Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

HSP90-regulated CHIP/TRIM21/p21 Axis Involves in the Senescence of Osteosarcoma Cells

Author(s): Gui-Sheng Xu, Yu-Ning Lin, Qingzhong Zeng, Zhi-Peng Li, Teng Xiao, Yong-Sheng Ye, Zhen-Yan Li and Xuejuan Gao*

Volume 30, Issue 6, 2023

Published on: 06 June, 2023

Page: [513 - 519] Pages: 7

DOI: 10.2174/0929866530666230519101148

Price: $65

Abstract

Background: OS is the most frequent malignant bone tumor with a poor prognosis. TRIM21 has been reported to play a critical role in OS by regulating the expression of the TXNIP/p21 axis and inhibiting the senescence of OS cells.

Aim: Investigation of the molecular mechanism of tripartite motif 21 (TRIM21) in osteosarcoma (OS) would shed light on the understanding of the pathogenesis of OS.

Objective: This study aimed to explore the mechanism regulating the protein stability of TRIM21 in the process of OS senescence.

Methods: Human U2 OS cells were used to establish stable cells overexpressing TRIM21 (induced by Dox) or knocking down TRIM21. The co-immunoprecipitation (co-IP) assay was used to examine the interaction between TRIM21 and HSP90. Immunofluorescence (IF) assay was used to observe colocalization in OS cells. Western blot analysis was applied to detect the protein expression, and quantitative real-time PCR (qRT-PCR) assay was used to test the mRNA expression of corresponding genes. SA-β-gal staining was used to evaluate OS senescence.

Results: In this study, we verified the interaction between HSP90 and TRIM21 using a co-IP assay. Knockdown or inhibition of HSP90 with its inhibitor 17-AAG accelerated the degradation of TRIM21 by the proteasome in OS cells. CHIP E3 ligase mediated this degradation of TRIM21, with the knockdown of CHIP rescuing the downregulation of TRIM21 induced by 17-AAG. TRIM21 inhibited OS senescence and downregulated the expression of senescence marker p21, while CHIP exhibited an opposite regulatory role on p21 expression.

Conclusion: Taken together, our results demonstrated that HSP90 is responsible for the stabilization of TRIM21 in OS and that the CHIP/TRIM21/p21 axis controlled by HSP90 affects the senescence of OS cells.

Graphical Abstract

[1]
Li, Y.H.; Tong, K.L.; Lu, J.L.; Lin, J.B.; Li, Z.Y.; Sang, Y.; Ghodbane, A.; Gao, X.J.; Tam, M.S.; Hu, C.D.; Zhang, H.T.; Zha, Z.G. PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging, 2020, 12(3), 2507-2529.
[http://dx.doi.org/10.18632/aging.102760] [PMID: 32023548]
[2]
Cersosimo, F.; Lonardi, S.; Bernardini, G.; Telfer, B.; Mandelli, G.E.; Santucci, A.; Vermi, W.; Giurisato, E. Tumor-associated macrophages in osteosarcoma: From mechanisms to therapy. Int. J. Mol. Sci., 2020, 21(15), 5207.
[http://dx.doi.org/10.3390/ijms21155207] [PMID: 32717819]
[3]
Ding, Q.; He, D.; He, K.; Zhang, Q.; Tang, M.; Dai, J.; Lv, H.; Wang, X.; Xiang, G.; Yu, H. Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers. Tumour Biol., 2015, 36(11), 8761-8772.
[http://dx.doi.org/10.1007/s13277-015-3572-2] [PMID: 26055142]
[4]
Wang, F.; Zhang, Y.; Shen, J.; Yang, B.; Dai, W.; Yan, J.; Maimouni, S.; Daguplo, H.Q.; Coppola, S.; Gao, Y.; Wang, Y.; Du, Z.; Peng, K.; Liu, H.; Zhang, Q.; Tang, F.; Wang, P.; Gao, S.; Wang, Y.; Ding, W.X.; Guo, G.; Wang, F.; Zong, W.X. The ubiquitin E3 ligase TRIM21 promotes hepatocarcinogenesis by suppressing the p62-Keap1-Nrf2 antioxidant pathway. Cell. Mol. Gastroenterol. Hepatol., 2021, 11(5), 1369-1385.
[http://dx.doi.org/10.1016/j.jcmgh.2021.01.007] [PMID: 33482392]
[5]
Brauner, S.; Zhou, W.; Backlin, C.; Green, T.M.; Folkersen, L.; Ivanchenko, M.; Löfström, B.; Xu-Monette, Z.Y.; Young, K.H.; Møller Pedersen, L.; Boe Møller, M.; Sundström, C.; Enblad, G.; Baecklund, E.; Wahren-Herlenius, M. Reduced expression of TRIM21/Ro52 predicts poor prognosis in diffuse large B-cell lymphoma patients with and without rheumatic disease. J. Intern. Med., 2015, 278(3), 323-332.
[http://dx.doi.org/10.1111/joim.12375] [PMID: 25880119]
[6]
Jin, Y.; Zhang, Y.; Li, B.; Zhang, J.; Dong, Z.; Hu, X.; Wan, Y. TRIM21 mediates ubiquitination of Snail and modulates epithelial to mesenchymal transition in breast cancer cells. Int. J. Biol. Macromol., 2019, 124, 846-853.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.269] [PMID: 30502437]
[7]
Lin, X.; Dinglin, X.; Cao, S.; Zheng, S.; Wu, C.; Chen, W.; Li, Q.; Hu, Q.; Zheng, F.; Wu, Z.; Lin, D.C.; Yao, Y.; Xu, X.; Xie, Z.; Liu, Q.; Yao, H.; Hu, H. Enhancer-driven lncRNA BDNF-AS induces endocrine resistance and malignant progression of breast cancer through the RNH1/TRIM21/mTOR cascade. Cell Rep., 2020, 31(10), 107753.
[http://dx.doi.org/10.1016/j.celrep.2020.107753] [PMID: 32521278]
[8]
Zhao, Z.; Wang, Y.; Yun, D.; Huang, Q.; Meng, D.; Li, Q.; Zhang, P.; Wang, C.; Chen, H.; Lu, D. TRIM21 overexpression promotes tumor progression by regulating cell proliferation, cell migration and cell senescence in human glioma. Am. J. Cancer Res., 2020, 10(1), 114-130. www.ncbi.nlm.nih.gov/pubmed/32064156
[PMID: 32064156]
[9]
Zeng, Q.Z.; Liu, W.T.; Lu, J.L.; Liu, X.H.; Zhang, Y.F.; Liu, L.X.; Gao, X.J. YWHAZ binds to TRIM21 but is not involved in TRIM21-stimulated osteosarcoma cell proliferation. Biomed. Environ. Sci., 2018, 31(3), 186-196. www.ncbi.nlm.nih.gov/pubmed/29673441
[PMID: 29673441]
[10]
Zhang, H.T.; Zeng, Q.; Wu, B.; Lu, J.; Tong, K.L.; Lin, J.; Liu, Q.Y.; Xu, L.; Yang, J.; Liu, X.; Liu, W.; Zhang, Y.F.; Lian, Q.; Liu, L.; Gao, X. TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis., 2021, 12(1), 21.
[http://dx.doi.org/10.1038/s41419-020-03364-2] [PMID: 33414451]
[11]
Huang, W.; Hickson, L.J.; Eirin, A.; Kirkland, J.L.; Lerman, L.O. Cellular senescence: The good, the bad and the unknown. Nat. Rev. Nephrol., 2022, 18(10), 611-627.
[http://dx.doi.org/10.1038/s41581-022-00601-z] [PMID: 35922662]
[12]
Mori, M.; Hitora, T.; Nakamura, O.; Yamagami, Y.; Horie, R.; Nishimura, H.; Yamamoto, T. Hsp90 inhibitor induces autophagy and apoptosis in osteosarcoma cells. Int. J. Oncol., 2015, 46(1), 47-54.
[http://dx.doi.org/10.3892/ijo.2014.2727] [PMID: 25351442]
[13]
Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci., 2021, 22(19), 10317.
[http://dx.doi.org/10.3390/ijms221910317] [PMID: 34638658]
[14]
Condelli, V.; Crispo, F.; Pietrafesa, M.; Lettini, G.; Matassa, D.S.; Esposito, F.; Landriscina, M.; Maddalena, F. HSP90 molecular chaperones, metabolic rewiring, and epigenetics: Impact on tumor progression and perspective for anticancer therapy. Cells, 2019, 8(6), 532.
[http://dx.doi.org/10.3390/cells8060532] [PMID: 31163702]
[15]
Khurana, N.; Bhattacharyya, S. Hsp90, the concertmaster: Tuning transcription. Front. Oncol., 2015, 5, 100.
[http://dx.doi.org/10.3389/fonc.2015.00100] [PMID: 25973397]
[16]
Bishop, S.C.; Burlison, J.A.; Blagg, B.S. Hsp90: A novel target for the disruption of multiple signaling cascades. Curr. Cancer Drug Targets, 2007, 7(4), 369-388.
[http://dx.doi.org/10.2174/156800907780809778] [PMID: 17979631]
[17]
Zuehlke, A.; Johnson, J.L. Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers, 2010, 93(3), 211-217.
[http://dx.doi.org/10.1002/bip.21292] [PMID: 19697319]
[18]
Jego, G.; Hazoumé, A.; Seigneuric, R.; Garrido, C. Targeting heat shock proteins in cancer. Cancer Lett., 2013, 332(2), 275-285.
[http://dx.doi.org/10.1016/j.canlet.2010.10.014] [PMID: 21078542]
[19]
Liang, G.H.; Liu, N.; He, M.T.; Yang, J.; Liang, Z.J.; Gao, X.J.; Rahhal, A.H.; He, Q.Y.; Zhang, H.T.; Zha, Z.G. Transcriptional regulation of Runx2 by HSP90 controls osteosarcoma apoptosis via the AKT/GSK‐3β/β‐catenin signaling. J. Cell. Biochem., 2018, 119(1), 948-959.
[http://dx.doi.org/10.1002/jcb.26260] [PMID: 28681940]
[20]
Connell, P.; Ballinger, C.A.; Jiang, J.; Wu, Y.; Thompson, L.J.; Höhfeld, J.; Patterson, C. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol., 2001, 3(1), 93-96.
[http://dx.doi.org/10.1038/35050618] [PMID: 11146632]
[21]
Huang, W.S.; Xu, F.M.; Zeng, Q.Z.; Liu, X.H.; Gao, X.J.; Liu, L.X. ERK1/2-mediated cytoplasmic accumulation of hnrnpk antagonizes TRAIL-induced apoptosis through upregulation of XIAP in H1299 cells. Biomed. Environ. Sci., 2017, 30(7), 473-481. www.ncbi.nlm.nih.gov/pubmed/28756806
[PMID: 28756806]
[22]
Guo, W.; Reigan, P.; Siegel, D.; Zirrolli, J.; Gustafson, D.; Ross, D. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: Role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res., 2005, 65(21), 10006-10015.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2029] [PMID: 16267026]
[23]
Schaefer, S.; Svenstrup, T.H.; Guerra, B. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells. PLoS One, 2017, 12(5), e0177706.
[http://dx.doi.org/10.1371/journal.pone.0177706] [PMID: 28542269]
[24]
Hall, J.A.; Forsberg, L.K.; Blagg, B.S.J. Alternative approaches to Hsp90 modulation for the treatment of cancer. Future Med. Chem., 2014, 6(14), 1587-1605.
[http://dx.doi.org/10.4155/fmc.14.89] [PMID: 25367392]
[25]
Li, J.; Soroka, J.; Buchner, J. The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta Mol. Cell Res., 2012, 1823(3), 624-635.
[http://dx.doi.org/10.1016/j.bbamcr.2011.09.003] [PMID: 21951723]
[26]
Maloney, A.; Workman, P. HSP90 as a new therapeutic target for cancer therapy: The story unfolds. Expert Opin. Biol. Ther., 2002, 2(1), 3-24.
[http://dx.doi.org/10.1517/14712598.2.1.3] [PMID: 11772336]
[27]
Chiosis, G. Targeting chaperones in transformed systems – a focus on Hsp90 and cancer. Expert Opin. Ther. Targets, 2006, 10(1), 37-50.
[http://dx.doi.org/10.1517/14728222.10.1.37] [PMID: 16441227]
[28]
Qin, M.; Xin, Y.; Bian, Y.; Yang, X.; Xi, T.; Xiong, J. Phosphorylation-induced ubiquitination and degradation of PXR through CDK2-TRIM21 axis. Cells, 2022, 11(2), 264.
[http://dx.doi.org/10.3390/cells11020264] [PMID: 35053380]
[29]
Liu, Q.; Sheng, Z.; Cheng, C.; Zheng, H.; Lanuti, M.; Liu, R.; Wang, P.; Shen, Y.; Xie, Z. Anesthetic propofol promotes tumor metastasis in lungs via GABA A R‐dependent TRIM21 modulation of src expression. Adv. Sci., 2021, 8(18), 2102079.
[http://dx.doi.org/10.1002/advs.202102079] [PMID: 34263559]
[30]
Wan, T.; Li, X.; Li, Y. The role of TRIM family proteins in autophagy, pyroptosis, and diabetes mellitus. Cell Biol. Int., 2021, 45(5), 913-926.
[http://dx.doi.org/10.1002/cbin.11550] [PMID: 33438267]
[31]
Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular Senescence: Aging, cancer, and injury. Physiol. Rev., 2019, 99(2), 1047-1078.
[http://dx.doi.org/10.1152/physrev.00020.2018] [PMID: 30648461]
[32]
Pluquet, O.; Abbadie, C. Cellular senescence and tumor promotion: Role of the unfolded protein response. Adv. Cancer Res., 2021, 150, 285-334.
[http://dx.doi.org/10.1016/bs.acr.2021.01.001] [PMID: 33858599]
[33]
Biswas, K.; Sarkar, S.; Du, K.; Brautigan, D.L.; Abbas, T.; Larner, J.M. The E3 Ligase CHIP Mediates p21 degradation to maintain radioresistance. Mol. Cancer Res., 2017, 15(6), 651-659.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0466] [PMID: 28232384]
[34]
Ullah, K.; Chen, S.; Lu, J.; Wang, X.; Liu, Q.; Zhang, Y.; Long, Y.; Hu, Z.; Xu, G. The E3 ubiquitin ligase STUB1 attenuates cell senescence by promoting the ubiquitination and degradation of the core circadian regulator BMAL1. J. Biol. Chem., 2020, 295(14), 4696-4708.
[http://dx.doi.org/10.1074/jbc.RA119.011280] [PMID: 32041778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy