Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Identification of Secretory Proteins in Sus scrofa Using Machine Learning Method

Author(s): Zhao-Yue Zhang*, Xiao-Wei Liu, Cai-Yi Ma and Yun Wu*

Volume 18, Issue 10, 2023

Published on: 20 September, 2023

Page: [783 - 791] Pages: 9

DOI: 10.2174/1574893618666230516144641

Price: $65

Abstract

Background: The expression of secretory proteins is involved in each stage of biomass from fetal development to the immune response. As an animal model for the study of human diseases, the study of protein secretion in pigs has strong application prospects.

Objective: Although secretory proteins play an important role in cell activities, there are no machine learning-based approaches for the prediction of pig secretory proteins. This study aims to establish a prediction model for identifying the secretory protein in Sus scrofa.

Methods: Based on the pseudo composition of k-spaced amino acid pairs feature encoding method and support vector machine algorithm, a prediction model was established for the identification of the secretory protein in Sus scrofa.

Results: The model produced the AUROC of 0.885 and 0.728 on the training set and independent testing set, respectively. In addition, we discussed features used for the prediction.

Conclusion: In this study, we proposed the first classification model to identify secretory proteins in Sus scrofa. By learning the characteristic of secretory proteins, it may become feasible to design and produce secretory proteins with distinctive properties that are currently unavailable.

Next »
Graphical Abstract

[1]
Raza SS, Hara H, Cleveland DC, Cooper DKC. The potential of genetically engineered pig heart transplantation in infants with complex congenital heart disease. Pediatr Transplant 2022; 26(5): e14260.
[http://dx.doi.org/10.1111/petr.14260] [PMID: 35233893]
[2]
Witt J, Mertsch S, Borrelli M, et al. Decellularised conjunctiva for ocular surface reconstruction. Acta Biomater 2018; 67: 259-69.
[http://dx.doi.org/10.1016/j.actbio.2017.11.054] [PMID: 29225150]
[3]
Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: A model for human infectious diseases. Trends Microbiol 2012; 20(1): 50-7.
[http://dx.doi.org/10.1016/j.tim.2011.11.002] [PMID: 22153753]
[4]
Zhang Y, Liu T, Hu X, et al. CellCall: Integrating paired ligand–receptor and transcription factor activities for cell–cell communication. Nucleic Acids Res 2021; 49(15): 8520-34.
[http://dx.doi.org/10.1093/nar/gkab638] [PMID: 34331449]
[5]
Zhang Y, Liu T, Wang J, et al. Cellinker: A platform of ligand–receptor interactions for intercellular communication analysis. Bioinformatics 2021; 37(14): 2025-32.
[http://dx.doi.org/10.1093/bioinformatics/btab036] [PMID: 33471060]
[6]
Ao C, Yu L, Zou Q. Prediction of bio-sequence modifications and the associations with diseases. Brief Funct Genomics 2021; 20(1): 1-18.
[http://dx.doi.org/10.1093/bfgp/elaa023] [PMID: 33313647]
[7]
Farooq M, Khan AW, Kim MS, Choi S. The role of fibroblast growth factor (FGF) signaling in tissue repair and regeneration. Cells 2021; 10(11): 3242.
[http://dx.doi.org/10.3390/cells10113242] [PMID: 34831463]
[8]
Miguéns-Gómez A, Casanova-Martí À, Blay MT, et al. Glucagon-like peptide-1 regulation by food proteins and protein hydrolysates. Nutr Res Rev 2021; 34(2): 259-75.
[http://dx.doi.org/10.1017/S0954422421000019] [PMID: 33461642]
[9]
Misu H, Takamura T, Takayama H, et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 2010; 12(5): 483-95.
[http://dx.doi.org/10.1016/j.cmet.2010.09.015] [PMID: 21035759]
[10]
Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol 2021; 27(30): 5047-59.
[http://dx.doi.org/10.3748/wjg.v27.i30.5047] [PMID: 34497434]
[11]
Ning L, Abagna HB, Jiang Q, Liu S, Huang J. Development and application of therapeutic antibodies against COVID-19. Int J Biol Sci 2021; 17(6): 1486-96.
[http://dx.doi.org/10.7150/ijbs.59149] [PMID: 33907512]
[12]
Ning L, Liu M, Gou Y, Yang Y, He B, Huang J. Development and application of ribonucleic acid therapy strategies against COVID-19. Int J Biol Sci 2022; 18(13): 5070-85.
[http://dx.doi.org/10.7150/ijbs.72706] [PMID: 35982905]
[13]
Peng J, Tang Y, Huang Y. Gut health: The results of microbial and mucosal immune interactions in pigs. Anim Nutr 2021; 7(2): 282-94.
[http://dx.doi.org/10.1016/j.aninu.2021.01.001] [PMID: 34258416]
[14]
Manoury B, Maisonneuve L, Podsypanina K. The role of endoplasmic reticulum stress in the MHC class I antigen presentation pathway of dendritic cells. Mol Immunol 2022; 144: 44-8.
[http://dx.doi.org/10.1016/j.molimm.2022.02.007] [PMID: 35184022]
[15]
Botía-Sánchez M, Alarcón-Riquelme ME, Galicia G. B cells and microbiota in autoimmunity. Int J Mol Sci 2021; 22(9): 4846.
[http://dx.doi.org/10.3390/ijms22094846] [PMID: 34063669]
[16]
Tarique M, Saini C, Naz H, Naqvi RA, Khan FI, Sharma A. Fate of T cells and their secretory proteins during the progression of leprosy. Curr Protein Pept Sci 2018; 19(9): 889-99.
[http://dx.doi.org/10.2174/1389203718666170829120729] [PMID: 28847289]
[17]
Gaikwad AS, Hu J, Chapple DG, O’Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26(5): 689-723.
[http://dx.doi.org/10.1093/humupd/dmaa016] [PMID: 32378701]
[18]
Novak S, Treacy BK, Almeida FRCL, et al. Regulation of IGF-I and porcine oviductal secretory protein (pOSP) secretion into the pig oviduct in the peri-ovulatory period, and effects of previous nutrition. Reprod Nutr Dev 2002; 42(4): 355-72.
[http://dx.doi.org/10.1051/rnd:2002031] [PMID: 12510876]
[19]
Baumbach G, Bartley N, Kattesh H, Godkin J. Immunolocalization and endocytosis of the uterine secretory protein, uteroferrin, in pre-implantation pig trophectoderm on day 11 of pregnancy. Anat Embryol 1990; 182(6): 563-8.
[http://dx.doi.org/10.1007/BF00186463] [PMID: 2075914]
[20]
Ren L, Xu Y, Ning L, et al. TCM2COVID: A resource of anti-COVID‐19 traditional Chinese medicine with effects and mechanisms. iMeta 2022; 1(4): e42.
[http://dx.doi.org/10.1002/imt2.42] [PMID: 36245702]
[21]
Zhai J, Insel M, Addison KJ, et al. Club cell secretory protein deficiency leads to altered lung function. Am J Respir Crit Care Med 2019; 199(3): 302-12.
[http://dx.doi.org/10.1164/rccm.201807-1345OC] [PMID: 30543455]
[22]
Schirinzi A, Cazzolla AP, Lovero R, et al. New insights in laboratory testing for covid-19 patients: looking for the role and predictive value of Human epididymis secretory protein 4 (HE4) and the innate immunity of the oral cavity and respiratory tract. Microorganisms 2020; 8(11): 1718.
[http://dx.doi.org/10.3390/microorganisms8111718] [PMID: 33147871]
[23]
Zhao X, Wang H, Li H, Wu Y, Wang G. Identifying plant pentatricopeptide repeat proteins using a variable selection method. Front Plant Sci 2021; 12: 506681.
[http://dx.doi.org/10.3389/fpls.2021.506681] [PMID: 33732270]
[24]
Nguyen N, Nute M, Mirarab S, Warnow T. HIPPI: Highly accurate protein family classification with ensembles of HMMs. BMC Genomics 2016; 17(S10): 765.
[http://dx.doi.org/10.1186/s12864-016-3097-0] [PMID: 28185571]
[25]
Russo ET, Barone F, Bateman A, Cozzini S, Punta M, Laio A. DPCfam: Unsupervised protein family classification by Density Peak Clustering of large sequence datasets. PLOS Comput Biol 2022; 18(10): e1010610.
[http://dx.doi.org/10.1371/journal.pcbi.1010610] [PMID: 36260616]
[26]
Zhang D, Kabuka MR. Protein family classification from scratch: A CNN based deep learning approach. IEEE/ACM Trans Comput Biol Bioinformatics 2021; 18(5): 1996-2007.
[http://dx.doi.org/10.1109/TCBB.2020.2966633] [PMID: 31944984]
[27]
Anu Vazhayil VRaSK DeepProteomics: Protein family classification using Shallow and Deep Networks. arXiv: :180904461v1, 2018.
[http://dx.doi.org/10.48550/arXiv.1809.04461]
[28]
Teng Z, Zhang Z, Tian Z, Li Y, Wang G. ReRF-Pred: Predicting amyloidogenic regions of proteins based on their pseudo amino acid composition and tripeptide composition. BMC Bioinformatics 2021; 22(1): 545.
[http://dx.doi.org/10.1186/s12859-021-04446-4] [PMID: 34753427]
[29]
Liu Q, Wan J, Wang G. A survey on computational methods in discovering protein inhibitors of SARS-CoV-2. Brief Bioinform 2022; 23(1): bbab416.
[http://dx.doi.org/10.1093/bib/bbab416] [PMID: 34623382]
[30]
Li Y, Qiao G, Wang K, Wang G. Drug–target interaction predication via multi-channel graph neural networks. Brief Bioinform 2022; 23(1): bbab346.
[http://dx.doi.org/10.1093/bib/bbab346] [PMID: 34661237]
[31]
Zhai Y, Chen Y, Teng Z, Zhao Y. Identifying antioxidant proteins by using amino acid composition and protein-protein interactions. Front Cell Dev Biol 2020; 8: 591487.
[http://dx.doi.org/10.3389/fcell.2020.591487] [PMID: 33195258]
[32]
Li HL, Pang YH, Liu B. BioSeq-BLM: A platform for analyzing DNA, RNA and protein sequences based on biological language models. Nucleic Acids Res 2021; 49(22): e129.
[http://dx.doi.org/10.1093/nar/gkab829] [PMID: 34581805]
[33]
Zhang J, Yan K, Chen Q, Liu B. PreRBP-TL: Prediction of species-specific RNA-binding proteins based on transfer learning. Bioinformatics 2022; 38(8): 2135-43.
[http://dx.doi.org/10.1093/bioinformatics/btac106] [PMID: 35176130]
[34]
Ali F, Akbar S, Ghulam A, Maher ZA, Unar A, Talpur DB. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information. Comput Biol Med 2021; 139: 105006.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105006] [PMID: 34749096]
[35]
Amanatidou AI, Dedoussis GV. Construction and analysis of protein-protein interaction network of non-alcoholic fatty liver disease. Comput Biol Med 2021; 131: 104243.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104243] [PMID: 33550014]
[36]
Du W, Zhao X, Sun Y, Zheng L, Li Y, Zhang Y. SecProCT: In silico prediction of human secretory proteins based on capsule network and transformer. Int J Mol Sci 2021; 22(16): 9054.
[http://dx.doi.org/10.3390/ijms22169054] [PMID: 34445760]
[37]
Basith S, Lee G, Manavalan B. STALLION: A stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction. Brief Bioinform 2022; 23(1): bbab376.
[http://dx.doi.org/10.1093/bib/bbab376] [PMID: 34532736]
[38]
Manavalan B, Patra MC. MLCPP 2.0: An updated cell-penetrating peptides and their uptake efficiency predictor. J Mol Biol 2022; 434(11): 167604.
[http://dx.doi.org/10.1016/j.jmb.2022.167604] [PMID: 35662468]
[39]
Thi Phan L, Woo Park H, Pitti T, Madhavan T, Jeon YJ, Manavalan B. MLACP 2.0: An updated machine learning tool for anticancer peptide prediction. Comput Struct Biotechnol J 2022; 20: 4473-80.
[http://dx.doi.org/10.1016/j.csbj.2022.07.043] [PMID: 36051870]
[40]
Liu MJX, Chen H, Gao D, Ma CY, Zhang ZY. Identification of helicobacter pylori membrane proteins using sequence-based features. Comput Math Method M 2022; 2022: 1-7.
[41]
Zhang D, Chen HD, Zulfiqar H, et al. iBLP: An XGBoost-based predictor for identifying bioluminescent proteins. Comput Math Methods Med 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/6664362] [PMID: 33505515]
[42]
Lai HY, Zhang ZY, Su ZD, et al. iProEP: A computational predictor for predicting promoter. Mol Ther Nucleic Acids 2019; 17: 337-46.
[http://dx.doi.org/10.1016/j.omtn.2019.05.028] [PMID: 31299595]
[43]
Chou KC. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001; 43(3): 246-55.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[44]
Awais M, Hussain W, Rasool N, Khan YD. iTSP-PseAAC: Identifying tumor suppressor proteins by using fully connected neural network and PseAAC. Curr Bioinform 2021; 16(5): 700-9.
[http://dx.doi.org/10.2174/1574893615666210108094431]
[45]
Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: An updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res 2019; 47(20): e127.
[http://dx.doi.org/10.1093/nar/gkz740] [PMID: 31504851]
[46]
Naseer S, Hussain W, Khan YD, Rasool N. NPalmitoylDeep-PseAAC: A predictor of N-palmitoylation sites in proteins using deep representations of proteins and PseAAC via modified 5-steps rule. Curr Bioinform 2021; 16(2): 294-305.
[http://dx.doi.org/10.2174/2212392XMTA3wMTIj0]
[47]
Yuan SS, Gao D, Xie XQ, et al. IBPred: A sequence-based predictor for identifying ion binding protein in phage. Comput Struct Biotechnol J 2022; 20: 4942-51.
[http://dx.doi.org/10.1016/j.csbj.2022.08.053] [PMID: 36147670]
[48]
Tang H, Zhao YW, Zou P, et al. HBPred: A tool to identify growth hormone-binding proteins. Int J Biol Sci 2018; 14(8): 957-64.
[http://dx.doi.org/10.7150/ijbs.24174] [PMID: 29989085]
[49]
Lin H, Dao F-Y, Lv H, Zhang Z-Y. BDselect: A package for k-mer selection based on the binomial distribution. Curr Bioinform 2022; 17(3): 238-44.
[http://dx.doi.org/10.2174/1574893616666211007102747]
[50]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: A comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[51]
Wang D, Zhang Z, Jiang Y, et al. DM3Loc: Multi-label mRNA subcellular localization prediction and analysis based on multi-head self-attention mechanism. Nucleic Acids Res 2021; 49(8): e46.
[http://dx.doi.org/10.1093/nar/gkab016] [PMID: 33503258]
[52]
Chen L, Li Z, Zeng T, et al. Predicting gene phenotype by multi-label multi-class model based on essential functional features. Mol Genet Genomics 2021; 296(4): 905-18.
[http://dx.doi.org/10.1007/s00438-021-01789-8] [PMID: 33914130]
[53]
Hanchuan Peng, Fuhui Long, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27(8): 1226-38.
[http://dx.doi.org/10.1109/TPAMI.2005.159] [PMID: 16119262]
[54]
Zhang L, Yang Y, Chai L, et al. A deep learning model to identify gene expression level using cobinding transcription factor signals. Brief Bioinform 2022; 23(1): bbab501.
[http://dx.doi.org/10.1093/bib/bbab501] [PMID: 34864886]
[55]
Lv H, Zhang Y, Wang JS, et al. iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice. Brief Bioinform 2022; 23(1): bbab486.
[http://dx.doi.org/10.1093/bib/bbab486] [PMID: 34864888]
[56]
Ao C, Zou Q, Yu L. RFhy-m2G: Identification of RNA N2-methylguanosine modification sites based on random forest and hybrid features. Methods 2022; 203: 32-9.
[http://dx.doi.org/10.1016/j.ymeth.2021.05.016] [PMID: 34033879]
[57]
Cheng L, Qi C, Yang H, et al. gutMGene: A comprehensive database for target genes of gut microbes and microbial metabolites. Nucleic Acids Res 2021; 50(D1): D795-800.
[PMID: 34500458]
[58]
Zhang W, Hou J, Liu B. iPiDA-LTR: Identifying piwi-interacting RNA-disease associations based on Learning to Rank. PLOS Comput Biol 2022; 18(8): e1010404.
[http://dx.doi.org/10.1371/journal.pcbi.1010404] [PMID: 35969645]
[59]
Peng J, Peng J, Piao H, Luo Z, Xia K, Shang X. Predicting chromosome flexibility from the genomic sequence based on deep learning neural networks. Curr Bioinform 2021; 16(10): 1311-9.
[http://dx.doi.org/10.2174/1574893616666210827095829]
[60]
Piotrowski T, Rippel O, Elanzew A, et al. Deep-learning-based multi-class segmentation for automated, non-invasive routine assessment of human pluripotent stem cell culture status. Comput Biol Med 2021; 129: 104172.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104172] [PMID: 33352307]
[61]
Ao C, Zou Q, Yu L. NmRF: Identification of multispecies RNA 2′-O-methylation modification sites from RNA sequences. Brief Bioinform 2022; 23(1): bbab480.
[http://dx.doi.org/10.1093/bib/bbab480] [PMID: 34850821]
[62]
Zou Y, Wu H, Guo X, et al. MK-FSVM-SVDD: A multiple kernel-based fuzzy SVM model for predicting DNA-binding proteins via support vector data description. Curr Bioinform 2021; 16(2): 274-83.
[http://dx.doi.org/10.2174/2212392XMTA3bMTYiy]
[63]
Kang J, Han X, Song J, Niu Z, Li X. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Comput Biol Med 2020; 120: 103722.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103722] [PMID: 32250854]
[64]
Zhang ZY, Ning L, Ye X, et al. iLoc-miRNA: Extracellular/intracellular miRNA prediction using deep BiLSTM with attention mechanism. Brief Bioinform 2022; 23(5): bbac395.
[http://dx.doi.org/10.1093/bib/bbac395] [PMID: 36070864]
[65]
Sun Z, Huang Q, Yang Y, et al. PSnoD: Identifying potential snoRNA-disease associations based on bounded nuclear norm regularization. Brief Bioinform 2022; 23(4): bbac240.
[http://dx.doi.org/10.1093/bib/bbac240] [PMID: 35817303]
[66]
Yang H, Luo Y, Ren X, et al. Risk prediction of diabetes: Big data mining with fusion of multifarious physical examination indicators. Inf Fusion 2021; 75: 140-9.
[http://dx.doi.org/10.1016/j.inffus.2021.02.015]
[67]
Hong Z, Zeng X, Wei L, Liu X. Identifying enhancer–promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism. Bioinformatics 2020; 36(4): 1037-43.
[http://dx.doi.org/10.1093/bioinformatics/btz694] [PMID: 31588505]
[68]
Liu J, Su R, Zhang J, Wei L. Classification and gene selection of triple-negative breast cancer subtype embedding gene connectivity matrix in deep neural network. Brief Bioinform 2021; 22(5): bbaa395.
[http://dx.doi.org/10.1093/bib/bbaa395] [PMID: 33415328]
[69]
Yu L, Wang M, Yang Y, et al. Predicting therapeutic drugs for hepatocellular carcinoma based on tissue-specific pathways. PLOS Comput Biol 2021; 17(2): e1008696.
[http://dx.doi.org/10.1371/journal.pcbi.1008696] [PMID: 33561121]
[70]
Manavalan B, Basith S, Shin TH, Wei L, Lee G. Meta-4mCpred: A sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation. Mol Ther Nucleic Acids 2019; 16: 733-44.
[http://dx.doi.org/10.1016/j.omtn.2019.04.019] [PMID: 31146255]
[71]
Su R, Hu J, Zou Q, Manavalan B, Wei L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinform 2020; 21(2): 408-20.
[http://dx.doi.org/10.1093/bib/bby124] [PMID: 30649170]
[72]
Wei L, Liao M, Gao Y, Ji R, He Z, Zou Q. Improved and promising identification of human micrornas by incorporating a high-quality negative set. IEEE/ACM Trans Comput Biol Bioinformatics 2014; 11(1): 192-201.
[http://dx.doi.org/10.1109/TCBB.2013.146] [PMID: 26355518]
[73]
Wei L, Wan S, Guo J, Wong KKL. A novel hierarchical selective ensemble classifier with bioinformatics application. Artif Intell Med 2017; 83: 82-90.
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[74]
Yu L, Xia M, An Q. A network embedding framework based on integrating multiplex network for drug combination prediction. Brief Bioinform 2022; 23(1): bbab364.
[http://dx.doi.org/10.1093/bib/bbab364] [PMID: 34505623]
[75]
Cheng L, Zhu Z, Wang C, Wang P, He YO, Zhang X. COVID-19 induces lower levels of IL-8, IL-10, and MCP-1 than other acute CRS-inducing diseases. Proc Natl Acad Sci 2021; 118(21): e2102960118.
[http://dx.doi.org/10.1073/pnas.2102960118] [PMID: 33972411]
[76]
He W, Li Q, Lu Y, et al. Cancer treatment evolution from traditional methods to stem cells and gene therapy. Curr Gene Ther 2021; 22(5): 368-85.
[PMID: 34802404]
[77]
Tang YJ, Pang YH, Liu B. DeepIDP-2L: Protein intrinsically disordered region prediction by combining convolutional attention network and hierarchical attention network. Bioinformatics 2022; 38(5): 1252-60.
[http://dx.doi.org/10.1093/bioinformatics/btab810] [PMID: 34864847]
[78]
Tang YJ, Pang YH, Liu B. IDP-Seq2Seq: Identification of intrinsically disordered regions based on sequence to sequence learning. Bioinformatics 2021; 36(21): 5177-86.
[http://dx.doi.org/10.1093/bioinformatics/btaa667] [PMID: 32702119]
[79]
Jiang Q, Wang G, Jin S, Li Y, Wang Y. Predicting human microRNA-disease associations based on support vector machine. Int J Data Min Bioinform 2013; 8(3): 282-93.
[http://dx.doi.org/10.1504/IJDMB.2013.056078] [PMID: 24417022]
[80]
Ren S, Yu L, Gao L. Multidrug representation learning based on pretraining model and molecular graph for drug interaction and combination prediction. Bioinformatics 2022; 38(18): 4387-94.
[http://dx.doi.org/10.1093/bioinformatics/btac538] [PMID: 35904544]
[81]
Yu H, Shen Z-A, Zhou Y-K, Du P-F. Recent advances in predicting protein-lncRNA interactions using machine learning methods. Curr Gene Ther 2021; 22(3): 228-44.
[PMID: 34254917]
[82]
Wang X, Yang Y, Liu J, Wang G. The stacking strategy-based hybrid framework for identifying non-coding RNAs. Brief Bioinform 2021; 22(5): bbab023.
[http://dx.doi.org/10.1093/bib/bbab023] [PMID: 33693454]
[83]
Tao Z, Li Y, Teng Z, Zhao Y. A method for identifying vesicle transport proteins based on LibSVM and MRMD. Comput Math Methods Med 2020; 2020: 1-9.
[http://dx.doi.org/10.1155/2020/8926750] [PMID: 33133228]
[84]
Guo Z, Wang P, Liu Z, Zhao Y. Discrimination of thermophilic proteins and non-thermophilic proteins using feature dimension reduction. Front Bioeng Biotechnol 2020; 8: 584807.
[http://dx.doi.org/10.3389/fbioe.2020.584807] [PMID: 33195148]
[85]
Xu Z, Luo M, Lin W, et al. DLpTCR: An ensemble deep learning framework for predicting immunogenic peptide recognized by T cell receptor. Brief Bioinform 2021; 22(6): bbab335.
[http://dx.doi.org/10.1093/bib/bbab335] [PMID: 34415016]
[86]
Huang Y, Zhou D, Wang Y, et al. Prediction of transcription factors binding events based on epigenetic modifications in different human cells. Epigenomics 2020; 12(16): 1443-56.
[http://dx.doi.org/10.2217/epi-2019-0321] [PMID: 32921165]
[87]
Basith S, Hasan MM, Lee G, Wei L, Manavalan B. Integrative machine learning framework for the identification of cell-specific enhancers from the human genome. Brief Bioinform 2021; 22(6): bbab252.
[http://dx.doi.org/10.1093/bib/bbab252] [PMID: 34226917]
[88]
Hasan MM, Tsukiyama S, Cho JY, et al. Deepm5C: A deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy. Mol Ther 2022; 30(8): 2856-67.
[http://dx.doi.org/10.1016/j.ymthe.2022.05.001] [PMID: 35526094]
[89]
Su W, Liu ML, Yang YH, et al. PPD: A manually curated database for experimentally verified prokaryotic promoters. J Mol Biol 2021; 433(11): 166860.
[http://dx.doi.org/10.1016/j.jmb.2021.166860] [PMID: 33539888]
[90]
Cheng L, Qi C, Zhuang H, Fu T, Zhang X. gutMDisorder: A comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. Nucleic Acids Res 2020; 48(D1): D554-60.
[http://dx.doi.org/10.1093/nar/gkz843] [PMID: 31584099]
[91]
Hunt C, Montgomery S, Berkenpas JW, et al. Recent progress of machine learning in gene therapy. Curr Gene Ther 2021; 22(2): 132-43.
[PMID: 34161210]
[92]
Bateman A, Martin M-J, Orchard S, et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy