Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

Sarcopenia: Pathophysiology and Treatment Strategies

Author(s): Chaoming Qiu, Xifei Yang and Pei Yu*

Volume 24, Issue 1, 2024

Published on: 31 July, 2023

Page: [31 - 38] Pages: 8

DOI: 10.2174/1871530323666230518105408

Price: $65

conference banner
Abstract

Sarcopenia is becoming prevalent in older or inactive patients, which is placing a heavy burden on the social health system. Studies on the pathogenesis of sarcopenia mainly focus on adipose tissue, myoglobin autophagy, and mitochondrial dysfunction. Up to now, non-drug treatment has been the main way to treat sarcopenia, and there are no drugs specially approved for the treatment of sarcopenia. Here, the pathophysiology and treatment methods of sarcopenia have been summarized, and new drugs for sarcopenia to be researched and developed in the future have been prospected.

Graphical Abstract

[1]
Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; Schneider, S.M.; Sieber, C.C.; Topinkova, E.; Vandewoude, M.; Visser, M.; Zamboni, M.; Bautmans, I.; Baeyens, J-P.; Cesari, M.; Cherubini, A.; Kanis, J.; Maggio, M.; Martin, F.; Michel, J-P.; Pitkala, K.; Reginster, J-Y.; Rizzoli, R.; Sánchez-Rodríguez, D.; Schols, J. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing, 2019, 48(1), 16-31.
[http://dx.doi.org/10.1093/ageing/afy169] [PMID: 30312372]
[2]
Wiedmer, P.; Jung, T.; Castro, J.P.; Pomatto, L.C.D.; Sun, P.Y.; Davies, K.J.A.; Grune, T. Sarcopenia – Molecular mechanisms and open questions. Ageing Res. Rev., 2021, 65101200.
[http://dx.doi.org/10.1016/j.arr.2020.101200] [PMID: 33130247]
[3]
Rong, S.; Wang, L.; Peng, Z.; Liao, Y.; Li, D.; Yang, X.; Nuessler, A.K.; Liu, L.; Bao, W.; Yang, W. The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future? J. Cachexia Sarcopenia Muscle, 2020, 11(2), 348-365.
[http://dx.doi.org/10.1002/jcsm.12536] [PMID: 31989804]
[4]
Zamboni, M.; Rubele, S.; Rossi, A.P. Sarcopenia and obesity. Curr. Opin. Clin. Nutr. Metab. Care, 2019, 22(1), 13-19.
[http://dx.doi.org/10.1097/MCO.0000000000000519] [PMID: 30461451]
[5]
Dhillon, R.J.S.; Hasni, S. Pathogenesis and management of sarcopenia. Clin. Geriatr. Med., 2017, 33(1), 17-26.
[http://dx.doi.org/10.1016/j.cger.2016.08.002] [PMID: 27886695]
[6]
Carnio, S.; LoVerso, F.; Baraibar, M.A.; Longa, E.; Khan, M.M.; Maffei, M.; Reischl, M.; Canepari, M.; Loefler, S.; Kern, H.; Blaauw, B.; Friguet, B.; Bottinelli, R.; Rudolf, R.; Sandri, M. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep., 2014, 8(5), 1509-1521.
[http://dx.doi.org/10.1016/j.celrep.2014.07.061] [PMID: 25176656]
[7]
Mankhong, S.; Kim, S.; Moon, S.; Kwak, H.B.; Park, D.H.; Kang, J.H. Experimental models of sarcopenia: Bridging molecular mechanism and therapeutic strategy. Cells, 2020, 9(6), 1385.
[http://dx.doi.org/10.3390/cells9061385] [PMID: 32498474]
[8]
Leiter, J.R.S.; Peeler, J.; Anderson, J.E. Exercise-induced muscle growth is muscle-specific and age-dependent. Muscle Nerve, 2011, 43(6), 828-838.
[http://dx.doi.org/10.1002/mus.21965] [PMID: 21607967]
[9]
Ferrucci, L.; Penninx, B.W.J.H.; Volpato, S.; Harris, T.B.; Bandeen-Roche, K.; Balfour, J.; Leveille, S.G.; Fried, L.P.; Md, J.M.G. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J. Am. Geriatr. Soc., 2002, 50(12), 1947-1954.
[http://dx.doi.org/10.1046/j.1532-5415.2002.50605.x] [PMID: 12473005]
[10]
Schaap, L.A.; Pluijm, S.M.F.; Deeg, D.J.H.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Colbert, L.H.; Pahor, M.; Rubin, S.M.; Tylavsky, F.A.; Visser, M. Higher inflammatory marker levels in older persons: Associations with 5-year change in muscle mass and muscle strength. J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64A(11), 1183-1189.
[http://dx.doi.org/10.1093/gerona/glp097] [PMID: 19622801]
[11]
Boirie, Y.; Gachon, P.; Cordat, N.; Ritz, P.; Beaufrère, B. Differential insulin sensitivities of glucose, amino acid, and albumin metabolism in elderly men and women. J. Clin. Endocrinol. Metab., 2001, 86(2), 638-644.
[http://dx.doi.org/10.1210/jcem.86.2.7193] [PMID: 11158022]
[12]
Guillet, C.; Delcourt, I.; Rance, M.; Giraudet, C.; Walrand, S.; Bedu, M.; Duche, P.; Boirie, Y. Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J. Clin. Endocrinol. Metab., 2009, 94(8), 3044-3050.
[http://dx.doi.org/10.1210/jc.2008-2216] [PMID: 19470633]
[13]
Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care, 2008, 11(6), 693-700.
[http://dx.doi.org/10.1097/MCO.0b013e328312c37d] [PMID: 18827572]
[14]
Pieńkowska, J.; Brzeska, B.; Kaszubowski, M.; Kozak, O.; Jankowska, A.; Szurowska, E. MRI assessment of ectopic fat accumulation in pancreas, liver and skeletal muscle in patients with obesity, overweight and normal BMI in correlation with the presence of central obesity and metabolic syndrome. Diabetes Metab. Syndr. Obes., 2019, 12, 623-636.
[http://dx.doi.org/10.2147/DMSO.S194690] [PMID: 31118724]
[15]
Ritter, O.; Jelenik, T.; Roden, M. Lipid-mediated muscle insulin resistance: Different fat, different pathways? J. Mol. Med., 2015, 93(8), 831-843.
[http://dx.doi.org/10.1007/s00109-015-1310-2] [PMID: 26108617]
[16]
Tardif, N.; Salles, J.; Guillet, C.; Tordjman, J.; Reggio, S.; Landrier, J.F.; Giraudet, C.; Patrac, V.; Bertrand-Michel, J.; Migne, C.; Collin, M.L.; Chardigny, J.M.; Boirie, Y.; Walrand, S. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through e IF 2α activation. Aging Cell, 2014, 13(6), 1001-1011.
[http://dx.doi.org/10.1111/acel.12263] [PMID: 25139155]
[17]
Lim, S.; Kim, J.H.; Yoon, J.W.; Kang, S.M.; Choi, S.H.; Park, Y.J.; Kim, K.W.; Lim, J.Y.; Park, K.S.; Jang, H.C. Sarcopenic obesity: Prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care, 2010, 33(7), 1652-1654.
[http://dx.doi.org/10.2337/dc10-0107] [PMID: 20460442]
[18]
Capel, F.; Pinel, A.; Walrand, S. Accumulation of intramuscular toxic lipids, a link between fat mass accumulation and sarcopenia. OCL Oilseeds Fats Crops Lipids, 2019, 26, 24.
[http://dx.doi.org/10.1051/ocl/2019023]
[19]
Schmitz-Peiffer, C.; Craig, D.L.; Biden, T.J. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem., 1999, 274(34), 24202-24210.
[http://dx.doi.org/10.1074/jbc.274.34.24202] [PMID: 10446195]
[20]
Blackburn, M.L.; Ono-Moore, K.D.; Sobhi, H.F.; Adams, S.H. Carnitine palmitoyltransferase 2 knockout potentiates palmitate-induced insulin resistance in C2C12 myotubes. Am. J. Physiol. Endocrinol. Metab., 2020, 319(2), E265-E275.
[http://dx.doi.org/10.1152/ajpendo.00515.2019] [PMID: 32459525]
[21]
De Larichaudy, J.; Zufferli, A.; Serra, F.; Isidori, A.M.; Naro, F.; Dessalle, K.; Desgeorges, M.; Piraud, M.; Cheillan, D.; Vidal, H.; Lefai, E.; Némoz, G. TNF-α- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet. Muscle, 2012, 2(1), 2.
[http://dx.doi.org/10.1186/2044-5040-2-2] [PMID: 22257771]
[22]
Olsvik, H.L.; Svenning, S.; Abudu, Y.P.; Brech, A.; Stenmark, H.; Johansen, T.; Mejlvang, J. Endosomal microautophagy is an integrated part of the autophagic response to amino acid starvation. Autophagy, 2019, 15(1), 182-183.
[http://dx.doi.org/10.1080/15548627.2018.1532265] [PMID: 30295124]
[23]
García-Prat, L.; Muñoz-Cánoves, P.; Martinez-Vicente, M. Dysfunctional autophagy is a driver of muscle stem cell functional decline with aging. Autophagy, 2016, 12(3), 612-613.
[http://dx.doi.org/10.1080/15548627.2016.1143211] [PMID: 26890313]
[24]
Tantai, X.; Liu, Y.; Yeo, Y.H.; Praktiknjo, M.; Mauro, E.; Hamaguchi, Y.; Engelmann, C.; Zhang, P.; Jeong, J.Y.; van Vugt, J.L.A.; Xiao, H.; Deng, H.; Gao, X.; Ye, Q.; Zhang, J.; Yang, L.; Cai, Y.; Liu, Y.; Liu, N.; Li, Z.; Han, T.; Kaido, T.; Sohn, J.H.; Strassburg, C.; Berg, T.; Trebicka, J.; Hsu, Y.C.; IJzermans, J.N.M.; Wang, J.; Su, G.L.; Ji, F.; Nguyen, M.H. Effect of sarcopenia on survival in patients with cirrhosis: A meta-analysis. J. Hepatol., 2022, 76(3), 588-599.
[http://dx.doi.org/10.1016/j.jhep.2021.11.006] [PMID: 34785325]
[25]
Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging, 2019, 11(8), 2217-2240.
[http://dx.doi.org/10.18632/aging.101910] [PMID: 30988232]
[26]
Chen, Y.; Zhao, X.; Li, J.; Zhang, L.; Li, R.; Zhang, H.; Liao, R.; Liu, S.; Shi, W.; Liang, X. Amino acid starvation promotes podocyte autophagy through mammalian target of rapamycin inhibition and transcription factor EB activation. Mol. Med. Rep., 2018, 18(5), 4342-4348.
[http://dx.doi.org/10.3892/mmr.2018.9438] [PMID: 30221708]
[27]
Viña, J.; Gomez-Cabrera, M.C.; Borras, C.; Froio, T.; Sanchis-Gomar, F.; Martinez-Bello, V.E.; Pallardo, F.V. Mitochondrial biogenesis in exercise and in ageing. Adv. Drug Deliv. Rev., 2009, 61(14), 1369-1374.
[http://dx.doi.org/10.1016/j.addr.2009.06.006] [PMID: 19716394]
[28]
Davies, K.J.A.; Quintanilha, A.T.; Brooks, G.A.; Packer, L. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun., 1982, 107(4), 1198-1205.
[http://dx.doi.org/10.1016/S0006-291X(82)80124-1] [PMID: 6291524]
[29]
Kwon, Y.N.; Yoon, S.S. Sarcopenia: Neurological point of view. J. Bone Metab., 2017, 24(2), 83-89.
[http://dx.doi.org/10.11005/jbm.2017.24.2.83] [PMID: 28642851]
[30]
Matthews, V.B.; Åström, M.B.; Chan, M.H.S.; Bruce, C.R.; Krabbe, K.S.; Prelovsek, O.; Åkerström, T.; Yfanti, C.; Broholm, C.; Mortensen, O.H.; Penkowa, M.; Hojman, P.; Zankari, A.; Watt, M.J.; Bruunsgaard, H.; Pedersen, B.K.; Febbraio, M.A. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia, 2009, 52(7), 1409-1418.
[http://dx.doi.org/10.1007/s00125-009-1364-1] [PMID: 19387610]
[31]
Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet, 2019, 393(10191), 2636-2646.
[http://dx.doi.org/10.1016/S0140-6736(19)31138-9] [PMID: 31171417]
[32]
Kim, H.K.; Suzuki, T.; Saito, K.; Yoshida, H.; Kobayashi, H.; Kato, H.; Katayama, M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc., 2012, 60(1), 16-23.
[http://dx.doi.org/10.1111/j.1532-5415.2011.03776.x] [PMID: 22142410]
[33]
Kim, H.; Suzuki, T.; Saito, K.; Yoshida, H.; Kojima, N.; Kim, M.; Sudo, M.; Yamashiro, Y.; Tokimitsu, I. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. Geriatr. Gerontol. Int., 2013, 13(2), 458-465.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00923.x] [PMID: 22935006]
[34]
Liao, C.D.; Tsauo, J.Y.; Wu, Y.T.; Cheng, C.P.; Chen, H.C.; Huang, Y.C.; Chen, H.C.; Liou, T.H. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr., 2017, 106(4), 1078-1091.
[http://dx.doi.org/10.3945/ajcn.116.143594] [PMID: 28814401]
[35]
Bernabei, R.; Mariotti, L.; Bordes, P.; Roubenoff, R. The “Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies” (SPRINTT) project: Advancing the care of physically frail and sarcopenic older people. Aging Clin. Exp. Res., 2017, 29(1), 1-2.
[http://dx.doi.org/10.1007/s40520-016-0707-2] [PMID: 28144913]
[36]
Marzetti, E.; Cesari, M.; Calvani, R.; Msihid, J.; Tosato, M.; Rodriguez-Mañas, L.; Lattanzio, F.; Cherubini, A.; Bejuit, R.; Di Bari, M.; Maggio, M.; Vellas, B.; Dantoine, T.; Cruz-Jentoft, A.J.; Sieber, C.C.; Freiberger, E.; Skalska, A.; Grodzicki, T.; Sinclair, A.J.; Topinkova, E.; Rýznarová, I.; Strandberg, T.; Schols, A.M.W.J.; Schols, J.M.G.A.; Roller-Wirnsberger, R.; Jónsson, P.V.; Ramel, A.; Del Signore, S.; Pahor, M.; Roubenoff, R.; Bernabei, R.; Landi, F. The “Sarcopenia and Physical fRailty IN older people: Multi-componenT Treatment strategies” (SPRINTT) randomized controlled trial: Case finding, screening and characteristics of eligible participants. Exp. Gerontol., 2018, 113, 48-57.
[http://dx.doi.org/10.1016/j.exger.2018.09.017] [PMID: 30261246]
[37]
Landi, F.; Cesari, M.; Calvani, R.; Cherubini, A.; Di Bari, M.; Bejuit, R.; Mshid, J.; Andrieu, S.; Sinclair, A.J.; Sieber, C.C.; Vellas, B.; Topinkova, E.; Strandberg, T.; Rodriguez-Manas, L.; Lattanzio, F.; Pahor, M.; Roubenoff, R.; Cruz-Jentoft, A.J.; Bernabei, R.; Marzetti, E. The “Sarcopenia and Physical fRailty IN older people: Multi-component treatment strategies” (SPRINTT) randomized controlled trial: Design and methods. Aging Clin. Exp. Res., 2017, 29(1), 89-100.
[http://dx.doi.org/10.1007/s40520-016-0715-2] [PMID: 28144914]
[38]
Jyväkorpi, S.K.; Ramel, A.; Strandberg, T.E.; Piotrowicz, K.; Błaszczyk-Bębenek, E.; Urtamo, A.; Rempe, H.M.; Geirsdóttir, Ó.; Vágnerová, T.; Billot, M.; Larreur, A.; Savera, G.; Soriano, G.; Picauron, C.; Tagliaferri, S.; Sanchez-Puelles, C.; Cadenas, V.S.; Perl, A.; Tirrel, L.; Öhman, H.; Weling-Scheepers, C.; Ambrosi, S.; Costantini, A.; Pavelková, K.; Klimkova, M.; Freiberger, E.; Jonsson, P.V.; Marzetti, E.; Pitkälä, K.H.; Landi, F.; Calvani, R. The sarcopenia and physical frailty in older people: multi-component treatment strategies (SPRINTT) project: Description and feasibility of a nutrition intervention in community-dwelling older Europeans. Eur. Geriatr. Med., 2021, 12(2), 303-312.
[http://dx.doi.org/10.1007/s41999-020-00438-4] [PMID: 33583000]
[39]
Rogeri, P.S.; Zanella, R., Jr; Martins, G.L.; Garcia, M.D.A.; Leite, G.; Lugaresi, R.; Gasparini, S.O.; Sperandio, G.A.; Ferreira, L.H.B.; Souza-Junior, T.P.; Lancha, A.H., Jr Strategies to prevent sarcopenia in the aging process: Role of protein intake and exercise. Nutrients, 2021, 14(1), 52.
[http://dx.doi.org/10.3390/nu14010052] [PMID: 35010928]
[40]
Shin, J.E.; Park, S.J.; Ahn, S.I.; Choung, S.Y. Soluble whey protein hydrolysate ameliorates muscle atrophy induced by immobilization via regulating the PI3K/Akt pathway in C57BL/6 mice. Nutrients, 2020, 12(11), 3362.
[http://dx.doi.org/10.3390/nu12113362] [PMID: 33139592]
[41]
Zhao, F.; Yu, Y.; Liu, W.; Zhang, J.; Liu, X.; Liu, L.; Yin, H. Small molecular weight soybean protein-derived peptides nutriment attenuates rat burn injury-induced muscle atrophy by modulation of ubiquitin–proteasome system and autophagy signaling pathway. J. Agric. Food Chem., 2018, 66(11), 2724-2734.
[http://dx.doi.org/10.1021/acs.jafc.7b05387] [PMID: 29493231]
[42]
Oktaviana, J.; Zanker, J.; Vogrin, S.; Duque, G. The effect of β-hydroxy-β-methylbutyrate (HMB) on sarcopenia and functional frailty in older persons: A systematic review. J. Nutr. Health Aging, 2019, 23(2), 145-150.
[http://dx.doi.org/10.1007/s12603-018-1153-y] [PMID: 30697623]
[43]
Wu, S.H.; Chen, K.L.; Hsu, C.; Chen, H.C.; Chen, J.Y.; Yu, S.Y.; Shiu, Y.J. Creatine supplementation for muscle growth: A scoping review of randomized clinical trials from 2012 to 2021. Nutrients, 2022, 14(6), 1255.
[http://dx.doi.org/10.3390/nu14061255] [PMID: 35334912]
[44]
Huang, Y.H.; Chiu, W.C.; Hsu, Y.P.; Lo, Y.L.; Wang, Y.H. Effects of omega-3 fatty acids on muscle mass, muscle strength and muscle performance among the elderly: A meta-analysis. Nutrients, 2020, 12(12), 3739.
[http://dx.doi.org/10.3390/nu12123739] [PMID: 33291698]
[45]
Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients, 2020, 12(9), 2555.
[http://dx.doi.org/10.3390/nu12092555] [PMID: 32846900]
[46]
Tsukamoto-Sen, S.; Kawakami, S.; Maruki-Uchida, H.; Ito, R.; Matsui, N.; Komiya, Y.; Mita, Y.; Morisasa, M.; Goto-Inoue, N.; Furuichi, Y.; Manabe, Y.; Morita, M.; Fujii, N.L. Effect of antioxidant supplementation on skeletal muscle and metabolic profile in aging mice. Food Funct., 2021, 12(2), 825-833.
[http://dx.doi.org/10.1039/D0FO02051F] [PMID: 33399617]
[47]
Romani, M.; Berger, M.M.; D’Amelio, P. From the bench to the bedside: Branched amino acid and micronutrient strategies to improve mitochondrial dysfunction leading to sarcopenia. Nutrients, 2022, 14(3), 483.
[http://dx.doi.org/10.3390/nu14030483] [PMID: 35276842]
[48]
Caballero-García, A.; Pascual-Fernández, J.; Noriega-González, D.C.; Bello, H.J.; Pons-Biescas, A.; Roche, E.; Córdova-Martínez, A. L-citrulline supplementation and exercise in the management of sarcopenia. Nutrients, 2021, 13(9), 3133.
[http://dx.doi.org/10.3390/nu13093133] [PMID: 34579009]
[49]
Dai, M.; Lin, T.; Yue, J.; Dai, L. Signatures and clinical significance of amino acid flux in sarcopenia: A systematic review and meta-analysis. Front. Endocrinol., 2021, 12725518.
[http://dx.doi.org/10.3389/fendo.2021.725518] [PMID: 34589057]
[50]
Gielen, E.; Beckwée, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I.; Bautmans, I.; Beaudart, C.; Beckwée, D.; Beyer, I.; Bruyère, O.; De Breucker, S.; De Cock, A-M.; Delaere, A.; de Saint-Hubert, M.; De Spiegeleer, A.; Gielen, E.; Perkisas, S.; Vandewoude, M. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: An umbrella review of systematic reviews and meta-analyses. Nutr. Rev., 2021, 79(2), 121-147.
[http://dx.doi.org/10.1093/nutrit/nuaa011] [PMID: 32483625]
[51]
Yoshimura, Y.; Wakabayashi, H.; Yamada, M.; Kim, H.; Harada, A.; Arai, H. Interventions for treating sarcopenia: A systematic review and meta-analysis of randomized controlled studies. J. Am. Med. Dir. Assoc., 2017, 18(6), 553.e1-553.e16.
[http://dx.doi.org/10.1016/j.jamda.2017.03.019] [PMID: 28549707]
[52]
Varma, K.; Amalraj, A.; Divya, C.; Gopi, S. The efficacy of the novel bioavailable curcumin (cureit) in the management of sarcopenia in healthy elderly subjects: A randomized, placebo-controlled, double-blind clinical study. J. Med. Food, 2021, 24(1), 40-49.
[http://dx.doi.org/10.1089/jmf.2020.4778] [PMID: 33290142]
[53]
Vinel, C.; Lukjanenko, L.; Batut, A.; Deleruyelle, S.; Pradère, J.P.; Le Gonidec, S.; Dortignac, A.; Geoffre, N.; Pereira, O.; Karaz, S.; Lee, U.; Camus, M.; Chaoui, K.; Mouisel, E.; Bigot, A.; Mouly, V.; Vigneau, M.; Pagano, A.F.; Chopard, A.; Pillard, F.; Guyonnet, S.; Cesari, M.; Burlet-Schiltz, O.; Pahor, M.; Feige, J.N.; Vellas, B.; Valet, P.; Dray, C. The exerkine apelin reverses age-associated sarcopenia. Nat. Med., 2018, 24(9), 1360-1371.
[http://dx.doi.org/10.1038/s41591-018-0131-6] [PMID: 30061698]
[54]
Kim, C.; Hwang, J.K. The 5,7-dimethoxyflavone suppresses sarcopenia by regulating protein turnover and mitochondria biogenesis-related pathways. Nutrients, 2020, 12(4), 1079.
[http://dx.doi.org/10.3390/nu12041079] [PMID: 32295051]
[55]
Lee, J.H.; Jeon, J.H.; Lee, M.J. Docosahexaenoic acid, a potential treatment for sarcopenia, modulates the ubiquitin–proteasome and the autophagy–lysosome systems. Nutrients, 2020, 12(9), 2597.
[http://dx.doi.org/10.3390/nu12092597] [PMID: 32859116]
[56]
Lee, C.; Jeong, H.; Lee, H.; Hong, M.; Park, S.; Bae, H. Magnolol attenuates cisplatin-induced muscle wasting by m2c macrophage activation. Front. Immunol., 2020, 11, 77.
[http://dx.doi.org/10.3389/fimmu.2020.00077] [PMID: 32117241]
[57]
Kim, J.E.; Kwon, E.Y.; Han, Y. Allulose Attenuated Age-Associated Sarcopenia via Regulating IGF-1 and myostatin in aged mice. Mol. Nutr. Food Res., 2022, 66(1), 2100549.
[http://dx.doi.org/10.1002/mnfr.202100549] [PMID: 34710274]
[58]
Stacchiotti, A.; Favero, G.; Rodella, L.F. Impact of melatonin on skeletal muscle and exercise. Cells, 2020, 9(2), 288.
[http://dx.doi.org/10.3390/cells9020288] [PMID: 31991655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy