Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Antiproliferative Activity and Mechanisms of Action of Plant-derived Flavonoids on Breast Cancer

Author(s): Marilyn S. Criollo-Mendoza, J. Basilio Heredia*, Gabriela Vazquez-Olivo, Sara Avilés-Gaxiola, Erick P. Gutiérrez-Grijalva and Melissa Garcia-Carrasco

Volume 23, Issue 20, 2023

Published on: 19 May, 2023

Page: [1937 - 1951] Pages: 15

DOI: 10.2174/1568026623666230512123500

Price: $65

Abstract

Breast cancer is one of the main global diseases with a high mortality rate that mainly affects the female population. Despite the important advances that have been made concerning the treatments for this disease, research on less invasive therapies that generate fewer side effects for patients continues to develop. Consequently, researchers have turned their attention to using natural compounds (such as flavonoids) involved in molecular processes implicated in this type of cancer and are studying how these processes can be exploited to develop possible chemotherapies. This review offers a general description of studies on the antiproliferative activity of flavonoids obtained from natural sources for breast cancer treatment and their mechanism of action related to their structural characteristics. Reports were retrieved from electronic databases, such as Web of Science and Scopus using the following keywords: breast cancer, antiproliferative, flavonoids, and structureactivity. Articles published between 2015-2022 related to the topics mentioned above were selected, focusing on the flavonoids apigenin, luteolin, quercetin, and naringenin, as they are the ones with the highest activity and relevance according to the literature found.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: IARC CancerBase. 2013.
[2]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients, 2017, 9(7), 728.
[http://dx.doi.org/10.3390/nu9070728] [PMID: 28698459]
[3]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[4]
WHO Cancer. Breast cancer. Available from: www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/ (Accessed on: August 1, 2022).
[5]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[6]
Li, C. Breast cancer epidemiology; Springer: New York: Seattle, 2010.
[http://dx.doi.org/10.1007/978-1-4419-0685-4]
[7]
Cummings, M.C.; Simpson, P.T.; Reid, L.E.; Jayanthan, J.; Skerman, J.; Song, S.; McCart Reed, A.E.; Kutasovic, J.R.; Morey, A.L.; Marquart, L.; O’Rourke, P.; Lakhani, S.R. Metastatic progression of breast cancer: Insights from 50 years of autopsies. J. Pathol., 2014, 232(1), 23-31.
[http://dx.doi.org/10.1002/path.4288] [PMID: 24122263]
[8]
Henderson, J.W.; Donatelle, R.J. Complementary and alternative medicine use by women after completion of allopathic treatment for breast cancer. Altern. Ther. Health Med., 2004, 10(1), 52-57.
[PMID: 14727500]
[9]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[10]
Wang, L.; Zhang, S.; Wang, X. The metabolic mechanisms of breast cancer metastasis. Front. Oncol., 2021, 10(10), 602416.
[http://dx.doi.org/10.3389/fonc.2020.602416] [PMID: 33489906]
[11]
Dontu, G.; Al-Hajj, M.; Abdallah, W.M.; Clarke, M.F.; Wicha, M.S. Stem cells in normal breast development and breast cancer. Cell Prolif., 2003, 36(Suppl. 1), 59-72.
[http://dx.doi.org/10.1046/j.1365-2184.36.s.1.6.x] [PMID: 14521516]
[12]
Baselga, J.; Swain, S.M. Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer, 2009, 9(7), 463-475.
[http://dx.doi.org/10.1038/nrc2656] [PMID: 19536107]
[13]
Doyle, D.M.; Miller, K.D. Development of new targeted therapies for breast cancer. Breast Cancer, 2008, 15(1), 49-56.
[http://dx.doi.org/10.1007/s12282-007-0003-2] [PMID: 18224395]
[14]
Weigelt, B.; Baehner, F.L.; Reis-Filho, J.S. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: A retrospective of the last decade. J. Pathol., 2010, 220(2), 263-280.
[http://dx.doi.org/10.1002/path.2648] [PMID: 19927298]
[15]
Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast, 2015, 24(Suppl. 2), S26-S35.
[http://dx.doi.org/10.1016/j.breast.2015.07.008] [PMID: 26253814]
[16]
Ades, F.; Zardavas, D.; Bozovic-Spasojevic, I.; Pugliano, L.; Fumagalli, D.; de Azambuja, E.; Viale, G.; Sotiriou, C.; Piccart, M. Luminal B breast cancer: Molecular characterization, clinical management, and future perspectives. J. Clin. Oncol., 2014, 32(25), 2794-2803.
[http://dx.doi.org/10.1200/JCO.2013.54.1870] [PMID: 25049332]
[17]
Cheang, M.C.U.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; Perou, C.M.; Ellis, M.J.; Nielsen, T.O. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst., 2009, 101(10), 736-750.
[http://dx.doi.org/10.1093/jnci/djp082] [PMID: 19436038]
[18]
Eliyatkin, N. Yalçın, E.; Zengel, B.; Aktaş S.; Vardar, E. Molecular classification of breast carcinoma: From traditional, old-fashioned way to a new age, and a new way. J. Breast Health, 2015, 11(2), 59-66.
[http://dx.doi.org/10.5152/tjbh.2015.1669] [PMID: 28331693]
[19]
Rouzier, R.; Perou, C.M.; Symmans, W.F.; Ibrahim, N.; Cristofanilli, M.; Anderson, K.; Hess, K.R.; Stec, J.; Ayers, M.; Wagner, P.; Morandi, P.; Fan, C.; Rabiul, I.; Ross, J.S.; Hortobagyi, G.N.; Pusztai, L. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res., 2005, 11(16), 5678-5685.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2421] [PMID: 16115903]
[20]
Badve, S.; Dabbs, D.J.; Schnitt, S.J.; Baehner, F.L.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; Palacios, J.; Rakha, E.A.; Richardson, A.L.; Schmitt, F.C.; Tan, P.H.; Tse, G.M.; Weigelt, B.; Ellis, I.O.; Reis-Filho, J.S. Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod. Pathol., 2011, 24(2), 157-167.
[http://dx.doi.org/10.1038/modpathol.2010.200] [PMID: 21076464]
[21]
Severson, T.M.; Peeters, J.; Majewski, I.; Michaut, M.; Bosma, A.; Schouten, P.C.; Chin, S.F.; Pereira, B.; Goldgraben, M.A.; Bismeijer, T.; Kluin, R.J.C.; Muris, J.J.F.; Jirström, K.; Kerkhoven, R.M.; Wessels, L.; Caldas, C.; Bernards, R.; Simon, I.M.; Linn, S. BRCA1-like signature in triple negative breast cancer: Molecular and clinical characterization reveals subgroups with therapeutic potential. Mol. Oncol., 2015, 9(8), 1528-1538.
[http://dx.doi.org/10.1016/j.molonc.2015.04.011] [PMID: 26004083]
[22]
Shaik, B.; Zafar, T.; Balasubramanian, K.; Gupta, S.P. An overview of ovarian cancer: Molecular processes involved and development of target-based chemotherapeutics. Curr. Top. Med. Chem., 2021, 21(4), 329-346.
[http://dx.doi.org/10.2174/1568026620999201111155426] [PMID: 33183204]
[23]
Lehmann, B.D. Jovanović B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One, 2016, 11(6), e0157368.
[http://dx.doi.org/10.1371/journal.pone.0157368] [PMID: 27310713]
[24]
Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.; Perou, C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res., 2010, 12(5), R68.
[http://dx.doi.org/10.1186/bcr2635] [PMID: 20813035]
[25]
Mitra, S.; Dash, R. Natural products for the management and prevention of breast cancer. Evi.-based Complement. Altern. Med., 2018, 8324696.
[26]
Moo, T.A.; Sanford, R.; Dang, C.; Morrow, M. Overview of breast cancer therapy. PET Clin., 2018, 13(3), 339-354.
[http://dx.doi.org/10.1016/j.cpet.2018.02.006] [PMID: 30100074]
[27]
Chen, K.; Huang, Y.; Chen, J. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sin., 2013, 34(6), 732-740.
[http://dx.doi.org/10.1038/aps.2013.27] [PMID: 23685952]
[28]
Goyal, S.; Gupta, N.; Chatterjee, S.; Nimesh, S. Natural plant extracts as potential therapeutic agents for the treatment of cancer. Curr. Top. Med. Chem., 2016, 17(2), 96-106.
[http://dx.doi.org/10.2174/1568026616666160530154407] [PMID: 27237328]
[29]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[30]
Umadevi, M.K.; Bhowmik, D.; Duraivel, S. Traditionally used anticancer herbs in India. J. Med. Plants Studies, 2013, 1(3), 56-74.
[31]
Liu, S.; Dontu, G.; Wicha, M.S. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res., 2005, 7(3), 86-95.
[http://dx.doi.org/10.1186/bcr1021] [PMID: 15987436]
[32]
Siddiqui, J.; Singh, A.; Chagtoo, M.; Singh, N.; Godbole, M.; Chakravarti, B. Phytochemicals for breast cancer therapy: Current status and future implications. Curr. Cancer Drug Targets, 2015, 15(2), 116-135.
[http://dx.doi.org/10.2174/1568009615666141229152256] [PMID: 25544650]
[33]
Hynes, N.E.; Watson, C.J. Mammary gland growth factors: Roles in normal development and in cancer. Cold Spring Harb. Perspect. Biol., 2010, 2(8), a003186.
[http://dx.doi.org/10.1101/cshperspect.a003186] [PMID: 20554705]
[34]
Thomas, C.; Gustafsson, J.Å. The different roles of ER subtypes in cancer biology and therapy. Nat. Rev. Cancer, 2011, 11(8), 597-608.
[http://dx.doi.org/10.1038/nrc3093] [PMID: 21779010]
[35]
Singh, B.; Mense, S.M.; Bhat, N.K.; Putty, S.; Guthiel, W.A.; Remotti, F.; Bhat, H.K. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats. Toxicol. Appl. Pharmacol., 2010, 247(2), 83-90.
[http://dx.doi.org/10.1016/j.taap.2010.06.011] [PMID: 20600213]
[36]
Schiff, R.; Massarweh, S.; Shou, J.; Osborne, C.K. Breast cancer endocrine resistance: How growth factor signaling and estrogen receptor coregulators modulate response. Clin. Cancer Res., 2003, 9(1 Pt 2), 447S-454S.
[PMID: 12538499]
[37]
Abella, J.V.; Park, M. Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases. Am. J. Physiol. Endocrinol. Metab., 2009, 296(5), E973-E984.
[http://dx.doi.org/10.1152/ajpendo.90857.2008] [PMID: 19240253]
[38]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[39]
Werner, H.; Le Roith, D. The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Crit. Rev. Oncog., 1997, 8(1), 71-92.
[http://dx.doi.org/10.1615/CritRevOncog.v8.i1.40] [PMID: 9516087]
[40]
Guerrab, A.E.; Bamdad, M.; Kwiatkowski, F.; Bignon, Y.J.; Penault-Llorca, F.; Aubel, C. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget, 2016, 7(45), 73618-73637.
[http://dx.doi.org/10.18632/oncotarget.12037] [PMID: 27655662]
[41]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[http://dx.doi.org/10.1126/science.123.3191.309] [PMID: 13298683]
[42]
Amon, L.M.; Pitteri, S.J.; Li, C.I.; McIntosh, M.; Ladd, J.J.; Disis, M.; Porter, P.; Wong, C.H.; Zhang, Q.; Lampe, P.; Prentice, R.L.; Hanash, S.M. Concordant release of glycolysis proteins into the plasma preceding a diagnosis of ER+ breast cancer. Cancer Res., 2012, 72(8), 1935-1942.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3266] [PMID: 22367215]
[43]
Akins, N.S.; Nielson, T.C.; Le, H.V. Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Curr. Top. Med. Chem., 2018, 18(6), 494-504.
[http://dx.doi.org/10.2174/1568026618666180523111351] [PMID: 29788892]
[44]
Moreira, L.; Araújo, I.; Costa, T.; Correia-Branco, A.; Faria, A.; Martel, F.; Keating, E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell Res., 2013, 319(12), 1784-1795.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.001] [PMID: 23664836]
[45]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[46]
Burz, C.; Berindan-Neagoe, I.; Balacescu, O.; Irimie, A. Apoptosis in cancer: Key molecular signaling pathways and therapy targets. Acta Oncol., 2009, 48(6), 811-821.
[http://dx.doi.org/10.1080/02841860902974175] [PMID: 19513886]
[47]
Eldahshan, O.A. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr. Res. J. Biol. Sci., 2011, 3(1)
[48]
Tor, Y.S.; Yazan, L.S.; Foo, J.B.; Wibowo, A.; Ismail, N.; Cheah, Y.K.; Abdullah, R.; Ismail, M.; Ismail, I.S.; Yeap, S.K. Induction of apoptosis in MCF-7 cells via oxidative stress generation, mitochondria-dependent and caspase-independent pathway by ethyl acetate extract of Dillenia suffruticosa and its chemical profile. PLoS One, 2015, 10(6), e0127441.
[http://dx.doi.org/10.1371/journal.pone.0127441] [PMID: 26047480]
[49]
Bayoumi, S.A.L.; Rowan, M.G.; Beeching, J.R.; Blagbrough, I.S. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Phytochemistry, 2010, 71(5-6), 598-604.
[http://dx.doi.org/10.1016/j.phytochem.2009.10.012] [PMID: 20137795]
[50]
Nguyen, D.M.C.; Seo, D.J.; Kim, K.Y.; Park, R.D.; Kim, D.H.; Han, Y.S.; Kim, T.H.; Jung, W.J. Nematicidal activity of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa bark against Meloidogyne incognita. Microb. Pathog., 2013, 59-60, 52-59.
[http://dx.doi.org/10.1016/j.micpath.2013.04.005] [PMID: 23603737]
[51]
Sahoo, S.; Mohapatra, P.; Sahoo, S.K. Flavonoids for the treatment of breast cancer, present status and future prospective. Anticancer. Agents Med. Chem., 2022.
[http://dx.doi.org/10.2174/1871520623666221024114521] [PMID: 36284374]
[52]
Khoddami, A.; Wilkes, M.; Roberts, T. Techniques for analysis of plant phenolic compounds. Molecules, 2013, 18(2), 2328-2375.
[http://dx.doi.org/10.3390/molecules18022328] [PMID: 23429347]
[53]
Gutiérrez-Grijalva, E.; Picos-Salas, M.; Leyva-López, N.; Criollo-Mendoza, M.; Vazquez-Olivo, G.; Heredia, J. Flavonoids and phenolic acids from oregano: occurrence, biological activity and health benefits. Plants, 2017, 7(1), 2.
[http://dx.doi.org/10.3390/plants7010002] [PMID: 29278371]
[54]
Vermerris, W.N. Families of phenolic compounds and means of classification.In: Phenolic Compound Biochemistry; Springer: Dordrecht, The Netherlands, 2008.
[55]
Ambriz-Pérez, D.L.; Leyva-López, N.; Gutierrez-Grijalva, E.P.; Heredia, J.B. Phenolic compounds: Natural alternative in inflammation treatment. A review. Cogent Food Agric., 2016, 2(1), 1131412.
[56]
AL-Ishaq. R.K.; Mazurakova, A.; Kubatka, P.; Büsselberg, D. Flavonoids dual benefits in gastrointestinal cancer and diabetes: A potential treatment on the horizon? Cancers, 2022, 14(24), 6073.
[http://dx.doi.org/10.3390/cancers14246073] [PMID: 36551558]
[57]
Fardoun, M.M.; Maaliki, D.; Halabi, N.; Iratni, R.; Bitto, A.; Baydoun, E.; Eid, A.H. Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets. Clin. Sci., 2020, 134(12), 1403-1432.
[http://dx.doi.org/10.1042/CS20200356] [PMID: 32556180]
[58]
Chen, G.; Guo, M. Screening for natural inhibitors of topoisomerases I from Rhamnus davurica by affinity ultrafiltration and high-performance liquid chromatography–mass spectrometry. Front. Plant Sci., 2017, 8, 1-11.
[59]
Wang, L.; Chen, J.; Teng, J.; Ma, L.; Tong, H.; Ren, B.; Li, W. Flavonoids isolated from the flowers of Limonium bicolor and their in vitro antitumor evaluation. Pharmacogn. Mag., 2017, 13(50), 222-225.
[http://dx.doi.org/10.4103/0973-1296.204566] [PMID: 28539711]
[60]
Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 2012, 4(11), 1679-1691.
[http://dx.doi.org/10.3390/nu4111679] [PMID: 23201840]
[61]
Gómez de Cedrón, M.; Vargas, T.; Madrona, A.; Jiménez, A.; Pérez-Pérez, M.J.; Quintela, J.C.; Reglero, G.; San-Félix, A.; Ramírez de Molina, A. Novel polyphenols that inhibit colon cancer cell growth affecting cancer cell metabolism. J. Pharmacol. Exp. Ther., 2018, 366(2), 377-389.
[http://dx.doi.org/10.1124/jpet.118.248278] [PMID: 29871992]
[62]
Grigalius, I.; Petrikaite, V. Relationship between antioxidant and anticancer activity of trihydroxyflavones. Molecules, 2017, 22(12), 2169.
[http://dx.doi.org/10.3390/molecules22122169] [PMID: 29215574]
[63]
Li, X.; Zhang, C.; Guo, S.; Rajaram, P.; Lee, M.; Chen, G.; Fong, R.; Gonzalez, A.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Structure-activity relationship and pharmacokinetic studies of 3-O-substitutedflavonols as anti-prostate cancer agents. Eur. J. Med. Chem., 2018, 157, 978-993.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.047] [PMID: 30165345]
[64]
Liu, R.; Zhang, H.; Yuan, M.; Zhou, J.; Tu, Q.; Liu, J.J.; Wang, J. Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules, 2013, 18(9), 11496-11511.
[http://dx.doi.org/10.3390/molecules180911496] [PMID: 24048283]
[65]
Sung, B.; Chung, H.Y.; Kim, N.D. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., 2016, 21(4), 216-226.
[http://dx.doi.org/10.15430/JCP.2016.21.4.216] [PMID: 28053955]
[66]
Arivukkarasu, R.; Rajasekaran, A.; Kankaria, V.; Selvam, M. In vitro anti cancer activity and detection of quercetin, apigenin in methanol extract of Euphorbia nivulia Buch.-Ham. By HPTLC Technique. Res J Pharm Technol., 2017, 10(8), 2637-2640.
[http://dx.doi.org/10.5958/0974-360X.2017.00468.1]
[67]
Huang, C.; Wei, Y.X.; Shen, M.C.; Tu, Y.H.; Wang, C.C.; Huang, H.C. Chrysin, abundant in Morinda citrifolia fruit water–EtOAc extracts, combined with apigenin synergistically induced apoptosis and inhibited migration in human breast and liver cancer cells. J. Agric. Food Chem., 2016, 64(21), 4235-4245.
[http://dx.doi.org/10.1021/acs.jafc.6b00766] [PMID: 27137679]
[68]
Seo, H.S.; Jo, J.K.; Ku, J.M.; Choi, H.S.; Choi, Y.K.; Woo, J.K.; Kim, H.; Kang, S.; Lee, K.; Nam, K.W.; Park, N.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci. Rep., 2015, 35(6), e00276.
[http://dx.doi.org/10.1042/BSR20150165] [PMID: 26500281]
[69]
Perrott, K.M.; Wiley, C.D.; Desprez, P.Y.; Campisi, J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience, 2017, 39(2), 161-173.
[http://dx.doi.org/10.1007/s11357-017-9970-1] [PMID: 28378188]
[70]
Hong, J.; Fristiohady, A.; Nguyen, C.H.; Milovanovic, D.; Huttary, N.; Krieger, S.; Hong, J.; Geleff, S.; Birner, P.; Jäger, W.; Özmen, A.; Krenn, L.; Krupitza, G. Apigenin and luteolin attenuate the breaching of MDA-MB231 breast cancer spheroids through the lymph endothelial barrier in vitro. Front. Pharmacol., 2018, 9, 220.
[http://dx.doi.org/10.3389/fphar.2018.00220] [PMID: 29593542]
[71]
Li, Y.W.; Xu, J.; Zhu, G.Y.; Huang, Z.J.; Lu, Y.; Li, X.Q.; Wang, N.; Zhang, F.X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov., 2018, 4(1), 105.
[http://dx.doi.org/10.1038/s41420-018-0124-8] [PMID: 30479839]
[72]
Vrhovac Madunić I.; Madunić J.; Antunović M.; Paradžik, M.; Garaj-Vrhovac, V.; Breljak, D.; Marijanović I.; Gajski, G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(5), 537-550.
[http://dx.doi.org/10.1007/s00210-018-1486-4] [PMID: 29541820]
[73]
Seo, H.S.; Ku, J.M.; Choi, H.S.; Woo, J.K.; Lee, B.H.; Kim, D.S.; Song, H.J.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol. Rep., 2017, 38(2), 715-724.
[http://dx.doi.org/10.3892/or.2017.5752] [PMID: 28656316]
[74]
Bauer, D.; Redmon, N.; Mazzio, E.; Soliman, K.F. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One, 2017, 12(4), e0175558.
[http://dx.doi.org/10.1371/journal.pone.0175558] [PMID: 28441391]
[75]
Tseng, T.H.; Chien, M.H.; Lin, W.L.; Wen, Y.C.; Chow, J.M.; Chen, C.K.; Kuo, T.C.; Lee, W.J. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21 WAF1/CIP1 expression. Environ. Toxicol., 2017, 32(2), 434-444.
[http://dx.doi.org/10.1002/tox.22247] [PMID: 26872304]
[76]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[77]
Sun, D.W.; Zhang, H.D.; Mao, L.; Mao, C.F.; Chen, W.; Cui, M.; Ma, R.; Cao, H.X.; Jing, C.W.; Wang, Z.; Wu, J.Z.; Tang, J.H. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating MiRNAs. Cell. Physiol. Biochem., 2015, 37(5), 1693-1711.
[http://dx.doi.org/10.1159/000438535] [PMID: 26545287]
[78]
Naso, L.G.; Badiola, I.; Marquez Clavijo, J.; Valcarcel, M.; Salado, C.; Ferrer, E.G.; Williams, P.A.M. Inhibition of the metastatic progression of breast and colorectal cancer in vitro and in vivo in murine model by the oxidovanadium(IV) complex with luteolin. Bioorg. Med. Chem., 2016, 24(22), 6004-6011.
[http://dx.doi.org/10.1016/j.bmc.2016.09.058] [PMID: 27707626]
[79]
Jeon, Y.W.; Ahn, Y.E.; Chung, W.S.; Choi, H.J.; Suh, Y.J. Synergistic effect between celecoxib and luteolin is dependent on estrogen receptor in human breast cancer cells. Tumour Biol., 2015, 36(8), 6349-6359.
[http://dx.doi.org/10.1007/s13277-015-3322-5] [PMID: 25851346]
[80]
Zhang, L.; Yang, F.; Huang, L.; Liu, A.; Zhang, J. Luteolin enhances the antitumor activity of lapatinib in human breast cancer cells. Biomed. Res. (Aligarh), 2017, 28(11), 4902-4907.
[81]
Lin, D.; Kuang, G.; Wan, J.; Zhang, X.; Li, H.; Gong, X.; Li, H. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol. Rep., 2017, 37(2), 895-902.
[http://dx.doi.org/10.3892/or.2016.5311] [PMID: 27959422]
[82]
Cook, M.T.; Liang, Y.; Besch-Williford, C.; Goyette, S.; Mafuvadze, B.; Hyder, S.M. Luteolin inhibits progestin-dependent angiogenesis, stem cell-like characteristics, and growth of human breast cancer xenografts. Springerplus, 2015, 4(1), 444.
[http://dx.doi.org/10.1186/s40064-015-1242-x] [PMID: 26312209]
[83]
Sui, J-Q.; Xie, K-P.; Xie, M-J. Inhibitory effect of luteolin on the proliferation of human breast cancer cell lines induced by epidermal growth factor. Sheng Li Xue Bao, 2016, 68(1), 27-34.
[PMID: 26915319]
[84]
Huang, L.; Jin, K.; Lan, H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol. Lett., 2019, 17(4), 3842-3850.
[http://dx.doi.org/10.3892/ol.2019.10052] [PMID: 30930986]
[85]
Gao, G.; Ge, R.; Li, Y.; Liu, S. Luteolin exhibits anti-breast cancer property through up-regulating miR-203. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3265-3271.
[http://dx.doi.org/10.1080/21691401.2019.1646749] [PMID: 31368817]
[86]
Goodarzi, S.; Tabatabaei, M.J.; Mohammad Jafari, R.; Shemirani, F.; Tavakoli, S.; Mofasseri, M.; Tofighi, Z. Cuminum cyminum fruits as source of luteolin- 7- O -glucoside, potent cytotoxic flavonoid against breast cancer cell lines. Nat. Prod. Res., 2020, 34(11), 1602-1606.
[http://dx.doi.org/10.1080/14786419.2018.1519824] [PMID: 30580606]
[87]
Barrajón-Catalán, E.; Taamalli, A.; Quirantes-Piné, R.; Roldan-Segura, C.; Arráez-Román, D.; Segura-Carretero, A.; Micol, V.; Zarrouk, M. Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line. J. Pharm. Biomed. Anal., 2015, 105, 156-162.
[http://dx.doi.org/10.1016/j.jpba.2014.11.048] [PMID: 25560707]
[88]
Tao, S.; He, H.; Chen, Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol. Cell. Biochem., 2015, 402(1-2), 93-100.
[http://dx.doi.org/10.1007/s11010-014-2317-7] [PMID: 25596948]
[89]
Maryam, R.; Faegheh, S.; Majid, A-S.; Kazem, N-K. Effect of quercetin on secretion and gene expression of leptin in breast cancer. J. Tradit. Chin. Med., 2017, 37(3), 321-325.
[http://dx.doi.org/10.1016/S0254-6272(17)30067-5] [PMID: 31682374]
[90]
Sultan, A.S.; Khalil, M.I.; Sami, B.M.; Alkhuriji, A.F.; Sadek, O. Quercetin induces apoptosis in triple-negative breast cancer cells via inhibiting fatty acid synthase and β-catenin. Int. J. Clin. Exp. Pathol., 2017, 10(1), 156-172.
[91]
Seo, H.S.; Ku, J.M.; Choi, H.S.; Choi, Y.K.; Woo, J.K.; Kim, M.; Kim, I.; Na, C.H.; Hur, H.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol. Rep., 2016, 36(1), 31-42.
[http://dx.doi.org/10.3892/or.2016.4786] [PMID: 27175602]
[92]
Srinivasan, A.; Thangavel, C.; Liu, Y.; Shoyele, S.; Den, R.B.; Selvakumar, P.; Lakshmikuttyamma, A. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol. Carcinog., 2016, 55(5), 743-756.
[http://dx.doi.org/10.1002/mc.22318] [PMID: 25968914]
[93]
Li, S.; Yuan, S.; Zhao, Q.; Wang, B.; Wang, X.; Li, K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother., 2018, 100, 441-447.
[http://dx.doi.org/10.1016/j.biopha.2018.02.055] [PMID: 29475141]
[94]
Sharma, R.; Gatchie, L.; Williams, I.S.; Jain, S.K.; Vishwakarma, R.A.; Chaudhuri, B.; Bharate, S.B. Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme. Bioorg. Med. Chem. Lett., 2017, 27(24), 5400-5403.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.013] [PMID: 29150398]
[95]
Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M.R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl. Med. J., 2017, 118(2), 123-128.
[http://dx.doi.org/10.4149/BLL_2017_025] [PMID: 28814095]
[96]
Aghapour, F.; Moghadamnia, A.A.; Nicolini, A.; Kani, S.N.M.; Barari, L.; Morakabati, P.; Rezazadeh, L.; Kazemi, S. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines. Biochem. Biophys. Res. Commun., 2018, 500(4), 860-865.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.174] [PMID: 29698680]
[97]
Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M. Kılıç, C.S.; Sytar, O.; Sharifi-Rad, M.; Sharopov, F.; Martins, N.; Martorell, M.; Cho, W.C. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega, 2020, 5(20), 11849-11872.
[http://dx.doi.org/10.1021/acsomega.0c01818] [PMID: 32478277]
[98]
Li, J.; Zhang, J.; Wang, Y.; Liang, X.; Wusiman, Z.; Yin, Y.; Shen, Q. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm., 2017, 523(1), 300-309.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.040] [PMID: 28336457]
[99]
Abaza, M.S.I.; Orabi, K.Y.; Al-Quattan, E.; Al-Attiyah, R.J. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int., 2015, 15(1), 46.
[http://dx.doi.org/10.1186/s12935-015-0194-0] [PMID: 26074733]
[100]
Chandrika, B.B.; Steephan, M.; Kumar, T.R.S.; Sabu, A.; Haridas, M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci., 2016, 160, 47-56.
[http://dx.doi.org/10.1016/j.lfs.2016.07.007] [PMID: 27449398]
[101]
Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105.
[http://dx.doi.org/10.1007/s11033-016-3942-x] [PMID: 26748999]
[102]
Sharma, G.; Park, J.; Sharma, A.R.; Jung, J.S.; Kim, H.; Chakraborty, C.; Song, D.K.; Lee, S.S.; Nam, J.S. Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm. Res., 2015, 32(2), 723-735.
[http://dx.doi.org/10.1007/s11095-014-1504-2] [PMID: 25186442]
[103]
de Oliveira Pedro, R.; Hoffmann, S.; Pereira, S.; Goycoolea, F.M.; Schmitt, C.C.; Neumann, M.G. Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur. J. Pharm. Biopharm., 2018, 131, 203-210.
[http://dx.doi.org/10.1016/j.ejpb.2018.08.009] [PMID: 30145220]
[104]
Zhao, Z.; Jin, G.; Ge, Y.; Guo, Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology, 2019, 27(5), 1021-1036.
[http://dx.doi.org/10.1007/s10787-018-00556-3] [PMID: 30941613]
[105]
Rajamani, S.; Radhakrishnan, A.; Sengodan, T.; Thangavelu, S. Augmented anticancer activity of naringenin-loaded TPGS polymeric nanosuspension for drug resistive MCF-7 human breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(11), 1752-1761.
[http://dx.doi.org/10.1080/03639045.2018.1496445] [PMID: 29968480]
[106]
Ramos, J. Breast Cancer-From Biology to Medicine; IntechOpen, 2017.
[107]
Masuelli, L.; Benvenuto, M.; Mattera, R.; Di Stefano, E.; Zago, E.; Taffera, G.; Tresoldi, I.; Giganti, M.G.; Frajese, G.V.; Berardi, G.; Modesti, A.; Bei, R. In vitro and in vivo anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma. Front. Pharmacol., 2017, 8, 373.
[http://dx.doi.org/10.3389/fphar.2017.00373] [PMID: 28674496]
[108]
Lee, H.H.; Jung, J.; Moon, A.; Kang, H.; Cho, H. Antitumor and anti-invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression. Int. J. Mol. Sci., 2019, 20(13), 3143.
[http://dx.doi.org/10.3390/ijms20133143] [PMID: 31252615]
[109]
Ke, J.Y.; Banh, T.; Hsiao, Y.H.; Cole, R.M.; Straka, S.R.; Yee, L.D.; Belury, M.A. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice. Mol. Nutr. Food Res., 2017, 61(9), 1600934.
[http://dx.doi.org/10.1002/mnfr.201600934] [PMID: 28370954]
[110]
Zhang, F.; Dong, W.; Zeng, W.; Zhang, L.; Zhang, C.; Qiu, Y.; Wang, L.; Yin, X.; Zhang, C.; Liang, W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res., 2016, 18(1), 38.
[http://dx.doi.org/10.1186/s13058-016-0698-0] [PMID: 27036297]
[111]
Pateliya, B.; Burade, V.; Goswami, S. Combining naringenin and metformin with doxorubicin enhances anticancer activity against triple-negative breast cancer in vitro and in vivo. Eur. J. Pharmacol., 2021, 891, 173725.
[http://dx.doi.org/10.1016/j.ejphar.2020.173725] [PMID: 33157041]
[112]
Cao, D.; Zhu, G.Y.; Lu, Y.; Yang, A.; Chen, D.; Huang, H.J.; Peng, S.X.; Chen, L.W.; Li, Y.W. Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Biomed. Pharmacother., 2020, 129, 110462.
[http://dx.doi.org/10.1016/j.biopha.2020.110462] [PMID: 32768952]
[113]
Billington, C.K. Penn, R.B.; Hall, I.P. β2 agonists. Handb. Exp. Pharmacol., 2016, 237, 23-40.
[http://dx.doi.org/10.1007/164_2016_64] [PMID: 27878470]
[114]
Zhang, L.; Liu, Q.; Huang, L.; Yang, F.; Liu, A.; Zhang, J. Combination of lapatinib and luteolin enhances the therapeutic efficacy of lapatinib on human breast cancer through the FOXO3a/NQO1 pathway. Biochem. Biophys. Res. Commun., 2020, 531(3), 364-371.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.049] [PMID: 32800546]
[115]
Lim, W.F.; Mohamad Yusof, M.I.; Teh, L.K.; Salleh, M.Z. Significant decreased expressions of CaN, VEGF, SLC39A6 and SFRP1 in MDA-MB-231 xenograft breast tumor mice treated with Moringa oleifera leaves and seed residue (MOLSr) extracts. Nutrients, 2020, 12(10), 2993.
[http://dx.doi.org/10.3390/nu12102993] [PMID: 33007803]
[116]
Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.063] [PMID: 27041643]
[117]
Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140.
[http://dx.doi.org/10.1016/j.msec.2019.02.096] [PMID: 30948047]
[118]
Ferreira, M.; Costa, D.; Sousa, Â. Flavonoids-based delivery systems towards cancer therapies. Bioengineering, 2022, 9(5), 197.
[http://dx.doi.org/10.3390/bioengineering9050197] [PMID: 35621475]
[119]
Walle, T.; Ta, N.; Kawamori, T.; Wen, X.; Tsuji, P.A.; Walle, U.K. Cancer chemopreventive properties of orally bioavailable flavonoids-Methylated versus unmethylated flavones. Biochem. Pharmacol., 2007, 73(9), 1288-1296.
[http://dx.doi.org/10.1016/j.bcp.2006.12.028] [PMID: 17250812]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy