Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Letter Article

Synthesis of Lactosyl Conjugated 6A,6D-Bifunctionalized β -Cyclodextrin Derivatives as Potential Liver Cancer Drug Carriers

Author(s): Yili Ding*, Jiehua Nie, Charles Ding and Zhe Xu

Volume 27, Issue 5, 2023

Published on: 13 June, 2023

Page: [384 - 388] Pages: 5

DOI: 10.2174/1385272827666230516105952

Price: $65

Abstract

Transformations of the difunctionalizated cyclodextrin derivatives is a daunting task due to the challenging purification and unambiguous characterization of the final compounds. Lactose has the ability to recognize the liver cells, and the folate receptor (alpha subunit) is overexpressed in multiple tumors, including liver cancer. Therefore, cyclodextrin conjugated with lactose and folic acid should have the liver cell targeting capability, and its inclusion complex with liver cancer drug such as Sorafenib, not only can increase drug ‘s water solubility but also increase the drug’s targeting ability. Fondaparinux as a synthetic heparin may improve the survival of cancer patients, so lactose and Fondaparinux conjugated cyclodextrin derivative can increase drug’s solubility and drug’s anti-tumor efficacy. Accordingly, Fondaparinux, folic acid and lactose conjugated 6A,6D-bifunctionlized β-cyclodextrin derivatives are designed and synthesized as potential liver cancer drug carriers in order to increase cancer drug’s targeting ability, solubility and stability.

[1]
a) Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190];
b) Liver Factsheet. https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf
[2]
Liver Cancer: Statistics. Available from: https://www.cancer.net/cancer-types/liver-cancer/statistics
[3]
Bahardoust, M.; Sarveazad, A.; Agah, S.; Babahajian, A.; Amini, N. Predictors of 5 year survival rate in hepatocellular carcinoma patients. J. Res. Med. Sci., 2019, 24(1), 86.
[http://dx.doi.org/10.4103/jrms.JRMS_1017_18] [PMID: 31741658]
[4]
Roxburgh, P.; Evans, T.R.J. Systemic therapy of hepatocellular carcinoma: Are we making progress? Adv. Ther., 2008, 25(11), 1089-1104.
[http://dx.doi.org/10.1007/s12325-008-0113-z] [PMID: 18972075]
[5]
a) Chemotherapy for liver cancer. Avaible from: https://www.cancer.org/cancer/liver-cancer/treating/chemotherapy. html;
b) Siddiqui, M.; Rajkumar, S.V. The high cost of cancer drugs and what we can do about it. Mayo Clin. Proc., 2012, 87(10), 935-943.
[http://dx.doi.org/10.1016/j.mayocp.2012.07.007] [PMID: 23036669]
[6]
Kannaiyan, R.; Mahadevan, D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer Ther., 2018, 18(12), 1249-1270.
[http://dx.doi.org/10.1080/14737140.2018.1527688] [PMID: 30259761]
[7]
Mousa, A.B. Sorafenib in the treatment of advanced hepatocellular carcinoma. Saudi J. Gastroenterol., 2008, 14(1), 40-42.
[http://dx.doi.org/10.4103/1319-3767.37808] [PMID: 19568496]
[8]
Hutson, T.E.; Bellmunt, J.; Porta, C.; Szczylik, C.; Staehler, M.; Nadel, A.; Anderson, S.; Bukowski, R.; Eisen, T.; Escudier, B. Long-term safety of sorafenib in advanced renal cell carcinoma: Follow-up of patients from phase III TARGET. Eur. J. Cancer, 2010, 46(13), 2432-2440.
[http://dx.doi.org/10.1016/j.ejca.2010.06.121] [PMID: 20656473]
[9]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[10]
Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel), 2019, 11(5), 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[11]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[12]
Chadha, R.; Kapoor, V.K.; Thakur, D.; Kaur, R.; Arora, P.; Jain, D.V.S. Drug carry systems for anticancer agents: A review. J. Sci. Ind. Res. (India), 2008, 167, 185-197.
[13]
Sharma, N.; Baldi, A.; Schlepper-Schäfer, J.; Monsigny, M.; Stockert, J.; Sharma, N.; Baldi, A. Exploring versatile applications of cyclodextrins: An overview. Drug Deliv., 2016, 23(3), 729-747.
[http://dx.doi.org/10.3109/10717544.2014.938839] [PMID: 25051096]
[14]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015, 1-15.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[15]
Carneiro, S.; Costa Duarte, F.; Heimfarth, L.; Siqueira Quintans, J.; Quintans-Júnior, L.; Veiga Júnior, V.; Neves de Lima, Á. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci., 2019, 20(3), 642.
[http://dx.doi.org/10.3390/ijms20030642] [PMID: 30717337]
[16]
Zacharski, L.R.; Prandoni, P.; Monreal, M. Warfarin versus low-molecular-weight heparin therapy in cancer patients. Oncologist, 2005, 10(1), 72-79.
[http://dx.doi.org/10.1634/theoncologist.10-1-72] [PMID: 15632254]
[17]
Lecumberri, R.; Páramo, J.A.; Rocha, E. Anticoagulant treatment and survival in cancer patients. The evidence from clinical studies. Haematologica, 2005, 90(9), 1258-1266.
[PMID: 16154849]
[18]
Niers, T.M.H.; Klerk, C.P.W.; DiNisio, M.; Van Noorden, C.J.F.; Büller, H.R.; Reitsma, P.H.; Richel, D.J. Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit. Rev. Oncol. Hematol., 2007, 61(3), 195-207.
[http://dx.doi.org/10.1016/j.critrevonc.2006.07.007] [PMID: 17074500]
[19]
Doucette, M.M.; Stevens, V.L. Folate receptor function is regulated in response to different cellular growth rates in cultured mammalian cells. J. Nutr., 2001, 131(11), 2819-2825.
[http://dx.doi.org/10.1093/jn/131.11.2819] [PMID: 11694602]
[20]
Antony, A.C. The biological chemistry of folate receptors. Blood, 1992, 79(11), 2807-2820.
[http://dx.doi.org/10.1182/blood.V79.11.2807.2807] [PMID: 1586732]
[21]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2018, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[22]
Leamon, C.; Reddy, J.A. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1127-1141.
[http://dx.doi.org/10.1016/j.addr.2004.01.008] [PMID: 15094211]
[23]
Koirala, N.; Das, D.; Fayazzadeh, E.; Sen, S.; McClain, A.; Puskas, J.E.; Drazba, J.A.; McLennan, G. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma. J. Biomed. Mater. Res. A, 2019, 107(11), 2522-2535.
[http://dx.doi.org/10.1002/jbm.a.36758] [PMID: 31334591]
[24]
Shi, Y.; Davis, K.J.; Zhang, F.; Duffy, C.J. Evaluation of the parameter sensitivity of a coupled land surface hydrologic model. J. Hydrometeorol., 2014, 15, 279-299.
[http://dx.doi.org/10.1175/JHM-D-12-0177.1]
[25]
Mizusako, H.; Tagami, T.; Hattori, K.; Ozeki, T. Active drug targeting of a folate-based cyclodextrin–doxorubicin conjugate and the cytotoxic effect on drug-resistant mammary tumor cells in vitro. J. Pharm. Sci., 2015, 104(9), 2934-2940.
[http://dx.doi.org/10.1002/jps.24428] [PMID: 25940848]
[26]
Martínez, Á.; Ortiz Mellet, C.; García Fernández, J.M. Cyclodextrin-based multivalent glycodisplays: Covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chem. Soc. Rev., 2013, 42(11), 4746-4773.
[http://dx.doi.org/10.1039/c2cs35424a] [PMID: 23340678]
[27]
Ding, Y.; Vara Prasad, C.V.N.S.; Ding, C.; Wang, B. Synthesis of carbohydrate conjugated 6A,6D-bifunctionalized β cyclodextrin derivatives as potential liver cancer drug carriers. Carbohydr. Polym., 2018, 181, 957-963.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.054] [PMID: 29254060]
[28]
Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov., 2004, 3(12), 1023-1035.
[http://dx.doi.org/10.1038/nrd1576] [PMID: 15573101]
[29]
Abe, H.; Kenmoku, A.; Yamaguch, N.; Hattori, K. Structural effects of oligosaccharide-branched cyclodextrins on the dual recognition toward lectin and drug. J. Incl. Phenom. Macrocycl. Chem., 2002, 44(1/4), 39-47.
[http://dx.doi.org/10.1023/A:1023008210637]
[30]
Oda, Y.; Yanagisawa, H.; Maruyama, M.; Hattori, K.; Yamanoi, T. Design, synthesis and evaluation of d-galactose-β-cyclodextrin conjugates as drug-carrying molecules. Bioorg. Med. Chem., 2008, 16(19), 8830-8840.
[http://dx.doi.org/10.1016/j.bmc.2008.08.076] [PMID: 18805013]
[31]
Yamanoi, T.; Kobayashi, N.; Takahashi, K.; Hattori, K. Preparation of a cyclodextrin conjugated with two arbutin moieties as a drug-carrier model, and its high ability for the inclusion of doxorubicin. Lett. Drug Des. Discov., 2006, 3(3), 188-191.
[http://dx.doi.org/10.2174/157018006776286925]
[32]
Bhattacharyya, A.L.; Brewer, C.F. Lectin-carbohydrate interactions Studies of the nature of hydrogen bonding between D-galactose and certain D-galactose-specific lectins, and between D-mannose and concanavalin and Departments of Molecular Pharmacology. Eur. J. Biochem., 1988, 176, 207-212.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb14270.x] [PMID: 3416869]
[33]
Roos, P.H.; Kolb-Bachofen, V.; Schlepper-Schäfer, J.; Monsigny, M.; Stockert, R.J.; Kolb, H. Two galactose-specific receptors in the liver with different function. FEBS Lett., 1983, 157(2), 253-256.
[http://dx.doi.org/10.1016/0014-5793(83)80556-0] [PMID: 6862023]
[34]
Shi, B.; Abrams, M.; Sepp-Lorenzino, L. Expression of asialoglycoprotein receptor 1 in human hepatocellular carcinoma. J. Histochem. Cytochem., 2013, 61(12), 901-909.
[http://dx.doi.org/10.1369/0022155413503662] [PMID: 23979840]
[35]
Ding, Y.; Vara Prasad, C.V.N.S.; Bai, H.; Wang, B. Efficient and practical synthesis of Fondaparinux. Bioorg. Med. Chem. Lett., 2017, 27(11), 2424-2427.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.013] [PMID: 28408227]
[36]
Chan, P.; Kurisawa, M.; Chung, J.E.; Yang, Y.Y. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28(3), 540-549.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.046] [PMID: 16999995]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy