S.S.; Réus, G.Z.; Quevedo, J.; Kapczinski, F. Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci., 2006, 79(3), 281-286.
[http://dx.doi.org/10.1016/j.lfs.2006.01.002] [PMID: 16460767]
[50]
Stertz, L.; Fries, G.R.; Aguiar, B.W.; Pfaffenseller, B.; Valvassori, S.S.; Gubert, C.; Ferreira, C.L.; Moretti, M.; Ceresér, K.M.; Kauer-Sant’Anna, M.; Quevedo, J.; Kapczinski, F. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF) levels in a pharmacological model of mania. Rev. Bras. Psiquiatr., 2013, 36(1), 39-46.
[http://dx.doi.org/10.1590/1516-4446-2013-1094] [PMID: 24346357]
[51]
Leng, Y.; Chuang, D.M. Endogenous α-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J. Neurosci., 2006, 26(28), 7502-7512.
[http://dx.doi.org/10.1523/JNEUROSCI.0096-06.2006] [PMID: 16837598]
[52]
Wu, X.; Chen, P.S.; Dallas, S.; Wilson, B.; Block, M.L.; Wang, C.C.; Kinyamu, H.; Lu, N.; Gao, X.; Leng, Y.; Chuang, D.M.; Zhang, W.; Lu, R.B.; Hong, J.S. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol., 2008, 11(8), 1123-1134.
[http://dx.doi.org/10.1017/S1461145708009024] [PMID: 18611290]
[53]
Tremolizzo, L.; DiFrancesco, J.C.; Rodriguez-Menendez, V.; Riva, C.; Conti, E.; Galimberti, G.; Ruffmann, C.; Ferrarese, C. Valproate induces epigenetic modifications in lymphomonocytes from epileptic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry., 2012, 39(1), 47-51.
[http://dx.doi.org/10.1016/j.pnpbp.2012.04.016] [PMID: 22584634]
[54]
Dong, E.; Chen, Y.; Gavin, D.P.; Grayson, D.R.; Guidotti, A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics, 2010, 5(8), 730-735.
[http://dx.doi.org/10.4161/epi.5.8.13053] [PMID: 20716949]
[55]
Goudarzi, M.; Nahavandi, A.; Mehrabi, S.; Eslami, M.; Shahbazi, A.; Barati, M. Valproic acid administration exerts protective effects against stress-related anhedonia in rats. J. Chem. Neuroanat., 2020, 105, 101768.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101768] [PMID: 32061998]
[56]
Joshi, H.; Sharma, R.; Prashar, S.; Ho, J.; Thomson, S.; Mishra, R. Differential expression of synapsin I and II upon treatment by lithium and valproic acid in various brain regions. Int. J. Neuropsychopharmacol., 2018, 21(6), 616-622.
[http://dx.doi.org/10.1093/ijnp/pyy023] [PMID: 29618019]
[57]
Lee, H.J.; Dreyfus, C.; DiCicco-Bloom, E. Valproic acid stimulates proliferation of glial precursors during cortical gliogenesis in developing rat. Dev. Neurobiol., 2016, 76(7), 780-798.
[http://dx.doi.org/10.1002/dneu.22359] [PMID: 26505176]
[58]
Xuan, A.; Long, D.; Li, J.; Ji, W.; Hong, L.; Zhang, M.; Zhang, W. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci., 2012, 90(11-12), 463-468.
[http://dx.doi.org/10.1016/j.lfs.2012.01.001] [PMID: 22285595]
[59]
Zareie, P.; Gholami, M.; Amirpour-najafabadi, B.; Hosseini, S.; Sadegh, M. Sodium valproate ameliorates memory impairment and reduces the elevated levels of apoptotic caspases in the hippocampus of diabetic mice. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(10), 1085-1092.
[http://dx.doi.org/10.1007/s00210-018-1531-3] [PMID: 29971457]
[60]
Biermann, J.; Grieshaber, P.; Goebel, U.; Martin, G.; Thanos, S.; Giovanni, S.D.; Lagrèze, W.A. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest. Ophthalmol. Vis. Sci., 2010, 51(1), 526-534.
[http://dx.doi.org/10.1167/iovs.09-3903] [PMID: 19628741]
[61]
Biermann, J.; Boyle, J.; Pielen, A.; Lagrèze, W.A. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol. Vis., 2011, 17, 395-403.
[PMID: 21311741]
[62]
Yuan, P.X.; Huang, L.D.; Jiang, Y.M.; Gutkind, J.S.; Manji, H.K.; Chen, G. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem., 2001, 276(34), 31674-31683.
[http://dx.doi.org/10.1074/jbc.M104309200] [PMID: 11418608]
[63]
Monti, B.; Gatta, V.; Piretti, F.; Raffaelli, S.S.; Virgili, M.; Contestabile, A. Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: Involvement of alpha-synuclein. Neurotox. Res., 2010, 17(2), 130-141.
[http://dx.doi.org/10.1007/s12640-009-9090-5] [PMID: 19626387]
[64]
Ximenes, J.C.M.; Neves, K.R.T.; Leal, L.K.A.M.; do Carmo, M.R.S.; Brito, G.A.C.; Naffah-Mazzacoratti, M.G.; Cavalheiro, É.A.; Viana, G.S.B. Valproic acid neuroprotection in the 6-ohda model of Parkinson’s disease is possibly related to its anti-inflammatory and hdac inhibitory properties. J. Neurodegener. Dis., 2015, 2015, 313702.
[http://dx.doi.org/10.1155/2015/313702] [PMID: 26317011]
[65]
Long, Z.; Zeng, Q.; Wang, K.; Sharma, A.; He, G. Gender difference in valproic acid-induced neuroprotective effects on APP/PS1 double transgenic mice modeling Alzheimer’s disease. Acta Biochim. Biophys. Sin. , 2016, 48(10), 930-938.
[http://dx.doi.org/10.1093/abbs/gmw085] [PMID: 27614317]
[66]
Bahna, S.G.; Sathiyapalan, A.; Foster, J.A.; Niles, L.P. Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: Therapeutic implications for Alzheimer’s disease. Neurosci. Lett., 2014, 576, 84-87.
[http://dx.doi.org/10.1016/j.neulet.2014.05.056] [PMID: 24909617]
[67]
Gyawali, A.; Latif, S.; Choi, S.H.; Hyeon, S.J.; Ryu, H.; Kang, Y.S. Monocarboxylate transporter functions and neuroprotective effects of valproic acid in experimental models of amyotrophic lateral sclerosis. J. Biomed. Sci., 2022, 29(1), 2.
[http://dx.doi.org/10.1186/s12929-022-00785-3] [PMID: 35012534]
[68]
Sugai, F.; Yamamoto, Y.; Miyaguchi, K.; Zhou, Z.; Sumi, H.; Hamasaki, T.; Goto, M.; Sakoda, S. Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur. J. Neurosci., 2004, 20(11), 3179-3183.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03765.x] [PMID: 15579172]
[69]
Dou, H.; Birusingh, K.; Faraci, J.; Gorantla, S.; Poluektova, L.Y.; Maggirwar, S.B.; Dewhurst, S.; Gelbard, H.A.; Gendelman, H.E. Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J. Neurosci., 2003, 23(27), 9162-9170.
[http://dx.doi.org/10.1523/JNEUROSCI.23-27-09162.2003] [PMID: 14534250]
[70]
Karas, B.J.; Wilder, B.J.; Hammond, E.J.; Bauman, A.W. Valproate tremors. Neurology, 1982, 32(4), 428-432.
[http://dx.doi.org/10.1212/WNL.32.4.428] [PMID: 6801541]
[71]
Gram, L.; Bentsen, K.D. Valproate: An updated review. Acta Neurol. Scand., 1985, 72(2), 129-139.
[http://dx.doi.org/10.1111/j.1600-0404.1985.tb00854.x] [PMID: 2931939]
[72]
Verrotti, A.; Scaparrotta, A.; Cofini, M.; Chiarelli, F.; Tiboni, G.M. Developmental neurotoxicity and anticonvulsant drugs: A possible link. Reprod. Toxicol., 2014, 48, 72-80.
[http://dx.doi.org/10.1016/j.reprotox.2014.04.005] [PMID: 24803404]
[73]
Miranda, C.C.; Fernandes, T.G.; Pinto, S.N.; Prieto, M.; Diogo, M.M.; Cabral, J.M.S. A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicol. Lett., 2018, 294, 51-60.
[http://dx.doi.org/10.1016/j.toxlet.2018.05.018] [PMID: 29775723]
[74]
Bold, J.; Sakata-Haga, H.; Fukui, Y. Spinal nerve defects in mouse embryos prenatally exposed to valproic acid. Anat. Sci. Int., 2018, 93(1), 35-41.
[http://dx.doi.org/10.1007/s12565-016-0363-9] [PMID: 27550043]
[75]
Wadzinski, J.; Franks, R.; Roane, D.; Bayard, M. Valproate-associated hyperammonemic encephalopathy. J. Am. Board Fam. Med., 2007, 20(5), 499-502.
[http://dx.doi.org/10.3122/jabfm.2007.05.070062] [PMID: 17823470]
[76]
Yokoyama, S.; Sugawara, N.; Maruo, K.; Yasui-Furukori, N.; Shimoda, K. Blood levels of ammonia and carnitine in patients treated with valproic acid: A meta-analysis. Clin. Psychopharmacol. Neurosci., 2022, 20(3), 536-547.
[http://dx.doi.org/10.9758/cpn.2022.20.3.536]
[77]
Zhang, L.; Li, H.; Li, S.; Zou, X. Reproductive and metabolic abnormalities in women taking valproate for bipolar disorder: A meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol., 2016, 202, 26-31.
[http://dx.doi.org/10.1016/j.ejogrb.2016.04.038] [PMID: 27160812]
[78]
Macdonald, K.J.; Young, L.T. Newer antiepileptic drugs in bipolar disorder: rationale for use and role in therapy. CNS Drugs, 2002, 16(8), 549-562.
[http://dx.doi.org/10.2165/00023210-200216080-00004] [PMID: 12096935]
[79]
Moore, A.; Derry, S.; Wiffen, P. Gabapentin for chronic neuropathic pain. JAMA, 2018, 319(8), 818-819.
[http://dx.doi.org/10.1001/jama.2017.21547] [PMID: 29486015]
[80]
Tedeschi, A.; Dupraz, S.; Laskowski, C.J.; Xue, J.; Ulas, T.; Beyer, M.; Schultze, J.L.; Bradke, F. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron, 2016, 92(2), 419-434.
[http://dx.doi.org/10.1016/j.neuron.2016.09.026] [PMID: 27720483]
[81]
Kim, D.S.; Li, K.W.; Boroujerdi, A.; Peter Yu, Y.; Zhou, C.Y.; Deng, P.; Park, J.; Zhang, X.; Lee, J.; Corpe, M.; Sharp, K.; Steward, O.; Eroglu, C.; Barres, B.; Zaucke, F.; Xu, Z.C.; Luo, Z.D. Thrombospondin-4 contributes to spinal sensitization and neuropathic pain states. J. Neurosci., 2012, 32(26), 8977-8987.
[http://dx.doi.org/10.1523/JNEUROSCI.6494-11.2012] [PMID: 22745497]
[82]
Eroglu, Ç.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.Y.; Özkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; Green, E.M.; Lawler, J.; Dolmetsch, R.; Garcia, K.C.; Smith, S.J.; Luo, Z.D.; Rosenthal, A.; Mosher, D.F.; Barres, B.A. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 2009, 139(2), 380-392.
[http://dx.doi.org/10.1016/j.cell.2009.09.025] [PMID: 19818485]
[83]
Allen, N.J.; Bennett, M.L.; Foo, L.C.; Wang, G.X.; Chakraborty, C.; Smith, S.J.; Barres, B.A. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature, 2012, 486(7403), 410-414.
[http://dx.doi.org/10.1038/nature11059] [PMID: 22722203]
[84]
Park, J.F.; Yu, Y.P.; Gong, N.; Trinh, V.N.; Luo, Z.D. The EGF-LIKE domain of thrombospondin-4 is a key determinant in the development of pain states due to increased excitatory synaptogenesis. J. Biol. Chem., 2018, 293(42), 16453-16463.
[http://dx.doi.org/10.1074/jbc.RA118.003591] [PMID: 30194282]
[85]
Park, J.; Yu, Y.P.; Zhou, C.Y.; Li, K.W.; Wang, D.; Chang, E.; Kim, D.S.; Vo, B.; Zhang, X.; Gong, N.; Sharp, K.; Steward, O.; Vitko, I.; Perez-Reyes, E.; Eroglu, C.; Barres, B.; Zaucke, F.; Feng, G.; Luo, Z.D. Central mechanisms mediating thrombospondin-4-induced pain states. J. Biol. Chem., 2016, 291(25), 13335-13348.
[http://dx.doi.org/10.1074/jbc.M116.723478] [PMID: 27129212]
[86]
Stahl, S.M. Anticonvulsants and the relief of chronic pain: pregabalin and gabapentin as alpha(2)delta ligands at voltage-gated calcium channels. J. Clin. Psychiat., 2004, 65(5), 596-597.
[http://dx.doi.org/10.4088/JCP.v65n0501] [PMID: 15163243]
[87]
Stahl, S.M. Anticonvulsants as anxiolytics, part 2: Pregabalin and gabapentin as alpha(2)delta ligands at voltage-gated calcium channels. J. Clin. Psychiat., 2004, 65(4), 460-461.
[http://dx.doi.org/10.4088/JCP.v65n0401] [PMID: 15119905]
[88]
Cragg, J.J.; Haefeli, J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Kalke, Y.B.; Schuld, C.; Curt, A.; Kramer, J.K. Effects of pain and pain management on motor recovery of spinal cord-injured patients: A longitudinal study. Neurorehabil. Neural Repair, 2016, 30(8), 753-761.
[http://dx.doi.org/10.1177/1545968315624777] [PMID: 26747127]
[89]
Aslankoc, R.; Savran, M.; Ozmen, O.; Asci, S. Hippocampus and cerebellum damage in sepsis induced by lipopolysaccharide in aged rats - Pregabalin can prevent damage. Biomed. Pharmacother., 2018, 108, 1384-1392.
[http://dx.doi.org/10.1016/j.biopha.2018.09.162] [PMID: 30372841]
[90]
Warner, F.M.; Jutzeler, C.R.; Cragg, J.J.; Tong, B.; Grassner, L.; Bradke, F.; Geisler, F.; Kramer, J.K. The effect of non-gabapentinoid anticonvulsants on sensorimotor recovery after human spinal cord injury. CNS Drugs, 2019, 33(5), 503-511.
[http://dx.doi.org/10.1007/s40263-019-00622-6] [PMID: 30949923]
[91]
Warner, F.M.; Cragg, J.J.; Jutzeler, C.R.; Röhrich, F.; Weidner, N.; Saur, M.; Maier, D.D.; Schuld, C.; Curt, A.; Kramer, J.K. Early administration of gabapentinoids improves motor recovery after human spinal cord injury. Cell Rep., 2017, 18(7), 1614-1618.
[http://dx.doi.org/10.1016/j.celrep.2017.01.048] [PMID: 28199834]
[92]
Sun, W.; Larson, M.J.E.; Kiyoshi, C.M.; Annett, A.J.; Stalker, W.A.; Peng, J.; Tedeschi, A. Gabapentinoid treatment promotes corticospinal plasticity and regeneration following murine spinal cord injury. J. Clin. Invest., 2019, 130(1), 345-358.
[http://dx.doi.org/10.1172/JCI130391] [PMID: 31793909]
[93]
Ha, K.Y.; Carragee, E.; Cheng, I.; Kwon, S.E.; Kim, Y.H. Pregabalin as a neuroprotector after spinal cord injury in rats: biochemical analysis and effect on glial cells. J. Korean Med. Sci., 2011, 26(3), 404-411.
[http://dx.doi.org/10.3346/jkms.2011.26.3.404] [PMID: 21394310]
[94]
Emmez, H.; Börcek, A.Ö.; Kaymaz, M.; Kaymaz, F.; Durdağ, E.; Çivi, S.; Gülbahar, Ö.; Aykol, Ş.; Paşaoğlu, A. Neuroprotective effects of gabapentin in experimental spinal cord injury. World Neurosurg., 2010, 73(6), 729-734.
[http://dx.doi.org/10.1016/j.wneu.2010.04.008] [PMID: 20934165]
[95]
Kale, A.; Börcek, A.Ö.; Emmez, H.; Yildirim, Z.; Durdağ, E.; Lortlar, N.; Kurt, G.; Doğulu, F.; Kılıç, N. Neuroprotective effects of gabapentin on spinal cord ischemia-reperfusion injury in rabbits. J. Neurosurg. Spine, 2011, 15(3), 228-237.
[http://dx.doi.org/10.3171/2011.4.SPINE10583] [PMID: 21599445]
[96]
Lau, L.A.; Noubary, F.; Wang, D.; Dulla, C.G. α2δ-1 signaling drives cell death, synaptogenesis, circuit reorganization, and gabapentin-mediated neuroprotection in a model of insult-induced cortical malformation. eNeuro, 2017, 4(5) ENEURO.0316-17.2017.
[97]
Cragg, J.J.; Jutzeler, C.R.; Grassner, L.; Ramer, M.; Bradke, F.; Kramer, J.L.K. Beneficial “pharmaceutical pleiotropy” of gabapentinoids in spinal cord injury: A case for refining standard-of-care. Neurorehabil. Neural Repair, 2020, 34(8), 686-689.
[http://dx.doi.org/10.1177/1545968320931516] [PMID: 32508248]
[98]
Yan, B.C.; Wang, J.; Rui, Y.; Cao, J.; Xu, P.; Jiang, D.; Zhu, X.; Won, M.H.; Bo, P.; Su, P. Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the pi3k/akt/mtor signaling pathways. J. Neuropathol. Exp. Neurol., 2019, 78(2), 157-171.
[http://dx.doi.org/10.1093/jnen/nly119] [PMID: 30597043]
[99]
Mohagheghi, F.; Khalaj, L.; Ahmadiani, A.; Rahmani, B. Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion. Neurotox. Res., 2013, 23(3), 225-237.
[http://dx.doi.org/10.1007/s12640-012-9338-3] [PMID: 22773136]
[100]
Aşcı, S.; Demirci, S.; Aşcı, H.; Kumbul Doguc, D.; Onaran, I. Neuroprotective effects of pregabalin on cerebral ischemia and reperfusion. Balkan Med. J., 2016, 33(2), 221-227.
[http://dx.doi.org/10.5152/balkanmedj.2015.15742] [PMID: 27403394]
[101]
Silva, G.A.A.; Pradella, F.; Moraes, A.; Farias, A.; Santos, L.M.B.; Oliveira, A.L.R. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis. Brain Behav., 2014, 4(6), 925-935.
[http://dx.doi.org/10.1002/brb3.276] [PMID: 25365796]
[102]
Assis, A.D.; Chiarotto, G.B.; Simões, G.F.; Oliveira, A.L.R. Pregabalin-induced neuroprotection and gait improvement in dystrophic MDX mice. Mol. Cell. Neurosci., 2021, 114, 103632.
[http://dx.doi.org/10.1016/j.mcn.2021.103632] [PMID: 34058345]
[103]
Blum, R.; Konnerth, A. Neurotrophin-mediated rapid signaling in the central nervous system: Mechanisms and functions. Physiology , 2005, 20(1), 70-78.
[http://dx.doi.org/10.1152/physiol.00042.2004] [PMID: 15653842]
[104]
Comim, C.M.; Ventura, L.; Freiberger, V.; Dias, P.; Bragagnolo, D.; Dutra, M.L.; Amaral, R.A.; Camargo-Fagundes, A.L.S.; Reis, P.A.; Castro-Faria-Neto, H.C.; Vainzof, M.; Rosa, M.I. Neurocognitive impairment in mdx mice. Mol. Neurobiol., 2019, 56(11), 7608-7616.
[http://dx.doi.org/10.1007/s12035-019-1573-7] [PMID: 31077034]
[105]
González-Sanmiguel, J.; Burgos, C.F.; Bascuñán, D.; Fernández-Pérez, E.J.; Riffo-Lepe, N.; Boopathi, S.; Fernández-Pérez, A.; Bobadilla-Azócar, C.; González, W.; Figueroa, M.; Vicente, B.; Aguayo, L.G. Gabapentin inhibits multiple steps in the amyloid beta toxicity cascade. ACS Chem. Neurosci., 2020, 11(19), 3064-3076.
[http://dx.doi.org/10.1021/acschemneuro.0c00414] [PMID: 32886489]
[106]
Brodie, M.J.; Dichter, M.A. Established antiepileptic drugs. Seizure, 1997, 6(3), 159-174.
[http://dx.doi.org/10.1016/S1059-1311(97)80001-5] [PMID: 9203243]
[107]
Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev., 2012, 64(10), 887-895.
[http://dx.doi.org/10.1016/j.addr.2011.11.006] [PMID: 22210279]
[108]
Sims, P.J.; Burton, M.; Shaw, L. Applied pharmacokinetics & pharmacodynamics principles of therapeutic drug monitoring; Lippincott Williams & Wilkins: Baltimore, 2006.
[109]
Thorn, C.F.; Leckband, S.G.; Kelsoe, J.; Steven Leeder, J.; Müller, D.J.; Klein, T.E.; Altman, R.B. PharmGKB summary. Pharmacogenet. Genomics, 2011, 21(12), 906-910.
[http://dx.doi.org/10.1097/FPC.0b013e328348c6f2] [PMID: 21738081]
[110]
Ambrósio, A.F.; Soares-da-Silva, P.; Carvalho, C.M.; Carvalho, A.P. Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochem. Res., 2002, 27(1/2), 121-130.
[http://dx.doi.org/10.1023/A:1014814924965] [PMID: 11926264]
[111]
Schmidt, D.; Elger, C.E. What is the evidence that oxcarbazepine and carbamazepine are distinctly different antiepileptic drugs? Epilepsy Behav., 2004, 5(5), 627-635.
[http://dx.doi.org/10.1016/j.yebeh.2004.07.004] [PMID: 15380112]
[112]
Beydoun, A.; Kutluay, E. Oxcarbazepine. Expert Opin. Pharmacother., 2002, 3(1), 59-71.
[http://dx.doi.org/10.1517/14656566.3.1.59] [PMID: 11772334]
[113]
Wellington, K.; Goa, K.L. Oxcarbazepine. CNS Drugs, 2001, 15(2), 137-163.
[http://dx.doi.org/10.2165/00023210-200115020-00005] [PMID: 11460891]
[114]
Ambrósio, A.F.; Silva, A.P.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists. Neuropharmacology, 1999, 38(9), 1349-1359.
[http://dx.doi.org/10.1016/S0028-3908(99)00058-1] [PMID: 10471089]
[115]
Macdonald, R.L.; Kelly, K.M. Antiepileptic drug mechanisms of action. Epilepsia, 1993, 34(S5), S1-S8.
[http://dx.doi.org/10.1111/j.1528-1157.1993.tb05918.x] [PMID: 7687957]
[116]
Grunze, A.; Amann, B.L.; Grunze, H. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder. Medicina , 2021, 57(5), 433.
[http://dx.doi.org/10.3390/medicina57050433] [PMID: 33946323]
[117]
Manji, H.K.; Duman, R.S. Impairments of neuroplasticity and cellular resilience in severe mood disorders: Implications for the development of novel therapeutics Psychopharmacol. Bull., 2001, 35(2), 5-49.
[PMID: 12397885]
[118]
Strakowski, S.M.; DelBello, M.P.; Adler, C.M. The functional neuroanatomy of bipolar disorder: A review of neuroimaging findings. Mol. Psychiat., 2005, 10(1), 105-116.
[http://dx.doi.org/10.1038/sj.mp.4001585] [PMID: 15340357]
[119]
Vawter, M.P.; Freed, W.J.; Kleinman, J.E. Neuropathology of bipolar disorder. Biol. Psychiat., 2000, 48(6), 486-504.
[http://dx.doi.org/10.1016/S0006-3223(00)00978-1] [PMID: 11018222]
[120]
Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol. Psychiatry., 2000, 48(8), 766-777.
[http://dx.doi.org/10.1016/S0006-3223(00)00950-1] [PMID: 11063973]
[121]
Neale, E.A.; Sher, P.K.; Graubard, B.I.; Habig, W.H.; Fitzgerald, S.C.; Nelson, P.G. Differential toxicity of chronic exposure to phenytoin, phenobarbital, or carbamazepine in cerebral cortical cell cultures. Pediatr. Neurol., 1985, 1(3), 143-150.
[http://dx.doi.org/10.1016/0887-8994(85)90053-0] [PMID: 3880399]
[122]
Almgren, M.; Nyengaard, J.R.; Persson, B.; Lavebratt, C. Carbamazepine protects against neuronal hyperplasia and abnormal gene expression in the megencephaly mouse. Neurobiol. Dis., 2008, 32(3), 364-376.
[http://dx.doi.org/10.1016/j.nbd.2008.07.025] [PMID: 18773962]
[123]
Lavebratt, C.; Trifunovski, A.; Persson, A.S.; Wang, F.H.; Klason, T.; Öhman, I.; Josephsson, A.; Olson, L.; Spenger, C.; Schalling, M. Carbamazepine protects against megencephaly and abnormal expression of BDNF and Nogo signaling components in the mceph/mceph mouse. Neurobiol. Dis., 2006, 24(2), 374-383.
[http://dx.doi.org/10.1016/j.nbd.2006.07.018] [PMID: 16990009]
[124]
Petersson, S.; Sandberg, N.A.C.; Schalling, M.; Lavebratt, C. The megencephaly mouse has disturbances in the insulin-like growth factor (IGF) system. Brain Res. Mol. Brain Res., 1999, 72(1), 80-88.
[http://dx.doi.org/10.1016/S0169-328X(99)00211-9] [PMID: 10521601]
[125]
Petersson, S.; Lavebratt, C.; Schalling, M.; Hökfelt, T. Expression of cholecystokinin, enkephalin, galanin and neuropeptide Y is markedly changed in the brain of the megencephaly mouse. Neuroscience, 2000, 100(2), 297-317.
[http://dx.doi.org/10.1016/S0306-4522(00)00285-2] [PMID: 11008168]
[126]
Diez, M.; Schweinhardt, P.; Petersson, S.; Wang, F.H.; Lavebratt, C.; Schalling, M.; Hökfelt, T.; Spenger, C. MRI and in situ hybridization reveal early disturbances in brain size and gene expression in the megencephalic (mceph/mceph) mouse. Eur. J. Neurosci., 2003, 18(12), 3218-3230.
[http://dx.doi.org/10.1111/j.1460-9568.2003.02994.x] [PMID: 14686896]
[127]
Park, S.W.; Lee, J.G.; Seo, M.K.; Cho, H.Y.; Lee, C.H.; Lee, J.H.; Lee, B.J.; Baek, J.H.; Seol, W.; Kim, Y.H. Effects of mood-stabilizing drugs on dendritic outgrowth and synaptic protein levels in primary hippocampal neurons. Bipolar Disord., 2015, 17(3), 278-290.
[http://dx.doi.org/10.1111/bdi.12262] [PMID: 25307211]
[128]
Lessmann, V.; Gottmann, K.; Malcangio, M. Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol., 2003, 69(5), 341-374.
[http://dx.doi.org/10.1016/S0301-0082(03)00019-4] [PMID: 12787574]
[129]
Olaibi, O.K.; Osuntokun, O.S.; Ijomone, O.M. Effects of chronic administration of gabapentin and carbamazepine on the histomorphology of the hippocampus and striatum. Ann. Neurosci., 2014, 21(2), 57-61.
[http://dx.doi.org/10.5214/ans.0972.7531.210206] [PMID: 25206062]
[130]
Gao, X.M.; Chuang, D.M. Carbamazepine-induced neurotoxicity and its prevention by NMDA in cultured cerebellar granule cells. Neurosci. Lett., 1992, 135(2), 159-162.
[http://dx.doi.org/10.1016/0304-3940(92)90426-8] [PMID: 1352629]
[131]
Gao, X.M.; Margolis, R.L.; Leeds, P.; Hough, C.; Post, R.M.; Chuang, D.M. Carbamazepine induction of apoptosis in cultured cerebellar neurons: Effects ofN-methyl-d-aspartate, aurintricarboxylic acid and cycloheximide. Brain Res., 1995, 703(1-2), 63-71.
[http://dx.doi.org/10.1016/0006-8993(95)01066-1] [PMID: 8719616]
[132]
Nonaka, S.; Katsube, N.; Chuang, D.M. Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine J. Pharmacol. Exp. Ther., 1998, 286(1), 539-547.
[PMID: 9655900]
[133]
Ambrósio, A.F.; Silva, A.P.; Araújo, I.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Neurotoxic/neuroprotective profile of carbamazepine, oxcarbazepine and two new putative antiepileptic drugs, BIA 2-093 and BIA 2-024. Eur. J. Pharmacol., 2000, 406(2), 191-201.
[http://dx.doi.org/10.1016/S0014-2999(00)00659-2] [PMID: 11020481]
[134]
Araújo, I.M.; Ambrósio, A.F.; Leal, E.C.; Verdasca, M.J.; Malva, J.O.; Soares-da-Silva, P.; Carvalho, A.P.; Carvalho, C.M. Neurotoxicity induced by antiepileptic drugs in cultured hippocampal neurons: A comparative study between carbamazepine, oxcarbazepine, and two new putative antiepileptic drugs, BIA 2-024 and BIA 2-093. Epilepsia, 2004, 45(12), 1498-1505.
[http://dx.doi.org/10.1111/j.0013-9580.2004.14104.x] [PMID: 15571507]
[135]
Vezzani, A.; Granata, T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia, 2005, 46(11), 1724-1743.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00298.x] [PMID: 16302852]
[136]
Stollg, G.; Jander, S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog. Neurobiol., 1999, 58(3), 233-247.
[http://dx.doi.org/10.1016/S0301-0082(98)00083-5] [PMID: 10341362]
[137]
Wang, C.H.; Hsiao, C.J.; Lin, Y.N.; Wu, J.W.; Kuo, Y.C.; Lee, C.K.; Hsiao, G. Carbamazepine attenuates inducible nitric oxide synthase expression through Akt inhibition in activated microglial cells. Pharm. Biol., 2014, 52(11), 1451-1459.
[http://dx.doi.org/10.3109/13880209.2014.898074] [PMID: 25026355]
[138]
Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. , 1990, 87(4), 1620-1624.
[http://dx.doi.org/10.1073/pnas.87.4.1620] [PMID: 2154753]
[139]
Block, M.L.; Hong, J.S. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog. Neurobiol., 2005, 76(2), 77-98.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.004] [PMID: 16081203]
[140]
Iwamoto, T.; Takasugi, Y.; Higashino, H.; Ito, H.; Koga, Y.; Nakao, S. Antinociceptive action of carbamazepine on thermal hypersensitive pain at spinal level in a rat model of adjuvant-induced chronic inflammation. J. Anesth., 2011, 25(1), 78-86.
[http://dx.doi.org/10.1007/s00540-010-1046-7] [PMID: 21113631]
[141]
Murakami, A.; Furui, T. Effects of the conventional anticonvulsants, phenytoin, carbamazepine, and valproic acid, on sodium-potassium-adenosine triphosphatase in acute ischemic brain Neurosurgery, 1994, 34(6), 1047-1051.
[PMID: 8084389]
[142]
Schirrmacher, K.; Mayer, A.; Walden, J.; Düsing, R.; Bingmann, D. Effects of carbamazepine on membrane properties of rat sensory spinal ganglion cells in vitro. Eur. Neuropsychopharmacol., 1995, 5(4), 501-507.
[http://dx.doi.org/10.1016/0924-977X(95)80010-Y] [PMID: 8998403]
[143]
Benveniste, H.; Drejer, J.; Schousboe, A.; Diemer, N.H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem., 1984, 43(5), 1369-1374.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb05396.x] [PMID: 6149259]
[144]
Sırlak, M.; Eryılmaz, S.; Bahadır Inan, M.; Sırın, Y.S.; Besaltı, O.; Yazıcıoglu, L.; Ozcınar, E.; Erdemlı, E.; Tasoz, R.; Elhan, A.H.; Kaya, B.; Ozyurda, U. Effects of carbamazepine on spinal cord ischemia. J. Thorac. Cardiovasc. Surg., 2008, 136(4), 1038-1043.e4.
[http://dx.doi.org/10.1016/j.jtcvs.2007.12.068] [PMID: 18954647]
[145]
Lewin, E.; Bleck, V. Cyclic AMP accumulation in cerebral cortical slices: effect of carbamazepine, phenobarbital, and phenytoin. Epilepsia, 1977, 18(2), 237-242.
[http://dx.doi.org/10.1111/j.1528-1157.1977.tb04472.x] [PMID: 194771]
[146]
Manji, H.K.; Chen, G.; Hsiao, J.K.; Risby, E.D.; Masana, M.I.; Potter, W.Z. Regulation of signal transduction pathways by mood-stabilizing agents: Implications for the delayed onset of therapeutic efficacy J. Clin. Psychiat., 1996, 57(S13), 34-46.
[PMID: 8970503]
[147]
Mai, L.; Jope, R.S.; Li, X. BDNF-mediated signal transduction is modulated by GSK3β and mood stabilizing agents. J. Neurochem., 2002, 82(1), 75-83.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00939.x] [PMID: 12091467]
[148]
Chang, Y.C.; Rapoport, S.I.; Rao, J.S. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem. Res., 2009, 34(3), 536-541.
[http://dx.doi.org/10.1007/s11064-008-9817-3] [PMID: 18719996]
[149]
Rao, J.S.; Lee, H-J.; Rapoport, S.I.; Bazinet, R.P. Mode of action of mood stabilizers: Is the arachidonic acid cascade a common target? Mol. Psychiat., 2008, 13(6), 585-596.
[http://dx.doi.org/10.1038/mp.2008.31] [PMID: 18347600]
[150]
Garrido, R.; Springer, J.E.; Hennig, B.; Toborek, M. Apoptosis of spinal cord neurons by preventing depletion nicotine attenuates arachidonic acid-induced of neurotrophic factors. J. Neurotrauma, 2003, 20(11), 1201-1213.
[http://dx.doi.org/10.1089/089771503322584628] [PMID: 14651807]
[151]
Kwon, K.J.; Jung, Y.S.; Lee, S.H.; Moon, C.H.; Baik, E.J. Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase. J. Neurosci. Res., 2005, 81(1), 73-84.
[http://dx.doi.org/10.1002/jnr.20520] [PMID: 15931672]
[152]
Tang, D.G.; Chen, Y.Q.; Honn, K.V. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc. Natl. Acad. Sci. , 1996, 93(11), 5241-5246.
[http://dx.doi.org/10.1073/pnas.93.11.5241] [PMID: 8643560]
[153]
Bowden, C.L. Lamotrigine in the treatment of bipolar disorder. Expert Opin. Pharmacother., 2002, 3(10), 1513-1519.
[http://dx.doi.org/10.1517/14656566.3.10.1513] [PMID: 12387697]
[154]
Leng, Y.; Fessler, E.B.; Chuang, D.M. Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction. Int. J. Neuropsychopharmacol., 2013, 16(3), 607-620.
[http://dx.doi.org/10.1017/S1461145712000429] [PMID: 22564541]
[155]
Naguy, A.; Al-Enezi, N. Lamotrigine uses in psychiatric practice. Am. J. Ther., 2019, 26(1), e96-e102.
[http://dx.doi.org/10.1097/MJT.0000000000000535] [PMID: 30601211]
[156]
Cuomo, A.; Amore, M.; Vampini, C.; Fagiolini, A. Lamotrigina nel disturbo bipolare: prevenire la depressione per curare la malattia Riv. Psichiatr., 2021, 56(1), 1-11.
[PMID: 33560270]
[157]
Calabrese, J.R.; Bowden, C.L.; Sachs, G.S.; Ascher, J.A.; Monaghan, E.; Rudd, G.D. A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J. Clin. Psychiat., 1999, 60(2), 79-88.
[http://dx.doi.org/10.4088/JCP.v60n0203] [PMID: 10084633]
[158]
Prabhavalkar, K.S.; Poovanpallil, N.B.; Bhatt, L.K. Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer. Front. Pharmacol., 2015, 6, 242.
[http://dx.doi.org/10.3389/fphar.2015.00242] [PMID: 26557090]
[159]
Xie, X.; Hagan, R. Cellular and molecular actions of lamotrigine: Possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology, 1998, 38(3), 119-130.
[http://dx.doi.org/10.1159/000026527] [PMID: 9778599]
[160]
Ketter, T.A.; Manji, H.K.; Post, R.M. Potential mechanisms of action of lamotrigine in the treatment of bipolar disorders. J. Clin. Psychopharmacol., 2003, 23(5), 484-495.
[http://dx.doi.org/10.1097/01.jcp.0000088915.02635.e8] [PMID: 14520126]
[161]
Redmond, J.R.; Jamison, K.L.; Bowden, C.L. Lamotrigine combined with divalproex or lithium for bipolar disorder: A case series. CNS Spectr., 2006, 11(12), 915-918.
[http://dx.doi.org/10.1017/S1092852900015091] [PMID: 17146405]
[162]
Walden, J.; Hesslinger, B.; van Calker, D.; Berger, M. Addition of lamotrigine to valproate may enhance efficacy in the treatment of bipolar affective disorder. Pharmacopsychiatry., 1996, 29(5), 193-195.
[http://dx.doi.org/10.1055/s-2007-979570] [PMID: 8895945]
[163]
Aldenkamp, A.P.; Baker, G. A systematic review of the effects of lamotrigine on cognitive function and quality of life. Epilepsy Behav., 2001, 2(2), 85-91.
[http://dx.doi.org/10.1006/ebeh.2001.0168] [PMID: 12609190]
[164]
Calabresi, P.; Picconi, B.; Saulle, E.; Centonze, D.; Hainsworth, A.H.; Bernardi, G. Is pharmacological neuroprotection dependent on reduced glutamate release? Stroke, 2000, 31(3), 766-773.
[http://dx.doi.org/10.1161/01.STR.31.3.766] [PMID: 10700517]
[165]
Papazisis, G.; Kallaras, K.; Kaiki-Astara, A.; Pourzitaki, C.; Tzachanis, D.; Dagklis, T.; Kouvelas, D. Neuroprotection by lamotrigine in a rat model of neonatal hypoxic-ischaemic encephalopathy. Int. J. Neuropsychopharmacol., 2008, 11(3), 321-329.
[http://dx.doi.org/10.1017/S1461145707008012] [PMID: 17897482]
[166]
Shuaib, A.; Mahmood, R.H.; Wishart, T.; Kanthan, R.; Murabit, M.A.; Ijaz, S.; Miyashita, H.; Howlett, W. Neuroprotective effects of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study. Brain Res., 1995, 702(1-2), 199-206.
[http://dx.doi.org/10.1016/0006-8993(95)01048-1] [PMID: 8846077]
[167]
Smith, S.E.; Meldrum, B.S. Cerebroprotective effect of lamotrigine after focal ischemia in rats. Stroke, 1995, 26(1), 117-122.
[http://dx.doi.org/10.1161/01.STR.26.1.117] [PMID: 7839380]
[168]
Wiard, R.P.; Dickerson, M.C.; Beek, O.; Norton, R.; Cooper, B.R. Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia. Stroke, 1995, 26(3), 466-472.
[http://dx.doi.org/10.1161/01.STR.26.3.466] [PMID: 7886726]
[169]
Connop, B.P.; Boegman, R.J.; Beninger, R.J.; Jhamandas, K. Malonate-induced degeneration of basal forebrain cholinergic neurons: Attenuation by lamotrigine, MK-801, and 7-nitroindazole. J. Neurochem., 1997, 68(3), 1191-1199.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68031191.x] [PMID: 9048766]
[170]
Mancuso, M.; Galli, R.; Pizzanelli, C.; Filosto, M.; Siciliano, G.; Murri, L. Antimyoclonic effect of levetiracetam in MERRF syndrome. J. Neurol. Sci., 2006, 243(1-2), 97-99.
[http://dx.doi.org/10.1016/j.jns.2005.11.021] [PMID: 16414077]
[171]
Halonen, T.; Nissinen, J.; Pitkänen, A. Effect of lamotrigine treatment on status epilepticus-induced neuronal damage and memory impairment in rat. Epilepsy Res., 2001, 46(3), 205-223.
[http://dx.doi.org/10.1016/S0920-1211(01)00278-9] [PMID: 11518623]
[172]
Lagrue, E.; Chalon, S.; Bodard, S.; Saliba, E.; Gressens, P.; Castelnau, P. Lamotrigine is neuroprotective in the energy deficiency model of MPTP intoxicated mice. Pediatr. Res., 2007, 62(1), 14-19.
[http://dx.doi.org/10.1203/PDR.0b013e31806790d7] [PMID: 17515828]
[173]
Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther., 1999, 81(3), 163-221.
[http://dx.doi.org/10.1016/S0163-7258(98)00042-4] [PMID: 10334661]
[174]
Chuang, D.M.; Leng, Y.; Marinova, Z.; Kim, H.J.; Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci., 2009, 32(11), 591-601.
[http://dx.doi.org/10.1016/j.tins.2009.06.002] [PMID: 19775759]
[175]
Rohn, T.T.; Vyas, V.; Hernandez-Estrada, T.; Nichol, K.E.; Christie, L.A.; Head, E. Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J. Neurosci., 2008, 28(12), 3051-3059.
[http://dx.doi.org/10.1523/JNEUROSCI.5620-07.2008] [PMID: 18354008]
[176]
Vukosavic, S.; Stefanis, L.; Jackson-Lewis, V.; Guégan, C.; Romero, N.; Chen, C.; Dubois-Dauphin, M.; Przedborski, S. Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci., 2000, 20(24), 9119-9125.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09119.2000] [PMID: 11124989]
[177]
Yuan, J.; Lipinski, M.; Degterev, A. Diversity in the mechanisms of neuronal cell death. Neuron, 2003, 40(2), 401-413.
[http://dx.doi.org/10.1016/S0896-6273(03)00601-9] [PMID: 14556717]
[178]
Chen, R.W.; Chuang, D.M. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J. Biol. Chem., 1999, 274(10), 6039-6042.
[http://dx.doi.org/10.1074/jbc.274.10.6039] [PMID: 10037682]
[179]
Paul, I.A.; Skolnick, P. Glutamate and depression. Ann. N. Y. Acad. Sci., 2003, 1003(1), 250-272.
[http://dx.doi.org/10.1196/annals.1300.016] [PMID: 14684451]
[180]
Duman, R.S.; Heninger, G.R.; Nestler, E.J. Molecular psychiatry Adaptations of receptor-coupled signal transduction pathways underlying stress- and drug-induced neural plasticity. J. Nerv. Ment. Dis., 1994, 182(12), 692-700.
[http://dx.doi.org/10.1097/00005053-199412000-00003] [PMID: 7989913]
[181]
Duman, R.S. Depression: A case of neuronal life and death? Biol. Psychiat., 2004, 56(3), 140-145.
[http://dx.doi.org/10.1016/j.biopsych.2004.02.033] [PMID: 15271581]
[182]
Li, N.; He, X.; Zhang, Y.; Qi, X.; Li, H.; Zhu, X.; He, S. Brain-derived neurotrophic factor signalling mediates antidepressant effects of lamotrigine. Int. J. Neuropsychopharmacol., 2011, 14(8), 1091-1098.
[http://dx.doi.org/10.1017/S1461145710001082] [PMID: 20846461]
[183]
Abelaira, H.M.; Réus, G.Z.; Ribeiro, K.F.; Zappellini, G.; Ferreira, G.K.; Gomes, L.M.; Carvalho-Silva, M.; Luciano, T.F.; Marques, S.O.; Streck, E.L.; Souza, C.T.; Quevedo, J. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem. Int., 2011, 59(8), 1163-1174.
[http://dx.doi.org/10.1016/j.neuint.2011.10.007] [PMID: 22044672]
[184]
Kumar, P.; Kalonia, H.; Kumar, A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur. J. Pharmacol., 2012, 674(2-3), 265-274.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.030] [PMID: 22154757]
[185]
Brown, E.S.; Sayed, N.; Choi, C.; Tustison, N.; Roberts, J.; Yassa, M.A.; Van Enkevort, E.; Nakamura, A.; Ivleva, E.I.; Sunderajan, P.; Khan, D.A.; Vazquez, M.; McEwen, B.; Kulikova, A.; Frol, A.B.; Holmes, T. A randomized, double-blind, placebo-controlled trial of lamotrigine for prescription corticosteroid effects on the human hippocampus. Eur. Neuropsychopharmacol., 2019, 29(3), 376-383.
[http://dx.doi.org/10.1016/j.euroneuro.2018.12.012] [PMID: 30612854]
[186]
Hendricks, E. Off-label drugs for weight management. Diabetes Metab. Syndr. Obes., 2017, 10, 223-234.
[http://dx.doi.org/10.2147/DMSO.S95299] [PMID: 28652791]
[187]
Manhapra, A.; Chakraborty, A.; Arias, A.J. Topiramate pharmacotherapy for alcohol use disorder and other addictions: a narrative review. J. Addict. Med., 2019, 13(1), 7-22.
[http://dx.doi.org/10.1097/ADM.0000000000000443] [PMID: 30096077]
[188]
Osser, D.N. Topiramate in bipolar disorder and comorbidities: The myths and the evidence Psychiatr. Times, 2020, 37(8), 32.
[189]
Goldenberg, M.M. Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment P&T, 2010, 35(7), 392-415.
[PMID: 20689626]
[190]
Hanalioglu, S.; Narin, F.; Ustun, H.; Kilinc, K.; Bilginer, B. Topiramate as a neuroprotective agent in a rat model of spinal cord injury. Neural Regen. Res., 2017, 12(12), 2071-2076.
[http://dx.doi.org/10.4103/1673-5374.221164] [PMID: 29323048]
[191]
Bischofs, S.; Zelenka, M.; Sommer, C. Evaluation of topiramate as an anti-hyperalgesic and neuroprotective agent in the peripheral nervous system. J. Peripher. Nerv. Syst., 2004, 9(2), 70-78.
[http://dx.doi.org/10.1111/j.1085-9489.2004.009205.x] [PMID: 15104694]
[192]
Motaghinejad, M.; Motevalian, M.; Babalouei, F.; Abdollahi, M.; Heidari, M.; Madjd, Z. Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methylphenidate induced apoptosis, oxidative stress and inflammation in isolated hippocampus of rats: Molecular, biochemical and histological evidences. Brain Res. Bull., 2017, 132, 82-98.
[http://dx.doi.org/10.1016/j.brainresbull.2017.05.011] [PMID: 28552672]
[193]
Motaghinejad, M.; Motevalian, M.; Abdollahi, M.; Heidari, M.; Madjd, Z. Topiramate confers neuroprotection against methylphenidate-induced neurodegeneration in dentate gyrus and CA1 regions of hippocampus via CREB/BDNF pathway in rats. Neurotox. Res., 2017, 31(3), 373-399.
[http://dx.doi.org/10.1007/s12640-016-9695-4] [PMID: 28078543]
[194]
Motaghinejad, M.; Motevalian, M.; Fatima, S.; Beiranvand, T.; Mozaffari, S. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J. Neural Transm. , 2017, 124(11), 1369-1387.
[http://dx.doi.org/10.1007/s00702-017-1771-2] [PMID: 28795276]
[195]
Mao, X.Y.; Cao, Y.G.; Ji, Z.; Zhou, H.H.; Liu, Z.Q.; Sun, H.L. Topiramate protects against glutamate excitotoxicity via activating BDNF/TrkB-dependent ERK pathway in rodent hippocampal neurons. Prog. Neuropsychopharmacol. Biol. Psychiat., 2015, 60, 11-17.
[http://dx.doi.org/10.1016/j.pnpbp.2015.01.015] [PMID: 25661849]
[196]
Pinheiro, R.M.C.; de Lima, M.N.M.; Portal, B.C.D.; Busato, S.B.; Falavigna, L.; Ferreira, R.D.P.; Paz, A.C.; de Aguiar, B.W.; Kapczinski, F.; Schröder, N. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: Effects of valproic acid and topiramate. J. Neural Transm. , 2015, 122(5), 709-719.
[http://dx.doi.org/10.1007/s00702-014-1303-2] [PMID: 25182413]
[197]
Aydin, S.; Yazici, Z.G.; Kilic, C.; Ercelen, O.B.; Kilic, F.S. An overview of the behavioral, neurobiological and morphological effects of topiramate in rats exposed to chronic unpredictable mild stress. Eur. J. Pharmacol., 2021, 912, 174578.
[http://dx.doi.org/10.1016/j.ejphar.2021.174578] [PMID: 34695423]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy