Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Free Salt Dyeing by Treatment of Cotton Fabric Using Carboxyethyl Chitosan and Synthesized Direct Dyes to Enhance Dyeing Properties and Antibacterial Activity

Author(s): Wafa Abdullah I. Al-Megrin*, Manal F. El-Khadragy, Fatma A. Mohamed and Hassan M. Ibrahim*

Volume 20, Issue 8, 2023

Published on: 23 June, 2023

Page: [910 - 918] Pages: 9

DOI: 10.2174/1570179420666230518142502

Price: $65

Abstract

Aim: The purpose of this paper is to synthesize and characterize two new direct dyes based on chromenes derivatives.

Background: The synthesis of carboxyethyl chitosan (CECS) by the reaction of chitosan and acrylic acid via Michael's addition reaction was conducted. Cotton fabrics were treated with CECS to enhance the exhaustion of dye, fastness properties, and antimicrobial activity of dyed fabric.

Methods: Chitosan (CS) and acrylic acid were combined in Michael’s addition process to successfully produce N-carboxyethylchitosan (CECS). Then, the cotton was treated with different concentrations of carboxyethyl chitosan (0.5–5 wt.%) and then dyed by synthesized mono azo and diazo direct dyes based on chromene derivatives.

Results and Discussion: The results regarding dyeing and antibacterial activity indicated highquality dyeing properties, However, direct dyes showed higher exhaustion and fixation values, fastness properties, and the colorimetric CIE L*a*b* C*h° data of the dyed cotton fabric.

Conclusion: Cotton fabrics treated with carboxyethyl chitosan and dyed with direct dyes were found to have higher antibacterial activity upon a concentration of 2.5 wt.%. In addition, the antibacterial activity towards Gram-positive bacteria was reported to be more than Gram-negative bacteria.

Graphical Abstract

[1]
Kabashin, A.V.; Meunier, M.; Kingston, C.; Luong, J.H.T. Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J. Phys. Chem. B, 2003, 107(19), 4527-4531.
[http://dx.doi.org/10.1021/jp034345q]
[2]
Salama, R.; Osman, H.; Ibrahim, H.M. Preparation of biocompatible chitosan nanoparticles loaded with Aloe vera extract for use as a novel drug delivery mechanism to improve the antibacterial characteristics of cellulose-based fabrics. Egypt. J. Chem., 2022, 65(3), 581-595.
[3]
Mohamed, F.A.; Shaban, E.; Ibrahim, H.M. Synthesis and antibacterial activity of some novel nucleus N-aminorhodanine based bis monofunctional and bifunctional reactive dyes and their application on wool and cotton fabrics. Egypt. J. Chem., 2022, 65(2), 597-608.
[4]
El-Sayed, G.A.; Diaa, M.; Hassabo, A.G. Potential uses of aloe veraextractionin finishing and textile wet Process. J. Text. Color. Polym. Sci., 2021, 18(2), 159-169.
[5]
Mohamed, F.A.; Ibrahim, H.M.; Sheier, M.B.; Reda, M.M. Synthesis, application, and antibacterial activity of new direct dyes based on chromene derivatives. Curr. Org. Synth., 2022, 19(6), 757-766.
[http://dx.doi.org/10.2174/1570179419666211230112409] [PMID: 34967295]
[6]
Ali, M.A.; Bydoon, E.A.; Ibrahim, H.M. Bioactive composite nonwoven surgical dressing based on cellulose coated with nanofiber membrane using the layer-by-layer technique. Egypt. J. Chem., 2022, 65(4), 525-542.
[7]
Sun, I.C.; Na, J.H.; Jeong, S.Y.; Kim, D.E.; Kwon, I.C.; Choi, K.; Ahn, C.H.; Kim, K. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging. Pharm. Res., 2014, 31(6), 1418-1425.
[http://dx.doi.org/10.1007/s11095-013-1142-0] [PMID: 23934255]
[8]
Mostafa, M.; Kandile, N.G.; Mahmoud, M.K.; Ibrahim, H.M. Synthesis and characterization of polystyrene with embedded silver nanoparticle nanofibers to utilize as antibacterial and wound healing biomaterial. Heliyon, 2022, 8(1), e08772.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08772] [PMID: 35118204]
[9]
Farag, S.; Amr, A.; El-Shafei, A.; Asker, M.S.; Ibrahim, H.M. Green synthesis of titanium dioxide nanoparticles via bacterial cellulose (BC) produced from agricultural wastes. Cellulose, 2021, 28(12), 7619-7632.
[http://dx.doi.org/10.1007/s10570-021-04011-5]
[10]
Bakr, M.; Osman, H.; Taha, M.; Ibrahim, H. Novel green printing of cotton, wool and polyester fabrics with natural safflower dye nanoparticles. Egypt. J. Chem., 2021, 0(0), 0.
[http://dx.doi.org/10.21608/ejchem.2021.75163.3695]
[11]
Abou-Okeil, A.; Fahmy, H.M.; Fouda, M.M.G.; Aly, A.A.; Ibrahim, H.M. Hyaluronic acid/oxidized к-carrageenan electrospun nanofibers synthesis and antibacterial properties. Bionanoscience, 2021, 11(3), 687-695.
[http://dx.doi.org/10.1007/s12668-021-00884-9]
[12]
Farag, S.; Ibrahim, H.; Amr, A.; Asker, M.; El-shafie, A. Preparation and characterization of ion exchanger based on bacterial cellulose for heavy metal cation removal. Egypt. J. Chem., 2019, 0(0), 0.
[http://dx.doi.org/10.21608/ejchem.2019.12622.1787]
[13]
Mohamed, F.A.; Abd El-Megied, S.A.; Bashandy, M.S.; Ibrahim, H.M. Synthesis, application and antibacterial activity of new reactive dyes based on thiazole moiety. Pigm. Resin Technol., 2018, 47(3), 246-254.
[http://dx.doi.org/10.1108/PRT-12-2016-0117]
[14]
Mosaad, R.M.; Samir, A.; Ibrahim, H.M. Median lethal dose (LD50) and cytotoxicity of Adriamycin in female albino mice. J. Appl. Pharm. Sci., 2017, 7(3), 77-80.
[15]
dos Santos, D.S., Jr; Goulet, P.J.G.; Pieczonka, N.P.W.; Oliveira, O.N., Jr; Aroca, R.F. Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir, 2004, 20(23), 10273-10277.
[http://dx.doi.org/10.1021/la048328j] [PMID: 15518524]
[16]
Zhang, N.; Xu, X.; Zhang, X.; Qu, D.; Xue, L.; Mo, R.; Zhang, C. Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal–chemotherapy. Int. J. Pharm., 2016, 497(1-2), 210-221.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.032] [PMID: 26608619]
[17]
Ibrahim, H.; El-Zairy, E.M.R.; El-Amir, M.E.; Enas, A.S. Combined antimicrobial finishing dyeing properties of cotton, polyester fabrics and their blends with acid and disperse dyes. Egypt. J. Chem., 2019, 62(5), 965-976.
[18]
Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[19]
Zhao, D.; Yu, S.; Sun, B.; Gao, S.; Guo, S.; Zhao, K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 2018, 10(4), 462.
[http://dx.doi.org/10.3390/polym10040462] [PMID: 30966497]
[20]
Yang, S.; Dong, Q.; Yang, H.; Liu, X.; Gu, S.; Zhou, Y.; Xu, W. N-carboxyethyl chitosan fibers prepared as potential use in tissue engineering. Int. J. Biol. Macromol., 2016, 82, 1018-1022.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.078] [PMID: 26522245]
[21]
Ibrahim, H.; El-Bisi, M.; Taha, G.; El-Alfy, E. Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial. J. Appl. Pharm. Sci., 2015, 5(10), 085-090.
[http://dx.doi.org/10.7324/JAPS.2015.501015]
[22]
Pestov, A.V.; Zhuravlev, N.A.; Yatluk, Y.G. Synthesis in a gel as a new procedure for preparing carboxyethyl chitosan. Russ. J. Appl. Chem., 2007, 80(7), 1154-1159.
[http://dx.doi.org/10.1134/S1070427207070282]
[23]
Ibrahim, H.; Zairy, E. Carboxymethylchitosan nanofibers containing silver nanoparticles: preparation, characterization and antibacterial activity. J. Appl. Pharm. Sci., 2016, 6(7), 043-048.
[http://dx.doi.org/10.7324/JAPS.2016.60706]
[24]
Ibrahim, H.M.; Farid, O.A.; Samir, A.; Mosaad, R.M. Preparation of chitosan antioxidant nanoparticles as drug delivery system for enhancing of anti-cancer drug. Key Eng. Mater., 2018, 759, 92-97.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.759.92]
[25]
El-Bisi, M.K.; Ibrahim, H.M.; Rabie, A.M.; Elnagar, K.; Taha, G.M.; El-Alfy, E.A. Super hydrophobic cotton fabrics via green techniques. Pharma Chem., 2016, 8(19), 57-69.
[26]
Abou-okeil, ; Refaie, R.; Khalil, E.; Mostafa, S.; Ibrahim, H.; Ibrahim, H.M. Fabrication of novel green magnetic electrospun nanofibers based on Fe3O4 nanoparticles/PVA/chitosan/collagen. Egypt. J. Chem., 2022, 0(0), 0.
[http://dx.doi.org/10.21608/ejchem.2022.109235.4980]
[27]
Ibrahim, H.M.; Zaghloul, S.; Hashem, M.; El-Shafei, A. A green approach to improve the antibacterial properties of cellulose based fabrics using Moringa oleifera extract in presence of silver nanoparticles. Cellulose, 2021, 28(1), 549-564.
[http://dx.doi.org/10.1007/s10570-020-03518-7]
[28]
Huang, J.; Xie, H.; Ye, H.; Xie, T.; Lin, Y.; Gong, J.; Jiang, C.; Wu, Y.; Liu, S.; Cui, Y.; Mao, J.; Mei, L. Effect of carboxyethylation degree on the adsorption capacity of Cu(II) by N -(2-carboxyethyl)chitosan from squid pens. Carbohydr. Polym., 2016, 138, 301-308.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.037] [PMID: 26794766]
[29]
Xu, Q.; Mao, C.; Liu, N.N.; Zhu, J.J.; Sheng, J. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite. Biosens. Bioelectron., 2006, 22(5), 768-773.
[http://dx.doi.org/10.1016/j.bios.2006.02.010] [PMID: 16600589]
[30]
Ibrahim, H.M.; Aly, A.A.; Taha, G.M.; El-Alfy, E.A. Production of antibacterial cotton fabrics via green treatment with nontoxic natural biopolymer gelatin. Egypt. J. Chem., 2020, 63, 655-696.
[31]
Ibrahim, H.; Emam, E.A.M.; Tawfik, T.M.; El-Aref, A.T. Preparation of cotton gauze coated with carboxymethyl chitosan and its utilization for water filtration. J. Text. Appar. Technol. Manag., 2019, 11(1)
[32]
Ibrahim, H.M.; Mostafa, M.; Kandile, N.G. Potential use of N-carboxyethylchitosan in biomedical applications: Preparation, characterization, biological properties. Int. J. Biol. Macromol., 2020, 149, 664-671.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.299] [PMID: 32014481]
[33]
Najafzadeh, N.; Habibi, S.; Ghasri, M.A. Dyeing of polyester with reactive dyestuffs using nano-chitosan. J. Eng. Fibers Fabrics, 2018, 13(2)
[http://dx.doi.org/10.1177/155892501801300207]
[34]
Shahin, A.; Mahmoud, S.; El-Hennawi, H.; Zaher, A. Enhancement of dyeability and antibacterial characteristics of silk fabrics using chitosan nano-particles. Egypt. J. Chem., 2020, 63(9), 3199-3208.
[35]
LeBel, M. Ciprofloxacin: Chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy, 1988, 8(1), 3-30.
[http://dx.doi.org/10.1002/j.1875-9114.1988.tb04058.x] [PMID: 2836821]
[36]
Shen, L.L.; Pernet, A.G. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proc. Natl. Acad. Sci., 1985, 82(2), 307-311.
[http://dx.doi.org/10.1073/pnas.82.2.307] [PMID: 2982149]
[37]
Cai, Z.; Song, Z.; Yang, C.; Shang, S.; Yin, Y. Synthesis, characterization and antibacterial activity of quaternized N,O-(2-carboxyethyl) chitosan. Polym. Bull., 2009, 62(4), 445-456.
[http://dx.doi.org/10.1007/s00289-008-0004-0]
[38]
Cai, Z.S.; Song, Z.Q.; Yang, C.S.; Shang, S.B.; Yin, Y.B. Synthesis of 2-hydroxypropyl dimethylbenzylammonium N,O -(2-carboxyethyl) chitosan chloride and its antibacterial activity. J. Appl. Polym. Sci., 2009, 111(6), 3010-3015.
[http://dx.doi.org/10.1002/app.29314]
[39]
Huang, J.; Xie, H.; Hu, S.; Xie, T.; Gong, J.; Jiang, C.; Ge, Q.; Wu, Y.; Liu, S.; Cui, Y.; Mao, J.; Mei, L. Preparation, characterization, and biochemical activities of N-(2-Carboxyethyl)chitosan from squid pens. J. Agric. Food Chem., 2015, 63(9), 2464-2471.
[http://dx.doi.org/10.1021/jf505581n] [PMID: 25688444]
[40]
Pan, Y.; Luo, X.; Zhu, A.; Dai, S. Synthesis and physicochemical properties of biocompatible N-carboxyethylchitosan. J. Biomater. Sci. Polym. Ed., 2009, 20(7-8), 981-992.
[http://dx.doi.org/10.1163/156856209X444385] [PMID: 19454164]
[41]
Hu, H.; Yu, L.; Tan, S.; Tu, K.; Wang, L.Q. Novel complex hydrogels based on N-carboxyethyl chitosan and quaternized chitosan and their controlled in vitro protein release property. Carbohydr. Res., 2010, 345(4), 462-468.
[http://dx.doi.org/10.1016/j.carres.2009.11.029] [PMID: 20096400]
[42]
Qu, J.; Zhao, X.; Ma, P.X.; Guo, B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater., 2017, 58, 168-180.
[http://dx.doi.org/10.1016/j.actbio.2017.06.001] [PMID: 28583902]
[43]
Ali, N.F.; El-Khatib, E.M.; El-Mohamedy, R.S.S.; Ramadan, M.A. Antimicrobial activity of silk fabrics dyed with saffron dye using microwave heating. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(10), 140-146.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy