Abstract
The synthesis of organofluorine compounds plays a vital role in the field of pharmaceuticals, agrochemicals, and materials since the fluorine-containing compounds have shown improved biological and physicochemical properties. Significant research has been directed towards synthesizing organofluorine compounds because organofluorine compounds have been displayed in several biological activities, including anticancer, antitumor, antihypertensive, antidepressant, anti-HIV and treatment of stroke. Due to several pharmaceutical applications of organofluorine compounds, numerous conventional as well as green synthetic methodologies have been developed for the synthesis of fluorine-containing compounds. However, particularly, the synthesis of organofluorine compounds using green approaches has been continuously attracting research interest since green approaches have several advantages, including the use of inexpensive and nontoxic reagents, catalytic, highly efficient, short reaction time, energy efficient, high reaction yields, and environmentally benign over the conventional methods. Among the green tools, the use of microwave-assisted synthesis, water, and ionic liquids as green solvent/reaction media, organocatalysts, photocatalysts, and solvent-free and catalyst-free reaction conditions have been exploited in the past decades for the synthesis of organofluorine compounds. In this review, we highlighted the recent developments in various green methods for the synthesis of organofluorine compounds via electrophilic fluorination for synthesis of various fluorohydrins, fluorinated acyclic & cyclic β -ketoesters, 1,3-dicarbonyl compounds, cyclic and acyclic ketones, α - cyanoesters, α-aryl-tetralones, α-amino acids, flavanones, and several fluorinated heterocycles such as fluorinated pyridine, pyrimidine, pyrrole, pyrazolone, benzofuran, indole, flavanone, and coumarin derivatives. In addition, some green methodologies have been highlighted for the synthesis of biologically active fluorinated compounds, including HIV-1 integrase inhibitors, 20-deoxy-20-fluorocamptothecin, fluorinated estrone, sclareolide, BMS- 204352 (MaxiPost), fluorinated naproxen and fluoxetine.
Graphical Abstract
[http://dx.doi.org/10.1016/j.jfluchem.2010.03.003];
(b) Hiyama, T. Organofluorine Compounds: Chemistry and Applications; Springer Science & Business Media: Berlin, 2000.
[http://dx.doi.org/10.1007/978-3-662-04164-2]
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.014];
(b) Kirsch, P. Modern fluoro organic chemistry: synthesis, reactivity, applications; John Wiley & Sons: New Jersey, USA, 2013.
[http://dx.doi.org/10.1002/9783527651351]
[http://dx.doi.org/10.1016/j.jfluchem.2013.02.007]
[http://dx.doi.org/10.3762/bjoc.15.218] [PMID: 31598178]
[http://dx.doi.org/10.1021/acs.chemrev.7b00778] [PMID: 29608052]
[http://dx.doi.org/10.1021/cr500706a] [PMID: 25854146];
(b) Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev., 2015, 115(2), 826-870.
[http://dx.doi.org/10.1021/cr500277b] [PMID: 25337896]
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
[http://dx.doi.org/10.1002/adsc.201000624]
[http://dx.doi.org/10.1039/C6OB00764C] [PMID: 27506398]
[http://dx.doi.org/10.1039/B610213C] [PMID: 18197348]
[http://dx.doi.org/10.1021/op700134j]
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
[http://dx.doi.org/10.1021/jm800219f] [PMID: 18570365];
(b) Yamazaki, T.; Taguchi, T.; Ojima, I. Unique properties of fluorine and their relevance to medicinal chemistry and chemical biology. J. Fluor. Chem., 2009, 1.
[http://dx.doi.org/10.1039/B711844A] [PMID: 18197347]
[http://dx.doi.org/10.1038/nature10108] [PMID: 21614074]
[http://dx.doi.org/10.1002/ejoc.202000503];
(b) Zeidan, N.; Zambri, M.; Unger, S.; Dank, C.; Torelli, A.; Mirabi, B.; Lautens, M. Synthesis and reactions of 3,3-Difluoro-2- exo -methylidene indolines. Org. Lett., 2020, 22(9), 3688-3691.
[http://dx.doi.org/10.1021/acs.orglett.0c01175] [PMID: 32276536];
(c) Adachi, A.; Aikawa, K.; Ishibashi, Y.; Nozaki, K.; Okazoe, T. An N-fluorinated imide for practical catalytic imidations. Eur. J. Res., 2021, 27, 11919-11925.;
(d) Roagna, G.; Ascough, D.M.H.; Ibba, F.; Vicini, A.C.; Fontana, A.; Christensen, K.E.; Peschiulli, A.; Oehlrich, D.; Misale, A.; Trabanco, A.A.; Paton, R.S.; Pupo, G.; Gouverneur, V. Hydrogen bonding phase-transfer catalysis with ionic reactants: Enantioselective synthesis of γ-fluoroamines. J. Am. Chem. Soc., 2020, 142(33), 14045-14051.
[http://dx.doi.org/10.1021/jacs.0c05131] [PMID: 32608977]
[http://dx.doi.org/10.1021/acs.cgd.9b01570]
[http://dx.doi.org/10.1021/jo301705t] [PMID: 23030737]
[http://dx.doi.org/10.1016/j.scp.2016.11.003]
[http://dx.doi.org/10.1002/anie.200704093] [PMID: 17997510]
[http://dx.doi.org/10.1055/s-2004-834810]
[http://dx.doi.org/10.1039/c3ra42501k]
[http://dx.doi.org/10.1016/j.tetlet.2015.02.117]
[http://dx.doi.org/10.1039/c2gc36166c]
[http://dx.doi.org/10.1002/anie.201601082] [PMID: 27010438];
(b) Ma, J.A.; Cahard, D. Copper(II) triflate-bis(oxazoline)-catalysed enantioselective electrophilic fluorination of β-ketoesters. Tetrahedron Asymmetry, 2004, 15(6), 1007-1011.
[http://dx.doi.org/10.1016/j.tetasy.2004.01.014];
(c) Jiang, F.; Zhao, Y.; Hu, J. Selective monofluorination of active methylene compounds: the important role of ZnCl2 in inhibiting overfluorination. Org. Chem. Front., 2014, 1(6), 625-629.
[http://dx.doi.org/10.1039/C4QO00090K]
[http://dx.doi.org/10.1002/anie.200502425] [PMID: 16370011];
(b) Krištofíková, D. Mečiarová, M.; Rakovský, E.; Šebesta, R. Mechanochemically activated asymmetric organocatalytic domino mannich reaction-fluorination. ACS Sustain. Chem.& Eng., 2020, 8(38), 14417-14424.
[http://dx.doi.org/10.1021/acssuschemeng.0c04260];
(c) Zhao, Y.; Pan, Y.; Sim, S.B.D.; Tan, C.H. Enantioselective organocatalytic fluorination using organofluoro nucleophiles. Org. Biomol. Chem., 2012, 10(3), 479-485.
[http://dx.doi.org/10.1039/C1OB05840A] [PMID: 22083353];
(d) Chen, Z.M.; Yang, B.M.; Chen, Z.H.; Zhang, Q.W.; Wang, M.; Tu, Y.Q. Organocatalytic asymmetric fluorination/semipinacol rearrangement: An efficient approach to chiral β-fluoroketones. Chemistry, 2012, 18(41), 12950-12954.
[http://dx.doi.org/10.1002/chem.201202444] [PMID: 22936470]
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854];
(b) Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev., 2012, 41(4), 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J] [PMID: 22033698]
[http://dx.doi.org/10.2174/1385272824999201111203812]
[http://dx.doi.org/10.1002/adsc.201000477];
(b) Stavber, G.; Zupan, M.; Jereb, M.; Stavber, S. Selective and effective fluorination of organic compounds in water using Selectfluor F-TEDA-BF4. Org. Lett., 2004, 6(26), 4973-4976.
[http://dx.doi.org/10.1021/ol047867c] [PMID: 15606113];
(c) Borodkin, G.I.; Shubin, V.G. Electrophilic and oxidative fluorination of heterocyclic compounds: Contribution to green chemistry. Russ. J. Org. Chem., 2021, 57(9), 1369-1397.
[http://dx.doi.org/10.1134/S1070428021090013]
[http://dx.doi.org/10.1039/b510004f] [PMID: 16358070]
[http://dx.doi.org/10.1002/adsc.201100660]
[http://dx.doi.org/10.3762/bjoc.8.138] [PMID: 23019453]
[http://dx.doi.org/10.1080/00397911.2013.791697]
[http://dx.doi.org/10.1021/ja504714m] [PMID: 24967514];
(b) Yang, X.; Phipps, R.J.; Toste, F.D. Asymmetric fluorination of α-branched cyclohexanones enabled by a combination of chiral anion phase-transfer catalysis and enamine catalysis using protected amino acids. J. Am. Chem. Soc., 2014, 136(14), 5225-5228.
[http://dx.doi.org/10.1021/ja500882x] [PMID: 24684209]
(b) Zhang, H.; Wang, B.; Cui, L.; Bao, X.; Qu, J.; Song, Y. Organocatalytic asymmetric fluorination of 4-substituted isoxazolinones. Eur. J. Org. Chem., 2015, 10, 2143-2147.
[http://dx.doi.org/10.1016/j.jfluchem.2018.11.007];
(b) Arimitsu, S.; Iwasa, S.; Arakaki, R. Enantioselective fluorination of α-branched β-ynone esters using a cinchona-based phase-transfer catalyst. J. Org. Chem., 2020, 85(19), 12804-12812.
[http://dx.doi.org/10.1021/acs.joc.0c01997] [PMID: 32955893];
(c) Zhu, C.L.; Fu, X.Y.; Wei, A.J.; Cahard, D.; Ma, J.A. P-Spiro phosphonium salts catalyzed asymmetric fluorination of 3-substituted benzofuran-2(3H)-ones. J. Fluor. Chem., 2013, 150, 60-66.
[http://dx.doi.org/10.1016/j.jfluchem.2013.03.007]
(b) Shibata, N.; Toru, T.; Yasui, H.; Nakamura, S. DNA-mediated enantioselective carbon-fluorine bond formation. Synlett, 2007, 2007(7), 1153-1157.
[http://dx.doi.org/10.1055/s-2007-977429]
[http://dx.doi.org/10.1039/b111725d];
(b) Borodkin, G.I.; Shubin, V.G. Electrophilic fluorination of heterocyclic compounds with NF reagents in unconventional media. Chem. Heterocycl. Compd., 2022, 58(2-3), 84-96.
[http://dx.doi.org/10.1007/s10593-022-03060-3]
[http://dx.doi.org/10.1039/C7GC01566F]
[http://dx.doi.org/10.1039/9781782623632-00001];
(b) Roberts, B.A.; Strauss, C.R. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res., 2005, 38(8), 653-661.
[http://dx.doi.org/10.1021/ar040278m] [PMID: 16104688]
[http://dx.doi.org/10.1016/j.jfluchem.2021.109794]
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
(b) Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107, 2563-2591.
[http://dx.doi.org/10.1016/B978-0-12-819848-3.00012-8]
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[PMID: 28554323]
[http://dx.doi.org/10.1016/j.jfluchem.2013.02.014]
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[http://dx.doi.org/10.1039/C9OB00509A] [PMID: 31045201]
[http://dx.doi.org/10.1016/j.tet.2016.03.067]
[http://dx.doi.org/10.1016/j.jfluchem.2004.10.043]
[http://dx.doi.org/10.1016/j.molliq.2016.11.123];
(b) Sharma, R.K.; Chouryal, Y.N.; Chaudhari, S.; Saravanakumar, J.; Dey, S.R.; Ghosh, P. Adsorption-driven catalytic and photocatalytic activity of phase tuned In2S3 nanocrystals synthesized via ionic liquids. ACS Appl. Mater. Interfaces, 2017, 9(13), 11651-11661.
[http://dx.doi.org/10.1021/acsami.7b01092] [PMID: 28290651]
[http://dx.doi.org/10.1021/cr050948h] [PMID: 17518502]
[http://dx.doi.org/10.1021/cr050946x] [PMID: 17564484]
[http://dx.doi.org/10.1016/j.tet.2009.04.092]
[http://dx.doi.org/10.1021/ja017593d] [PMID: 11829599]
[http://dx.doi.org/10.1016/j.jpowsour.2010.06.005]
[http://dx.doi.org/10.1134/S1070428006120013]
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[http://dx.doi.org/10.1021/jp026907w]
[http://dx.doi.org/10.1002/poc.863]
[http://dx.doi.org/10.1021/ja062085v] [PMID: 16771483]
[http://dx.doi.org/10.1039/D0MH01088J]
[http://dx.doi.org/10.1016/j.apcata.2019.03.004]
[http://dx.doi.org/10.1016/S0920-5861(01)00541-7]
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[http://dx.doi.org/10.1039/C5RA08625F]
[http://dx.doi.org/10.1016/j.tetlet.2015.07.084]
[http://dx.doi.org/10.1039/b208817g]
[http://dx.doi.org/10.1039/C6RA10850D]
[http://dx.doi.org/10.3390/molecules26195756] [PMID: 34641300]
[http://dx.doi.org/10.1002/cssc.202100573] [PMID: 33984187];
(b) Huang, X.; Zhang, W. Recyclable fluorous cinchona organocatalysts for asymmetric synthesis of biologically interesting compounds. Chem. Commun., 2021, 57(79), 10116-10124.
[http://dx.doi.org/10.1039/D1CC03722F] [PMID: 34522921];
(c) Aukland, M.H.; List, B. Organocatalysis emerging as a technology. Pure Appl. Chem., 2021, 93(12), 1371-1381.
[http://dx.doi.org/10.1515/pac-2021-0501]
[http://dx.doi.org/10.1039/D0QO01092H];
(b) Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738];
(c) Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
(b) Jain, K.; Das, K. Recent Advances in the Developments of Enantioselective Electrophilic Fluorination Reactions via Organocatalysis. Fundamentals and Prospects of Catalysis; Bentham Science; UAE, 2020, 1, 123-147.;
(c) Lin, J.H.; Xiao, J.C. Recent advances in asymmetric fluorination and fluoroalkylation reactions via organocatalysis. Tetrahedron Lett., 2014, 55, 6147-6155.;
(d) Zhang, X.X.; Gao, Y.; Hu, X.S.; Ji, C.B.; Liu, Y.L.; Yu, J.S. Recent advances in catalytic enantioselective synthesis of fluorinated α‐and β‐amino acids. Adv. Synth. Catal., 2020, 362, 4763-4793.
[http://dx.doi.org/10.1021/acscatal.7b01178]
[http://dx.doi.org/10.1016/j.tetasy.2016.03.013]
[http://dx.doi.org/10.1021/ja111163u] [PMID: 21247133]
[http://dx.doi.org/10.1002/chem.200902303] [PMID: 19899096]
[http://dx.doi.org/10.1080/00397911.2018.1473442]
[http://dx.doi.org/10.1002/ejoc.201700420]
[http://dx.doi.org/10.1016/j.isci.2021.102209] [PMID: 33733069]
[http://dx.doi.org/10.1039/C6GC01582D]
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
[http://dx.doi.org/10.1021/acscatal.1c02443]
[http://dx.doi.org/10.1002/anie.201814457] [PMID: 30759327]
[http://dx.doi.org/10.1039/C5CC04527D] [PMID: 26111079]
[http://dx.doi.org/10.1021/acs.orglett.5b02532] [PMID: 26484983]
[http://dx.doi.org/10.1021/ja412083f] [PMID: 24437369]
[http://dx.doi.org/10.1039/C5CC04058B] [PMID: 26107990]
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162];
(b) Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7(5), 267-278.
[http://dx.doi.org/10.1039/b418069k];
(c) Kobayashi, S. Asymmetric catalysis in aqueous media. Pure Appl. Chem., 2007, 79(2), 235-245.
[http://dx.doi.org/10.1351/pac200779020235]
[http://dx.doi.org/10.1002/adsc.201500282]
[http://dx.doi.org/10.1016/j.jfluchem.2008.06.026] [PMID: 19122889]
[http://dx.doi.org/10.1021/jo00127a046]
[http://dx.doi.org/10.1021/ja3048255] [PMID: 22694301]
[http://dx.doi.org/10.1039/C4QO00256C]
[http://dx.doi.org/10.1002/adsc.201400242]
[http://dx.doi.org/10.1021/acs.joc.5b01961] [PMID: 26523829]
[http://dx.doi.org/10.1021/acs.orglett.9b01428] [PMID: 31095399]
[http://dx.doi.org/10.1002/ejoc.201900482]
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257];
(b) Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532];
(c) Jain, K.; Chaudhuri, S.; Pal, K.; Das, K. The Knoevenagel condensation using quinine as an organocatalyst under solvent-free conditions. New J. Chem., 2019, 43(3), 1299-1304.
[http://dx.doi.org/10.1039/C8NJ04219E]
[http://dx.doi.org/10.1016/j.tetlet.2007.02.077]
[http://dx.doi.org/10.1002/cssc.201300485] [PMID: 24357535]
[http://dx.doi.org/10.2174/2213346102666150218195142]
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[http://dx.doi.org/10.1039/c2gc16661e]
[http://dx.doi.org/10.1039/D0CS00258E] [PMID: 33687034]
[http://dx.doi.org/10.3390/ph15101201] [PMID: 36297312]
[http://dx.doi.org/10.1080/17460441.2016.1223037] [PMID: 27548817]
[http://dx.doi.org/10.1021/jo026792s] [PMID: 12636425]
[http://dx.doi.org/10.1039/C5QO00095E]
[http://dx.doi.org/10.1016/j.jfluchem.2019.109412]