Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Network Pharmacology-based and Molecular Docking Combined with GEO Gene Chips to Investigate the Potential Mechanism of Duhuo Jisheng Decoction against Rheumatoid Arthritis

Author(s): Zhao Yang*, Zhen-Zhen Yuan and Xin-long Ma*

Volume 20, Issue 4, 2024

Published on: 05 June, 2023

Page: [405 - 415] Pages: 11

DOI: 10.2174/1573409919666230516110622

Price: $65

conference banner
Abstract

Background: Rheumatoid Arthritis (RA) is a chronic autoimmune disease with various symptoms in patients. Duhuo Jisheng Decoction (DHJSD) has been used to treat RA in China for a long history as a classic TCM formula. However, the underlying pharmacological mechanism still needs to be elucidated.

Purpose: In the current study, we combined network pharmacology with molecular docking to investigate the potential mechanism of DHJSD treating RA.

Methods: The active compounds and related targets of DHJSD were obtained from the TCMSP database. The RA targets were retrieved from the GEO database. The PPI network of overlapping targets was constructed, whereas the core genes were selected by CytoNCA for molecular docking. GO and KEGG enrichment analysis were used to further explore the biological process and pathways of overlapping targets. On this basis, molecular docking was carried out to verify the interrelations of the main compounds and core targets.

Results: In this study, we found 81 active components corresponding to 225 targets of DHJSD. Moreover, 775 RA-related targets were obtained, of which 12 were shared between DHJSD targets and RA target genes. From GO and KEGG analysis, there were 346 GO items and 18 signaling pathways. As the molecular docking showed, the binding of components was stable with the core gene.

Conclusion: In conclusion, our works revealed the underlying mechanism of DHJSD for treating RA using network pharmacology and molecular docking, which provided a theoretical basis for further clinical application in the future.

Graphical Abstract

[1]
Aihaiti, Y.; Song Cai, Y. Tuerhong, X.; Ni Yang, Y.; Ma, Y.; Shi Zheng, H.; Xu, K.; Xu, P. Therapeutic effects of naringin in rheumatoid arthritis: Network pharmacology and experimental validation. Front. Pharmacol., 2021, 12, 672054.
[http://dx.doi.org/10.3389/fphar.2021.672054] [PMID: 34054546]
[2]
Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis. Cells, 2020, 9(4), 880.
[http://dx.doi.org/10.3390/cells9040880] [PMID: 32260219]
[3]
Bullock, J.; Rizvi, S.A.A.; Saleh, A.M. Rheumatoid Arthritis: A brief overview of the treatment. Med. Princ. Pract., 2018, 27(6), 501-507.
[4]
Liu, Z.; Wang, Z.; Huang, C.; Fu, Z.; Liu, Y.; Wei, Z.; Liu, S.; Ma, C.; Shen, J.; Duan, D.D. Duhuo Jisheng Decoction inhibits SDF-1-induced inflammation and matrix degradation in human degenerative nucleus pulposus cells in vitro through the CXCR4/NF-κB pathway. Acta Pharmacol. Sin., 2018, 39(6), 912-922.
[http://dx.doi.org/10.1038/aps.2018.36] [PMID: 29795361]
[5]
Xiong, Z.; Zheng, C.; Chang, Y. Exploring the pharmacological mechanism of duhuo jisheng decoction in treating osteoporosis based on network pharmacology. Evid. Based Complement. Alternat. Med., 2021, 2021, 5510290.
[http://dx.doi.org/10.1155/2021/5510290]
[6]
Zhao, J.; Zha, Q.; Jiang, M. Expert consensus on the treatment of rheumatoid arthritis with Chinese patent medicines. J. Altern. Complement. Med ., 2013, 19(2), 111-118.
[http://dx.doi.org/10.1089/acm.2011.0370]
[7]
Liu, F.; Liu, G.; Liang, W.; Ye, H.; Weng, X.; Lin, P.; Li, H.; Chen, J.; Liu, X.; Li, X. Duhuo Jisheng decoction treatment inhibits the sodium nitroprussiate-induced apoptosis of chondrocytes through the mitochondrial-dependent signaling pathway. Int. J. Mol. Med., 2014, 34(6), 1573-1580.
[http://dx.doi.org/10.3892/ijmm.2014.1962] [PMID: 25339266]
[8]
Tang, M.; Xie, X.; Yi, P. Integrating network pharmacology with molecular docking to unravel the active compounds and potential mechanism of simiao pill treating rheumatoid arthritis. Evid. Based Complement. Alternat. Med., 2020, 2020, 5786053.
[http://dx.doi.org/10.1155/2020/5786053]
[9]
Yan, H-X.; Xu, C-F.; Yang, H. Network pharmacology-based analysis on the curative effect of kunxian capsules against rheumatoid arthritis. Evid. Based Complement. Alternat. Med., 2021, 2021, 6812374.
[http://dx.doi.org/10.1155/2021/6812374]
[10]
Basu, A.; Schell, J.; Scofield, R.H. Dietary fruits and arthritis. Food Funct., 2018, 9(1), 70-77.
[http://dx.doi.org/10.1039/C7FO01435J] [PMID: 29227497]
[11]
Guazelli, C.F.S.; Staurengo-Ferrari, L.; Zarpelon, A.C. Quercetin attenuates zymosan-induced arthritis in mice. Biomed. Pharmacother., 2018, 102, 175-184.
[http://dx.doi.org/10.1016/j.biopha.2018.03.057]
[12]
Zhang, C.F.; Zhang, S.L.; He, X.; Yang, X.L.; Wu, H.T.; Lin, B.Q.; Jiang, C.P.; Wang, J.; Yu, C.H.; Yang, Z.L.; Wang, C.Z.; Li, P.; Yuan, C.S. Antioxidant effects of Genkwa flos flavonoids on Freund׳s adjuvant-induced rheumatoid arthritis in rats. J. Ethnopharmacol., 2014, 153(3), 793-800.
[http://dx.doi.org/10.1016/j.jep.2014.03.046] [PMID: 24685587]
[13]
Pan, D.; Li, N.; Liu, Y.; Xu, Q.; Liu, Q.; You, Y.; Wei, Z.; Jiang, Y.; Liu, M.; Guo, T.; Cai, X.; Liu, X.; Wang, Q.; Liu, M.; Lei, X.; Zhang, M.; Zhao, X.; Lin, C. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int. Immunopharmacol., 2018, 55, 174-182.
[http://dx.doi.org/10.1016/j.intimp.2017.12.011] [PMID: 29268189]
[14]
Khandia, R.; Munjal, A.K.; Iqbal, H.M.N.; Dhama, K. Heat shock proteins: Therapeutic perspectives in inflammatory disorders. Recent Pat. Inflamm. Allergy Drug Discov., 2017, 10(2), 94-104.
[http://dx.doi.org/10.2174/1872213X10666161213163301] [PMID: 27978789]
[15]
White, P.T.; Subramanian, C.; Motiwala, H.F.; Cohen, M.S. Natural withanolides in the treatment of chronic diseases. Adv. Exp. Med. Biol., 2016, 928, 329-373.
[http://dx.doi.org/10.1007/978-3-319-41334-1_14] [PMID: 27671823]
[16]
Guo, Q.; Mao, X.; Zhang, Y.; Meng, S.; Xi, Y.; Ding, Y.; Zhang, X.; Dai, Y.; Liu, X.; Wang, C.; Li, Y.; Lin, N. Guizhi-Shaoyao-Zhimu decoction attenuates rheumatoid arthritis partially by reversing inflammation-immune system imbalance. J. Transl. Med., 2016, 14(1), 165.
[http://dx.doi.org/10.1186/s12967-016-0921-x] [PMID: 27277474]
[17]
Maruotti, N.; Cantatore, F.P.; Ribatti, D. Putative effects of potentially anti-angiogenic drugs in rheumatic diseases. Eur. J. Clin. Pharmacol., 2014, 70(2), 135-140.
[http://dx.doi.org/10.1007/s00228-013-1605-6] [PMID: 24196651]
[18]
Jian, C.; Yan, J.; Zhang, H.; Zhu, J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo. Mol. Cell. Probes, 2021, 55, 101686.
[http://dx.doi.org/10.1016/j.mcp.2020.101686] [PMID: 33279529]
[19]
Dronjak, S.; Stefanovic, B.; Jovanovic, P.; Spasojevic, N.; Jankovic, M.; Jeremic, I.; Hoffmann, M. Altered cardiac gene expression of noradrenaline enzymes, transporter and β-adrenoceptors in rat model of rheumatoid arthritis. Auton. Neurosci., 2017, 208, 165-169.
[http://dx.doi.org/10.1016/j.autneu.2017.10.003] [PMID: 29029974]
[20]
Igari, T.; Shimamura, T. Serotonin metabolism and its enzymic activities in joint diseases. Clin. Orthop. Relat. Res., 1979, & NA;(139), 232-249.
[http://dx.doi.org/10.1097/00003086-197903000-00035] [PMID: 455840]
[21]
Lesniak, A.; Aarnio, M.; Jonsson, A.; Norberg, T.; Nyberg, F.; Gordh, T. High-throughput screening and radioligand binding studies reveal monoamine oxidase-B as the primary binding target for d-deprenyl. Life Sci., 2016, 152, 231-237.
[http://dx.doi.org/10.1016/j.lfs.2016.03.058] [PMID: 27058977]
[22]
Elhaj Mahmoud, D.; Kaabachi, W.; Sassi, N.; Mokhtar, A.; Ben Ammar, L.; Rekik, S.; Tarhouni, L.; Kallel-Sellami, M.; Cheour, E.; Laadhar, L. Expression of extracellular matrix components and cytokine receptors in human fibrocytes during rheumatoid arthritis. Connect. Tissue Res., 2021, 62(6), 720-731.
[http://dx.doi.org/10.1080/03008207.2021.1873962] [PMID: 33427511]
[23]
Chakraborty, D.; Gupta, K.; Biswas, S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed. Pharmacother., 2021, 133, 111039.
[http://dx.doi.org/10.1016/j.biopha.2020.111039]
[24]
Orellana, C.; Saevarsdottir, S.; Klareskog, L.; Karlson, E.W.; Alfredsson, L.; Bengtsson, C. Postmenopausal hormone therapy and the risk of rheumatoid arthritis: Results from the Swedish EIRA population-based case-control study. Eur. J. Epidemiol., 2015, 30(5), 449-457.
[http://dx.doi.org/10.1007/s10654-015-0004-y] [PMID: 25762170]
[25]
Hang, X.; Zhang, Z.; Niu, R.; Wang, C.; Yao, J.; Xu, Y.; Tao, J.; Li, L.; Chen, F. Estrogen protects articular cartilage by downregulating asic1a in rheumatoid arthritis. J. Inflamm. Res., 2021, 14, 843-858.
[http://dx.doi.org/10.2147/JIR.S295222] [PMID: 33737825]
[26]
Sapir-Koren, R.; Livshits, G. Rheumatoid arthritis onset in postmenopausal women: Does the ACPA seropositive subset result from genetic effects, estrogen deficiency, skewed profile of CD4+ T-cells, and their interactions? Mol. Cell. Endocrinol., 2016, 431, 145-163.
[http://dx.doi.org/10.1016/j.mce.2016.05.009] [PMID: 27178986]
[27]
Kuwabara, T.; Ishikawa, F.; Kondo, M.; Kakiuchi, T. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/3908061] [PMID: 28316374]
[28]
Amin, A.; Sheikh, N.; Mukhtar, M.; Saleem, T.; Akhtar, T.; Fatima, N.; Mehmood, R. Association of interleukin-17 gene polymorphisms with the onset of Rheumatoid Arthritis. Immunobiology, 2021, 226(1), 152045.
[http://dx.doi.org/10.1016/j.imbio.2020.152045] [PMID: 33387966]
[29]
Schinocca, C.; Rizzo, C.; Fasano, S.; Grasso, G.; La Barbera, L.; Ciccia, F.; Guggino, G. Role of the IL-23/IL-17 pathway in rheumatic diseases: An overview. Front. Immunol., 2021, 12, 637829.
[http://dx.doi.org/10.3389/fimmu.2021.637829] [PMID: 33692806]
[30]
Kunwar, S.; Dahal, K.; Sharma, S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: A systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int., 2016, 36(8), 1065-1075.
[http://dx.doi.org/10.1007/s00296-016-3480-9] [PMID: 27105880]
[31]
Pi, H.; Zhou, H.; Jin, H.; Ning, Y.; Wang, Y. Abnormal glucose metabolism in rheumatoid arthritis. BioMed Res. Int., 2017, 2017, 9670434.
[http://dx.doi.org/10.1155/2017/9670434] [PMID: 28529957]
[32]
Tripolino, C.; Ciaffi, J.; Pucino, V.; Ruscitti, P.; van Leeuwen, N.; Borghi, C.; Giacomelli, R.; Meliconi, R.; Ursini, F. Insulin signaling in arthritis. Front. Immunol., 2021, 12, 672519.
[http://dx.doi.org/10.3389/fimmu.2021.672519] [PMID: 33995414]
[33]
Shahin, D.; Eltoraby, E.; Mesbah, A. Insulin resistance in early untreated rheumatoid arthritis patients. Clin. Biochem., 2010, 43(7-8), 661-665.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.01.012]
[34]
Jin, H.; Ning, Y.; Zhou, H.; Wang, Y. IL-6 promotes Islet β -cell dysfunction in rat collagen-induced arthritis. J. Diabetes Res., 2016, 2016, 7592931.
[http://dx.doi.org/10.1155/2016/7592931] [PMID: 27965984]
[35]
Panfili, E.; Gerli, R.; Grohmann, U.; Pallotta, M.T. Amino acid metabolism in rheumatoid arthritis: Friend or foe? Biomolecules, 2020, 10(9), 1280.
[http://dx.doi.org/10.3390/biom10091280] [PMID: 32899743]
[36]
He, M.; Harms, A.C.; van Wijk, E.; Wang, M.; Berger, R.; Koval, S.; Hankemeier, T.; van der Greef, J. Role of amino acids in rheumatoid arthritis studied by metabolomics. Int. J. Rheum. Dis., 2019, 22(1), 38-46.
[http://dx.doi.org/10.1111/1756-185X.13062] [PMID: 28328075]
[37]
Cheung, T.T.; McInnes, I.B. Future therapeutic targets in rheumatoid arthritis? Semin. Immunopathol., 2017, 39(4), 487-500.
[http://dx.doi.org/10.1007/s00281-017-0623-3] [PMID: 28451787]
[38]
Tang, M.; Gao, X.; Geng, T.; Chen, X.; Wang, J.; Shen, C.; Gao, H.; Qian, M.; Wang, Z.; Cao, L.; Xiao, W. Metabolomics analysis of the therapeutic effects of Qiwei Tongbi oral liquid on rheumatoid arthritis in rats. J. Pharm. Biomed. Anal., 2021, 202, 114166.
[http://dx.doi.org/10.1016/j.jpba.2021.114166] [PMID: 34052551]
[39]
Kolodziej, L. Systemic metabolism of tryptophan and its catabolites, kynurenine and 3-HAA, in mice with inflammatory arthritis. Gene, 2013, 512(1), 23-27.
[http://dx.doi.org/10.1016/j.gene.2012.09.122] [PMID: 23063938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy