Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Study on the Interaction between Silibinin and Neuraminidase

Author(s): Haowen Fang, Yanting Ding, Yi Lu, Bing Niu*, Han Lu* and Qin Chen*

Volume 29, Issue 16, 2023

Published on: 31 May, 2023

Page: [1266 - 1273] Pages: 8

DOI: 10.2174/1381612829666230515165041

Price: $65

Abstract

Background: Neuraminidase is a pathogenic protein of the avian influenza virus. Previous studies have shown that silibinin has the potential to inhibit neuraminidase activity.

Objective: This study aims to explore the interaction between silibinin and neuraminidase and the effect of silibinin on the structure and activity of neuraminidase.

Methods: In this study, two-dimensional fluorescence spectrum, three-dimensional fluorescence spectrometry, Uv-vis spectroscopy, and circular dichroism analysis were used.

Results: Silibinin alters the secondary structure of neuraminidase and inhibits the activity of neuraminidase.

Conclusion: Silibinin can interact with neuraminidase and inhibit its activity.

[1]
Xie Y, Gong J, Li M, Fang H, Xu W. The medicinal potential of influenza virus surface proteins: hemagglutinin and neuraminidase. Curr Med Chem 2011; 18(7): 1050-66.
[http://dx.doi.org/10.2174/092986711794940815] [PMID: 21254972]
[2]
Wang K, Lei Z, Zhao L, et al. Design, synthesis and biological evaluation of oseltamivir derivatives containing pyridyl group as potent inhibitors of neuraminidase for influenza A. Eur J Med Chem 2020; 185: 111841.
[http://dx.doi.org/10.1016/j.ejmech.2019.111841] [PMID: 31708183]
[3]
de Freitas CS, Rocha MEN, Sacramento CQ, Marttorelli A, Ferreira AC, Rocha N. Agathisflavone, a biflavonoid from Anacardium occidentale L., inhibits influenza virus’ neuraminidase. Curr Top Med Chem 2019; 20(2): 111-20.
[PMID: 31854280]
[4]
Sacramento CQ, Jordao AK, Abrantes JL, Alves CM, Marttorelli A, Fintelman-Rodrigues N. Neuraminidase from Influenza A and B viruses is susceptible to the compound 4-(4-Phenyl-1H-1,2,3-Triazol-1-yl)-2,2,6,6-Tetramethylpiperidine-1-Oxyl. Curr Top Med Chem 2019; 20(2): 132-9.
[PMID: 31880262]
[5]
Tran-Nguyen VK, Le MT, Tran TD, Truong VD, Thai KM. Peramivir binding affinity with influenza A neuraminidase and research on its mutations using an induced-fit docking approach. SAR QSAR Environ Res 2019; 30(12): 899-917.
[http://dx.doi.org/10.1080/1062936X.2019.1679248] [PMID: 31645133]
[6]
Yu R, Cheng LP, Li M, Pang W. Discovery of novel neuraminidase inhibitors by structure-based virtual screening, structural optimization, and bioassay. ACS Med Chem Lett 2019; 10(12): 1667-73.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00447] [PMID: 31857844]
[7]
Ju H, Xiu S, Ding X, et al. Discovery of novel 1,2,3-triazole oseltamivir derivatives as potent influenza neuraminidase inhibitors targeting the 430-cavity. Eur J Med Chem 2020; 187: 111940.
[http://dx.doi.org/10.1016/j.ejmech.2019.111940] [PMID: 31835169]
[8]
Tepper V, Nykvist M, Gillman A, Skog E, Wille M, Lindstrom HS. Influenza A/H4N2 mallard infection experiments further indicate zanamivir as less prone to induce environmental resistance development than oseltamivir. J Gen Virol 2019; 101(8): 816-24.
[PMID: 31855133]
[9]
Russell RJ, Haire LF, Stevens DJ, et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 2006; 443(7107): 45-9.
[http://dx.doi.org/10.1038/nature05114] [PMID: 16915235]
[10]
Ye J, Yang X, Xu M, Chan PK, Ma C. Novel N-Substituted oseltamivir derivatives as potent influenza neuraminidase inhibitors: Design, synthesis, biological evaluation, ADME prediction and molecular docking studies. Eur J Med Chem 2019; 182: 111635.
[http://dx.doi.org/10.1016/j.ejmech.2019.111635] [PMID: 31493744]
[11]
Hewajuli DA, Dharmayanti NLPI. Efficacy, mechanism and antiviral resistance of neuraminidase inhibitors and adamantane against avian influenza. WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences 2019; 29(2): 61-74.
[http://dx.doi.org/10.14334/wartazoa.v29i2.1951]
[12]
Wu X, Wu X, Sun Q, et al. Progress of small molecular inhibitors in the development of anti-influenza virus agents. Theranostics 2017; 7(4): 826-45.
[http://dx.doi.org/10.7150/thno.17071] [PMID: 28382157]
[13]
Lin X, Qin-Hua C, Peng L, Chun-Lei L, Guang-De Y. The hydrophobic side chain of oseltamivir influences type A subtype selectivity of neuraminidase inhibitors. Chem Biol Drug Des 2018; 91(1): 105-15.
[http://dx.doi.org/10.1111/cbdd.13060] [PMID: 28646621]
[14]
Hsieh NH, Lin YJ, Yang YF, Liao CM. Assessing the oseltamivir-induced resistance risk and implications for influenza infection control strategies. Infect Drug Resist 2017; 10: 215-26.
[http://dx.doi.org/10.2147/IDR.S138317] [PMID: 28790857]
[15]
Wu Y, Gao F, Qi J, et al. Resistance to mutant group 2 influenza virus neuraminidases of an oseltamivir-zanamivir hybrid inhibitor. J Virol 2016; 90(23): 10693-700.
[http://dx.doi.org/10.1128/JVI.01703-16] [PMID: 27654293]
[16]
Schaduangrat N, Phanich J, Rungrotmongkol T, Lerdsamran H, Puthavathana P, Ubol S. The significance of naturally occurring neuraminidase quasispecies of H5N1 avian influenza virus on resistance to oseltamivir: A point of concern. J Gen Virol 2016; 97(6): 1311-23.
[http://dx.doi.org/10.1099/jgv.0.000444] [PMID: 26935590]
[17]
Gamaleldin Elsadig Karar M, Matei MF, Jaiswal R, Illenberger S, Kuhnert N. Neuraminidase inhibition of dietary chlorogenic acids and derivatives – potential antivirals from dietary sources. Food Funct 2016; 7(4): 2052-9.
[http://dx.doi.org/10.1039/C5FO01412C] [PMID: 27010419]
[18]
Sun JY, He YQ, Du HR, Liu CL, Chen AY, Mei H. In vitro anti-viral activities and structure-activity relationship studies of flavones and dihydroflavone derivatives as influenza virus potential neuraminidase inhibitors. Chin J Struct Chem 2015; 34(11): 1641-51.
[19]
Zhu Q, Bang TH, Ohnuki K, Sawai T, Sawai K, Shimizu K. Inhibition of neuraminidase by ganoderma triterpenoids and implications for neuraminidase inhibitor design. Sci Rep 2015; 5(1): 13194.
[http://dx.doi.org/10.1038/srep13194] [PMID: 26307417]
[20]
De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 2016; 29(3): 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[21]
Hurt AC, Holien JK, Parker M, Kelso A, Barr IG. Zanamivir-resistant influenza viruses with a novel neuraminidase mutation. J Virol 2009; 83(20): 10366-73.
[http://dx.doi.org/10.1128/JVI.01200-09] [PMID: 19641000]
[22]
Niu B, Lu Y, Wang J, et al. 2D-SAR, Topomer CoMFA and molecular docking studies on avian influenza neuraminidase inhibitors. Comput Struct Biotechnol J 2019; 17: 39-48.
[http://dx.doi.org/10.1016/j.csbj.2018.11.007] [PMID: 30595814]
[23]
Chu C, Li D, Zhang S, et al. Role of silibinin in the management of diabetes mellitus and its complications. Arch Pharm Res 2018; 41(8): 785-96.
[http://dx.doi.org/10.1007/s12272-018-1047-x] [PMID: 29978427]
[24]
(a) Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzadeh A, Baradaran B. Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator. Life Sci 2018; 213: 236-47.
[http://dx.doi.org/10.1016/j.lfs.2018.10.009] [PMID: 30308184];
(b) Ross PD, Subramanian S. Thermodynamics of macromolecular association reactions: analysis of forces contributing to stabilization. Biophysical J 1980; 32(1): 79-81.
[http://dx.doi.org/10.1016/S0006-3495(80)84918-6] [PMID: 19431412]
[25]
Kilbourne ED. Influenza pandemics of the 20th century. Emerg Infect Dis 2006; 12(1): 9-14.
[http://dx.doi.org/10.3201/eid1201.051254] [PMID: 16494710]
[26]
Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol 2008; 3(1): 499-522.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.154316] [PMID: 18039138]
[27]
Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 1983; 303(5912): 35-40.
[http://dx.doi.org/10.1038/303035a0] [PMID: 6843658]
[28]
Colman PM. Influenza virus neuraminidase: Structure, antibodies, and inhibitors. Protein Sci 1994; 3(10): 1687-96.
[http://dx.doi.org/10.1002/pro.5560031007]
[29]
Air GM, Laver WG. The neuraminidase of influenza virus. Proteins 1989; 6(4): 341-56.
[http://dx.doi.org/10.1002/prot.340060402] [PMID: 2482974]
[30]
Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem 2006; 49(23): 6789-801.
[http://dx.doi.org/10.1021/jm0608356] [PMID: 17154509]
[31]
Kim CU, Lew W, Williams MA, et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 1997; 119(4): 681-90.
[http://dx.doi.org/10.1021/ja963036t] [PMID: 16526129]
[32]
Babu YS, Chand P, Bantia S, et al. BCX-1812 (RWJ-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J Med Chem 2000; 43(19): 3482-6.
[http://dx.doi.org/10.1021/jm0002679] [PMID: 11000002]
[33]
Mishin VP, Hayden FG, Gubareva LV. Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors. Antimicrob Agents Chemother 2005; 49(11): 4515-20.
[http://dx.doi.org/10.1128/AAC.49.11.4515-4520.2005] [PMID: 16251290]
[34]
Wah KC, Nik MNR, Mahadeva S. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2017; 15(12): 1940-1949.e8.
[http://dx.doi.org/10.1016/j.cgh.2017.04.016]
[35]
Ferenci P, Scherzer TM, Kerschner H, et al. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology 2008; 135(5): 1561-7.
[http://dx.doi.org/10.1053/j.gastro.2008.07.072] [PMID: 18771667]
[36]
Federico A, Dallio M, Masarone M, et al. Evaluation of the effect derived from silybin with vitamin d and vitamin e administration on clinical, metabolic, endothelial dysfunction, oxidative stress parameters, and serological worsening markers in nonalcoholic fatty liver disease patients. Oxid Med Cell Longev 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/8742075] [PMID: 31737175]
[37]
Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. gaernt.)—chemistry, bioavailability, and metabolism. Molecules 2017; 22(11): 1942.
[http://dx.doi.org/10.3390/molecules22111942] [PMID: 29125572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy