Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Moxifloxacin: Physical-chemical and Microbiological Analytical Methods in the Context of Green Analytical Chemistry

Author(s): Thaisa Alves Celedonio da Silva, Isadora Alves Lustosa and Ana Carolina Kogawa*

Volume 29, Issue 15, 2023

Published on: 22 May, 2023

Page: [1166 - 1172] Pages: 7

DOI: 10.2174/1381612829666230515150730

Price: $65

Abstract

Moxifloxacin (MOX) is a fourth-generation fluoroquinolone used in the form of tablets, infusion solutions and ophthalmic solutions. It does not have a physical-chemical or microbiological analytical method described in an official compendium. However, the literature shows some analysis methods for pharmaceuticals and biological matrices. In this context, the objective is to show the analytical methods present in the literature for the investigation of MOX by physical-chemical and microbiological techniques, as well as discussing them according to the requirements of current pharmaceutical analyses and green analytical chemistry. Among the physical-chemical methods present in the literature for MOX evaluation, 33% are HPLC, 21% are UV-Vis and 17% are capillary electrophoresis. On the other hand, among the microbiological methods, all of them are based on diffusion in agar. There is still scope in the literature to incorporate new and improved analytical methods for MOX evaluation, which adopt the concepts of green and sustainable analytical chemistry, either by using less (or not using) toxic organic solvents, reducing waste generation or even reducing the analysis time according to the intended objectives.

[1]
Gunda RK, Kumar JNS. Formulation development and evaluation of moxifloxacin.HCL fast dissolving tablets. pharmaceutical methods. Pharm Methods 2017; 8(2): 160-7.
[http://dx.doi.org/10.5530/phm.2017.8.24]
[2]
Naidoo A, Ramsuran V, Chirehwa M, et al. Effect of genetic variation in UGT1A and ABCB1 on moxifloxacin pharmacokinetics in South African patients with tuberculosis. Pharmacogenomics 2018; 19(1): 17-29.
[http://dx.doi.org/10.2217/pgs-2017-0144] [PMID: 29210323]
[3]
Naqvi GR, Naqvi BS, Shoaib HM, et al. Pharmaceutical surveillance study of moxifloxacin formulations: therapeutic perspective in terms of quality and efficacy. Lat Am J Pharm 2018; 37(6): 1104-14.
[4]
European Pharmacopeia. Strasbourg: Council of Europe 2019.
[5]
United States Pharmacopeia. United States Convention Inc. Rockville, MD 2020.
[6]
Naidoo A, Naidoo K, McIlleron H, Essack S, Padayatchi N. A review of moxifloxacin for the treatment of drug susceptible tuberculosis. J Clin Pharmacol 2017; 57(11): 1369-86.
[http://dx.doi.org/10.1002/jcph.968] [PMID: 28741299]
[7]
Llopis B, Funck-Brentano C, Tissot N, et al. Development and validation of a UPLC-MS/MS method for simultaneous quantification of levofloxacin, ciprofloxacin, moxifloxacin and rifampicin in human plasma: Application to the therapeutic drug monitoring in osteoarticular infections. J Pharm Biomed Anal 2020; 183(5): 113-37.
[http://dx.doi.org/10.1016/j.jpba.2020.113137] [PMID: 32086125]
[8]
Zheng X, Jongedijk EM, Hu Y, et al. Development and validation of a simple LC-MS/MS method for simultaneous determination of moxifloxacin, levofloxacin, prothionamide, pyrazinamide and ethambutol in human plasma. J Chromatogr B 2020; 1158(11): 122397.
[http://dx.doi.org/10.1016/j.jchromb.2020.122397] [PMID: 33091676]
[9]
Yang Z, Qin W. Separation of fluoroquinolones in acidic buffer by capillary electrophoresis with contactless conductivity detection. J Chromatogr A 2009; 1216(27): 5327-32.
[http://dx.doi.org/10.1016/j.chroma.2009.05.014] [PMID: 19481755]
[10]
Parmar AN, Parmar RR, Patel VM, Shah DA. The simultaneous estimation of moxifloxacin hydrochloride and bromfenac sodium in eye drops by UV. J Pharm Sci 2012; 2(1): 36-9.
[11]
Cruz LA, Hall R. Enantiomeric purity assay of moxifloxacin hydrochloride by capillary electrophoresis. J Pharm Biomed Anal 2005; 38(1): 8-13.
[http://dx.doi.org/10.1016/j.jpba.2004.12.004] [PMID: 15907612]
[12]
Motwani SK, Khar RK, Ahmad FJ, Chopra S, Kohli K, Talegaonkar S. Application of a validated stability-indicating densitometric thin-layer chromatographic method to stress degradation studies on moxifloxacin. Anal Chim Acta 2007; 582(1): 75-82.
[http://dx.doi.org/10.1016/j.aca.2006.08.053] [PMID: 17386477]
[13]
Faria AF, Souza MVN, Oliveira MAL. Validation of a capillary zone electrophoresis method for the determination of ciprofloxacin, gatifloxacin, moxifloxacin and ofloxacin in pharmaceutical formulations. J Braz Chem Soc 2008; 19(3): 389-96.
[http://dx.doi.org/10.1590/S0103-50532008000300004]
[14]
Dhillon V, Chaudhary A. A validated HPTLC method for estimation of moxifloxacin hydrochloride in tablets. Pharm Methods 2010; 1(1): 54-6.
[http://dx.doi.org/10.4103/2229-4708.72232] [PMID: 23781417]
[15]
Abdelaziz AA, Elbanna TE, Gamaleldeen NM. Validated microbiological and HPLC methods for the determination of moxifloxacin in pharmaceutical preparations and human plasma. Braz J Microbiol 2012; 43(4): 1291-301.
[http://dx.doi.org/10.1590/S1517-83822012000400008] [PMID: 24031955]
[16]
Ashour S, Bayram R. Development and validation of sensitive kinetic spectrophotometric method for the determination of moxifloxacin antibiotic in pure and commercial tablets. Spectrochim Acta A 2015; 140(4): 216-22.
[http://dx.doi.org/10.1016/j.saa.2014.12.111]
[17]
Momin MAM, Rangnekar B, Das SC. Development and validation of a RP-HPLC method for simultaneous quantification of bedaquiline (TMC207), moxifloxacin and pyrazinamide in a pharmaceutical powder formulation for inhalation. J Liq Chromatogr Relat Technol 2018; 41(8): 415-21.
[http://dx.doi.org/10.1080/10826076.2018.1437748]
[18]
Phani Sekhar Reddy G, Navyasree KS, Jagadish PC, Bhat K. Analytical method development and validation for hplc-ecd determination of moxifloxacin in marketed formulations. Pharm Chem J 2018; 52(7): 674-9.
[http://dx.doi.org/10.1007/s11094-018-1879-1]
[19]
Attimarad M, Shahzad Chohan M, Ahmed Balgoname A. Simultaneous determination of moxifloxacin and flavoxate by RP-HPLC and ecofriendly derivative spectrophotometry methods in formulations. Int J Environ Res Public Health 2019; 16(7): 1196.
[http://dx.doi.org/10.3390/ijerph16071196] [PMID: 30987126]
[20]
Zeng B, Gu Y, Nguyen K, Sherma J. Development of quantitative HPTLC-densitometry methods following a model process for transfer of TLC screening methods for pharmaceutical products containing moxifloxacin HCl, ofloxacin, amoxicillin trihydrate, acetylsalicylic acid + acetaminophen + caffeine, nimesulide, irbesartan, and pantoprazole. J Liq Chromatogr Relat Technol 2019; 42(9-10): 324-9.
[http://dx.doi.org/10.1080/10826076.2019.1585609]
[21]
Chohan MS, Elgorashe REE, Balgoname AA, et al. Eco-friendly derivative UV spectrophotometric methods for simultaneous determination of diclofenac sodium and moxifloxacin in laboratory mixed ophthalmic preparation. Indian Journal of Pharmaceutical Education and Research 2019; 54(1): 166-74.
[http://dx.doi.org/10.5530/ijper.54.1.20]
[22]
Hubicka U, Krzek J, Żuromska B, Walczak M, Żylewski M, Pawłowski D. Determination of photostability and photodegradation products of moxifloxacin in the presence of metal ions in solutions and solid phase. Kinetics and identification of photoproducts. Photochem Photobiol Sci 2012; 11(2): 351-7.
[http://dx.doi.org/10.1039/c1pp05259d] [PMID: 22186905]
[23]
Rusu A, Hancu G, Gyéresi Á. Development of a capillary electrophoresis method for the separation of fluoroquinolone derivatives in acidic background electrolyte. Acta Med Marisiensis 2014; 60(3): 109-15.
[http://dx.doi.org/10.2478/amma-2014-0023]
[24]
Skuredina AA, Le-Deygen IM, Uporov IV, Kudryashova EV. A study of the physicochemical properties and structure of moxifloxacin complex with methyl-β-cyclodextrin. Colloid J 2017; 79(5): 668-76.
[http://dx.doi.org/10.1134/S1061933X17050143]
[25]
Yosrey E, Elmansi H, Sheribah ZA, Metwally MES. Implementation of HILIC-UV technique for the determination of moxifloxacin and fluconazole in raw materials and pharmaceutical eye gel. Sci Rep 2022; 12(1): 13388.
[http://dx.doi.org/10.1038/s41598-022-17064-8] [PMID: 35927412]
[26]
Ibrahim FA, Elmansi H, Fathy ME. Green RP-HPLC method for simultaneous determination of moxifloxacin combinations: Investigation of the greenness for the proposed method. Microchem J 2019; 148: 151-61.
[http://dx.doi.org/10.1016/j.microc.2019.04.074]
[27]
Razzaq SN, Ashfaq M, Khan IU, Mariam I, Razzaq SS, Azeem W. Simultaneous determination of dexamethasone and moxifloxacin in pharmaceutical formulations using stability indicating HPLC method. Arab J Chem 2017; 10(3): 321-8.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.016]
[28]
Imran Kanjal M, Muneer M, Saeed M, et al. Oxone activated TiO2 in presence of UV-LED light for the degradation of moxifloxacin: A mechanistic study. Arab J Chem 2022; 15(9): 104061.
[http://dx.doi.org/10.1016/j.arabjc.2022.104061]
[29]
Kogawa AC, Salgado HRN. Analytical methods: Where do we stand in the current environmental scenario? EC Microbiol 2017; 13(3): 102-4.
[30]
Kogawa AC, Peltonen L, Antonio SG, Salgado HRN. Submission of rifaximin to different techniques: characterization, solubility study and microbiological evaluation. AAPS PharmSciTech 2019; 20(3): 125.
[http://dx.doi.org/10.1208/s12249-019-1329-8] [PMID: 30805802]
[31]
Nascimento PA, Kogawa AC, Salgado HRN. Turbidimetric method: A new, ecological and fast way for evaluation of vancomycin potency. J AOAC Int 2020; 103(6): 1582-7.
[http://dx.doi.org/10.1093/jaoacint/qsaa068] [PMID: 33247749]
[32]
Correa CBM, Kogawa AC, Chorilli M, Salgado HRN. Miniaturized microbiological method to determine the potency of rifaximin in tablets. J AOAC Int 2021; 104(4): 1049-54.
[http://dx.doi.org/10.1093/jaoacint/qsab017] [PMID: 33512492]
[33]
Richardi JF, Kogawa AC, Belavenuto EGT, Chorilli M, Salgado HRN. Ecological and miniaturized biological method for analysis of daptomycin potency. J AOAC Int 2021; 104(2): 466-71.
[http://dx.doi.org/10.1093/jaoacint/qsaa112] [PMID: 34020456]
[34]
da Trindade MT, Kogawa AC, Salgado HRN. Turbidimetric method: A multi-advantageous option for assessing the potency of ceftriaxone sodium in powder for injection. J AOAC Int 2021; 104(1): 204-10.
[http://dx.doi.org/10.1093/jaoacint/qsaa085] [PMID: 33221857]
[35]
Anastas PT. Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 1999; 29(3): 167-75.
[http://dx.doi.org/10.1080/10408349891199356]
[36]
Clarke CJ, Tu WC, Levers O, Bröhl A, Hallett JP. Green and sustainable solvents in chemical processes. Chem Rev 2018; 118(2): 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
[37]
Armenta S, Garrigues S, Esteve-Turrillas FA, de la Guardia M. Green extraction techniques in green analytical chemistry. Trends Analyt Chem 2019; 116(116): 248-53.
[http://dx.doi.org/10.1016/j.trac.2019.03.016]
[38]
Kogawa AC, Salgado HRN. Golden age of green chemistry. EC Microbiol 2017; 12(2): 52-4.
[39]
de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm J 2019; 27(1): 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[40]
Motta C, Kogawa A, Chorilli M, Salgado H. Eco-friendly and miniaturized analytical method for quantification of Rifaximin in tablets. Drug Analytical Research 2019; 3(2): 23-9.
[http://dx.doi.org/10.22456/2527-2616.98376]
[41]
Marco B, Kogawa A, Salgado H. New, green and miniaturized analytical method for determination of cefadroxil monohydrate in capsules. Drug Analytical Research 2019; 3(1): 23-8.
[http://dx.doi.org/10.22456/2527-2616.91086]
[42]
de Souza MJM, Kogawa AC, Salgado HRN. New and miniaturized method for analysis of enrofloxacin in palatable tablets. Spectrochim Acta A Mol Biomol Spectrosc 2019; 209(209): 1-7.
[http://dx.doi.org/10.1016/j.saa.2018.10.014] [PMID: 30343104]
[43]
Nascimento P, Kogawa A, Salgado HRN. A new and ecological miniaturized method by spectrophotometry for quantification of vancomycin in dosage form. Drug Analytical Research 2021; 5(1): 39-45.
[http://dx.doi.org/10.22456/2527-2616.112226]
[44]
Haruki T, Miyazaki D, Matsuura K, et al. Comparison of toxicities of moxifloxacin, cefuroxime, and levofloxacin to corneal endothelial cells in vitro. J Cataract Refract Surg 2014; 40(11): 1872-8.
[http://dx.doi.org/10.1016/j.jcrs.2014.08.027] [PMID: 25262563]
[45]
Benbouzid F, Kodjikian L, Hartmann D, Renaud F, Baillif S. Moxifloxacin superior to cefuroxime in reducing bacterial adhesion of Staphylococcus epidermidis on hydrophobic intraocular lenses. Acta Ophthalmol 2016; 94(1): e11-5.
[http://dx.doi.org/10.1111/aos.12827] [PMID: 26348502]
[46]
Abdellaziz LM, Hosny MM. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride. Anal Chem Insights 2011; 6(6): ACI.S8090.
[http://dx.doi.org/10.4137/ACI.S8090] [PMID: 22219661]
[47]
Kogawa AC, Salgado HRN. Ethanol on HPLC: Epiphany or Nonsense? Acta Sci Pharm Sci 2018; 2(3): 14-5.
[48]
Figueiredo AL, Kogawa AC, Salgado HRN. Development and validation of an ecological, new and rapid stability-indicating High Performance Liquid Chromatographic method for quantitative determination of aztreonam in lyophilized powder for injection. Drug Anal Res 2017; 1(1): 24-30.
[http://dx.doi.org/10.22456/2527-2616.73755]
[49]
Nascimento P A, Ac K, Hrn S. Development and validation of an innovative and ecological analytical method using high performance liquid chromatography for quantification of cephalothin sodium in pharmaceutical dosage. J Chromatogr Sep Tech 2018; 9(1): 394-401.
[http://dx.doi.org/10.4172/2157-7064.1000394]
[50]
da Trindade MT, Kogawa AC, Salgado HRN. A clean, sustainable and stability-indicating method for the quantification of ceftriaxone sodium in pharmaceutical product by HPLC. J Chromatogr Sci 2022; 60(3): 260-6.
[http://dx.doi.org/10.1093/chromsci/bmab078] [PMID: 34131704]
[51]
Prat D, Hayler J, Wells A. A survey of solvent selection guides. Green Chem 2014; 16(10): 4546-51.
[http://dx.doi.org/10.1039/C4GC01149J]
[52]
Ferreira RGL, Da Silva Júnior JR, Torres IMS, Kogawa AC. Fast and new microbiological method for evaluating the potency of marbofloxacin-based tablets. J AOAC Int 2022; qsac137.
[http://dx.doi.org/10.1093/jaoacint/qsac137] [PMID: 36326443]
[53]
Tótoli EG, Salgado HRN. Miniaturized turbidimetric assay: A green option for the analysis of besifloxacin in ophthalmic suspension. Talanta 2020; 209(209): 120532.
[http://dx.doi.org/10.1016/j.talanta.2019.120532] [PMID: 31892089]
[54]
Mandal S, Prabhushankar GL, Thimmasetty MKMJ, Geetha MS. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Investig 2012; 2(2): 78-82.
[http://dx.doi.org/10.4103/2230-973X.100042] [PMID: 23119236]
[55]
Sohrabi S, Haeri A, Mahboubi A, Mortazavi A, Dadashzadeh S. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection. Int J Biol Macromol 2016; 85(85): 625-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.013] [PMID: 26794314]
[56]
Tshweu LL, Shemis MA, Abdelghany A, et al. Synthesis, physicochemical characterization, toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin. RSC Advances 2020; 10(34): 19770-80.
[http://dx.doi.org/10.1039/C9RA10872F] [PMID: 35520420]
[57]
Liu Q, Ouyang Wc, Zhou Xh, Jin T, Wu Zw. Antibacterial activity and drug loading of moxifloxacin-loaded poly (vinyl alcohol)/chitosan electrospunnanofibers. Front Mater 2021; 2021(8): 36.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy