Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Network Analysis and Basic Experiments on the Inhibition of Renal Cancer Proliferation and Migration by Alpinetin through PI3K/AKT/ mTOR Pathway

Author(s): Yu Guo, Li Jiang, Shengjun Luo, Daixing Hu, Xin Zhao, Guozhi Zhao and Wei Tang*

Volume 24, Issue 1, 2024

Published on: 26 June, 2023

Page: [134 - 144] Pages: 11

DOI: 10.2174/1566524023666230522145226

Price: $65

conference banner
Abstract

Background: Alpinetin, a natural flavonoid, has been shown to have anticancer effects on many tumors. This study investigated the antitumor effect of alpinetin on renal clear cell carcinoma (ccRCC).

Methods: Network Pharmacology analysis was carried out on the targets and molecular mechanisms of alpinetin treating ccRCC. The Annexin V PE/7-AAD kit was used to detect apoptosis. Flow cytometry and Cell Counting Kit-8 (CCK-8) were used to detect cell proliferation and cycle. A 24-well transwell chamber and the ibidi scratch insertion performed cell migration analysis. The protein expression of the target molecule was detected by Western blotting. Nude mouse tumorigenesis assays were used to determine the in vivo antitumor effects of alpinetin.

Results: The network pharmacology revealed that GAPDH, HRAS, SRC, EGFR, and AKT1 are the main targets of alpinetin in treating ccRCC, with the PI3K/AKT signaling pathway being the main pathway of action. We found that alpinetin could significantly inhibit the proliferation and migration of ccRCC cells by inducing apoptosis. In addition, alpinetin also inhibited the cycle progression of ccRCC cells by blocking them in the G1 phase. Furthermore, in vivo and in vitro, alpinetin could inhibit the activation of an important pathway involved in the proliferation and migration of ccRCC cells, namely the PI3K/Akt pathway.

Conclusion: Alpinetin can inhibit the growth of ccRCC cells by inhibiting the activation of the PI3K/Akt pathway and can be a potential anti-cancer drug for ccRCC.

[1]
Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers 2017; 3(1): 17009.
[http://dx.doi.org/10.1038/nrdp.2017.9] [PMID: 28276433]
[2]
Bahadoram S, Davoodi M, Hassanzadeh S, Bahadoram M, Barahman M, Mafakher L. Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G Ital Nefrol 2022; 39(3): 2022-vol3.
[PMID: 35819037]
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Barata PC, Rini BI. Treatment of renal cell carcinoma: Current status and future directions. CA Cancer J Clin 2017; 67(6): 507-24.
[http://dx.doi.org/10.3322/caac.21411] [PMID: 28961310]
[5]
Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephrol 2017; 13(8): 496-511.
[http://dx.doi.org/10.1038/nrneph.2017.82] [PMID: 28691713]
[6]
Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J Ethnopharmacol 2021; 267: 113635.
[http://dx.doi.org/10.1016/j.jep.2020.113635] [PMID: 33246112]
[7]
Shui L, Wang W, Xie M, et al. Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway. Aging (Albany NY) 2020; 12(23): 24318-32.
[http://dx.doi.org/10.18632/aging.202237] [PMID: 33260158]
[8]
Deng Y, Li S, Wang M, et al. Flavonoid-rich extracts from okra flowers exert antitumor activity in colorectal cancer through induction of mitochondrial dysfunction-associated apoptosis, senescence and autophagy. Food Funct 2020; 11(12): 10448-66.
[http://dx.doi.org/10.1039/D0FO02081H] [PMID: 33241810]
[9]
Wu L, Yang W, Zhang SN, Lu JB. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium. Drug Des Devel Ther 2015; 9: 6119-27.
[PMID: 26604699]
[10]
Zhao X, Guo X, Shen J, Hua D. Alpinetin inhibits proliferation and migration of ovarian cancer cells via suppression of STAT3 signaling. Mol Med Rep 2018; 18(4): 4030-6.
[http://dx.doi.org/10.3892/mmr.2018.9420] [PMID: 30132572]
[11]
Gul S, Maqbool MF, Zheng D, Li Y, Khan M, Ma T. Alpinetin: A dietary flavonoid with diverse anticancer effects. Appl Biochem Biotechnol 2022; 194(9): 4220-43.
[http://dx.doi.org/10.1007/s12010-022-03960-2] [PMID: 35567708]
[12]
Zhang Y, Zhang Y, Li Y, Zhang L, Yu S. Preclinical investigation of alpinetin in the treatment of cancer-induced cachexia via activating PPARγ. Front Pharmacol 2021; 12: 687491.
[http://dx.doi.org/10.3389/fphar.2021.687491] [PMID: 34093209]
[13]
Zhang T, Guo S, Zhu X, Qiu J, Deng G, Qiu C. Alpinetin inhibits breast cancer growth by ROS/NF‐κB/HIF‐1α axis. J Cell Mol Med 2020; 24(15): 8430-40.
[http://dx.doi.org/10.1111/jcmm.15371] [PMID: 32562470]
[14]
He D, Huang J, Zhang Z, et al. A network pharmacology-based strategy for predicting active ingredients and potential targets of liuwei dihuang pill in treating type 2 diabetes mellitus. Drug Des Devel Ther 2019; 13: 3989-4005.
[http://dx.doi.org/10.2147/DDDT.S216644] [PMID: 31819371]
[15]
Feng Z, Shi H, Liang B, et al. Bioinformatics and experimental findings reveal the therapeutic actions and targets of pachymic acid against cystitis glandularis. Biofactors 2021; 47(4): 665-73.
[http://dx.doi.org/10.1002/biof.1734] [PMID: 33893687]
[16]
Yang C, Luo J, Luo X, et al. Morusin exerts anti-cancer activity in renal cell carcinoma by disturbing MAPK signaling pathways. Ann Transl Med 2020; 8(6): 327.
[http://dx.doi.org/10.21037/atm.2020.02.107] [PMID: 32355771]
[17]
Friedl P, Wolf K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer 2003; 3(5): 362-74.
[http://dx.doi.org/10.1038/nrc1075] [PMID: 12724734]
[18]
Dell’Atti L, Bianchi N, Aguiari G. New therapeutic interventions for kidney carcinoma: Looking to the future. Cancers (Basel) 2022; 14(15): 3616.
[http://dx.doi.org/10.3390/cancers14153616] [PMID: 35892875]
[19]
Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med 2005; 11(7): 725-30.
[http://dx.doi.org/10.1038/nm1263] [PMID: 16015365]
[20]
Guo H, German P, Bai S, et al. The PI3K/AKT pathway and renal cell carcinoma. J Genet Genomics 2015; 42(7): 343-53.
[http://dx.doi.org/10.1016/j.jgg.2015.03.003] [PMID: 26233890]
[21]
Fan D, Liu Q, Wu F, et al. Prognostic significance of PI3K/AKT/mTOR signaling pathway members in clear cell renal cell carcinoma. PeerJ 2020; 8: e9261.
[http://dx.doi.org/10.7717/peerj.9261] [PMID: 32547875]
[22]
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular mechanisms in clear cell renal cell carcinoma: Role of miRNAs and hypermethylated miRNA genes in crucial oncogenic pathways and processes. Front Genet 2019; 10: 320.
[http://dx.doi.org/10.3389/fgene.2019.00320] [PMID: 31110513]
[23]
Li QK, Pavlovich CP, Zhang H, Kinsinger CR, Chan DW. Challenges and opportunities in the proteomic characterization of clear cell renal cell carcinoma (ccRCC): A critical step towards the personalized care of renal cancers. Semin Cancer Biol 2019; 55: 8-15.
[http://dx.doi.org/10.1016/j.semcancer.2018.06.004] [PMID: 30055950]
[24]
Escudier B, Bellmunt J, Négrier S, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final analysis of overall survival. J Clin Oncol 2010; 28(13): 2144-50.
[http://dx.doi.org/10.1200/JCO.2009.26.7849] [PMID: 20368553]
[25]
Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. J Clin Oncol 2010; 28(6): 1061-8.
[http://dx.doi.org/10.1200/JCO.2009.23.9764] [PMID: 20100962]
[26]
Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: Mechanisms and management strategies. Mol Cancer Ther 2018; 17(7): 1355-64.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1299] [PMID: 29967214]
[27]
Qian CN. Hijacking the vasculature in ccRCC—co-option, remodelling and angiogenesis. Nat Rev Urol 2013; 10(5): 300-4.
[http://dx.doi.org/10.1038/nrurol.2013.26] [PMID: 23459032]
[28]
Liu H, Wang ZY, Zhou YC, Song W, Ali U, Sze DMY. Immunomodulation of Chinese Herbal Medicines on NK cell populations for cancer therapy: A systematic review. J Ethnopharmacol 2021; 268: 113561.
[http://dx.doi.org/10.1016/j.jep.2020.113561] [PMID: 33157222]
[29]
Rini BI, Rathmell WK. Biological aspects and binding strategies of vascular endothelial growth factor in renal cell carcinoma. Clin Cancer Res 2007; 13(2): 741s-6s.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2110] [PMID: 17255303]
[30]
Bai L, Yang JC, Ok J, Mack PC, Kung HJ, Evans CP. Simultaneous targeting of Src kinase and receptor tyrosine kinase results in synergistic inhibition of renal cell carcinoma proliferation and migration. Int J Cancer 2012; 130(11): 2693-702.
[http://dx.doi.org/10.1002/ijc.26303] [PMID: 21792888]
[31]
Li J, Huang CC, Yu J. CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma through sponging miR-136-5p and regulating CBX4 expression. Mol Cancer 2020; 19: 103.
[http://dx.doi.org/10.1186/s12943-020-01225-2]
[32]
Lei Z, Ma X, Li H, et al. Up-regulation of miR-181a in clear cell renal cell carcinoma is associated with lower KLF6 expression, enhanced cell proliferation, accelerated cell cycle transition, and diminished apoptosis. Urol Oncol 2018; 36(3): 93.e23-37.
[http://dx.doi.org/10.1016/j.urolonc.2017.09.019] [PMID: 29066014]
[33]
Cao JJ, Zhao XM, Wang DL, et al. YAP is overexpressed in clear cell renal cell carcinoma and its knockdown reduces cell proliferation and induces cell cycle arrest and apoptosis. Oncol Rep 2014; 32(4): 1594-600.
[http://dx.doi.org/10.3892/or.2014.3349] [PMID: 25175178]
[34]
Cargnello M, Tcherkezian J, Roux PP. The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis 2015; 30(2): 169-76.
[http://dx.doi.org/10.1093/mutage/geu045] [PMID: 25688110]
[35]
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59: 147-60.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[36]
Sharma V, Sharma AK, Punj V, Priya P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin Cancer Biol 2019; 59: 133-46.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.005] [PMID: 31408722]
[37]
Erman M, Benekli M, Basaran M, et al. Renal cell cancer: Overview of the current therapeutic landscape. Expert Rev Anticancer Ther 2016; 16(9): 955-68.
[http://dx.doi.org/10.1080/14737140.2016.1222908] [PMID: 27548347]
[38]
Choi T, Yoo KH, Kim MS. Expression of AKT1 related with clinicopathological parameters in clear cell renal cell carcinoma. Curr Issues Mol Biol 2022; 44(10): 4921-9.
[http://dx.doi.org/10.3390/cimb44100334] [PMID: 36286049]
[39]
Riscal R, Bull CJ, Mesaros C, et al. Cholesterol auxotrophy as a targetable vulnerability in clear cell renal cell carcinoma. Cancer Discov 2021; 11(12): 3106-25.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0211] [PMID: 34244212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy