Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Effects of Advanced Glycation End Products via Oxidative Stress on Beta Cells: Insights from in vitro and in vivo Studies and Update on Emerging Therapies

Author(s): Ioanna A. Anastasiou, Konstantinos N. Tentolouris, Vaia Lambadiari, Ioanna Eleftheriadou, Maria Tektonidou and Nikolaos Tentolouris*

Volume 23, Issue 21, 2023

Published on: 12 June, 2023

Page: [2041 - 2052] Pages: 12

DOI: 10.2174/1389557523666230510123038

Price: $65

Abstract

Background: Protein, lipid, and nucleic acid glycation reactions begin and continue as a result of persistent hyperglycemia in patients with diabetes mellitus. Advanced glycated end products (AGEs) are a complex group of chemical moieties that are formed as a result of the glycation process and play an important role in the pathogenesis of diabetes mellitus. When AGEs interact with their cellular receptor (RAGE), numerous signaling pathways, including nuclear factor kappa-light-chainenhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK), and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), are activated, increasing oxidative stress.

Objective: The aim of this review was to summarize in vitro and in vivo studies underlining the involvement of AGEs on beta cell dysfunction and death via oxidative stress.

Methods: A literature search of publications published between 1912 and December 2022 was conducted using MEDLINE, EMBASE, and the Cochrane Library, with restrictions on articles written in English.

Results: Recent insights have revealed that oxidative stress has a crucial role in the development of beta cell dysfunction and insulin resistance, the major hallmarks of type 2 diabetes mellitus. Studies also revealed that AGEs decrease insulin synthesis and secretion in the pancreatic beta cells and induce cell apoptosis.

Conclusion: Experimental data have shown that both AGEs and oxidative stress contribute to beta cell dysfunction and development as well as to the progression of diabetic complications. Many anti- AGE therapies are being developed; however, it remains to be seen whether these therapies can help maintain beta cell function and prevent diabetes complications.

Graphical Abstract

[1]
Benitez, C.M.; Goodyer, W.R.; Kim, S.K. Deconstructing pancreas developmental biology. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a012401.
[http://dx.doi.org/10.1101/cshperspect.a012401] [PMID: 22587935]
[2]
Prentki, M.; Nolan, C.J. Islet cell failure in type 2 diabetes. J. Clin. Invest., 2006, 116(7), 1802-1812.
[http://dx.doi.org/10.1172/JCI29103] [PMID: 16823478]
[3]
Sha, W.; Hu, F.; Bu, S. Mitochondrial dysfunction and pancreatic islet β cell failure. (Review). Exp. Ther. Med., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/etm.2020.9396] [PMID: 33199991]
[4]
Reaven, G.M. Insulin-independent diabetes mellitus: Metabolic characteristics. Metabolism, 1980, 29(5), 445-454.
[http://dx.doi.org/10.1016/0026-0495(80)90170-5] [PMID: 6990179]
[5]
Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules, 2022, 12(4), 542.
[http://dx.doi.org/10.3390/biom12040542] [PMID: 35454131]
[6]
Chen, J.H.; Lin, X.; Bu, C.; Zhang, X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr. Metab., 2018, 15(1), 72.
[http://dx.doi.org/10.1186/s12986-018-0306-7] [PMID: 30337945]
[7]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[8]
Henriksen, E.J.; Diamond-Stanic, M.K.; Marchionne, E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med., 2011, 51(5), 993-999.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.005] [PMID: 21163347]
[9]
Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
[10]
Zhao, Z.; Zhao, C.; Zhang, X.H.; Zheng, F.; Cai, W.; Vlassara, H.; Ma, Z.A. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology, 2009, 150(6), 2569-2576.
[http://dx.doi.org/10.1210/en.2008-1342] [PMID: 19246537]
[11]
Twarda-Clapa, A.; Olczak, A.; Białkowska, A.M.; Koziołkiewicz, M. Advanced Glycation End-Products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells, 2022, 11(8), 1312.
[http://dx.doi.org/10.3390/cells11081312] [PMID: 35455991]
[12]
Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, analytical methods, and epigenetic effects. Oxid. Med. Cell. Longev., 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/3818196] [PMID: 32256950]
[13]
Vlassara, H.; Uribarri, J.; Cai, W.; Striker, G. Advanced glycation end product homeostasis: Exogenous oxidants and innate defenses. Ann. N. Y. Acad. Sci., 2008, 1126(1), 46-52.
[http://dx.doi.org/10.1196/annals.1433.055] [PMID: 18448795]
[14]
Ramasamy, R.; Yan, S.F.; Schmidt, A.M. Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its com-plications. Ann. N. Y. Acad. Sci., 2011, 1243(1), 88-102.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06320.x] [PMID: 22211895]
[15]
Del Turco, S.; Basta, G. An update on advanced glycation endproducts and atherosclerosis. Biofactors, 2012, 38(4), 266-274.
[http://dx.doi.org/10.1002/biof.1018] [PMID: 22488968]
[16]
Abedini, A.; Derk, J.; Schmidt, A.M. The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteo-toxic aggregates: Establishing and exploiting common ground for novel amyloidosis therapies. Protein Sci., 2018, 27(7), 1166-1180.
[http://dx.doi.org/10.1002/pro.3425] [PMID: 29664151]
[17]
Bansal, S.; Chawla, D.; Banerjee, B.D.; Madhu, S.V.; Tripathi, A.K. Association of RAGE gene polymorphism with circulating AGEs level and paraoxonase activity in relation to macro-vascular complications in Indian type 2 diabetes mellitus patients. Gene, 2013, 526(2), 325-330.
[http://dx.doi.org/10.1016/j.gene.2013.05.013] [PMID: 23721855]
[18]
Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia, 2001, 44(2), 129-146.
[http://dx.doi.org/10.1007/s001250051591] [PMID: 11270668]
[19]
Maillard, L. Formation d’humus et de combustibles mineraux sans intervention de l’oxygene atmospherique des microorganismes, des hautes temperatures, ou des fortes pressions. CR. Acad. Sci. Paris, 1912, 154, 66.
[20]
Hellwig, M.; Henle, T. Baking, ageing, diabetes: A short history of the Maillard reaction. Angew. Chem. Int. Ed., 2014, 53(39), 10316-10329.
[http://dx.doi.org/10.1002/anie.201308808] [PMID: 25044982]
[21]
Yamagishi, S.; Imaizumi, T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des., 2005, 11(18), 2279-2299.
[http://dx.doi.org/10.2174/1381612054367300] [PMID: 16022668]
[22]
Fu, M.X.; Requena, J.R.; Jenkins, A.J.; Lyons, T.J.; Baynes, J.W.; Thorpe, S.R. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem., 1996, 271(17), 9982-9986.
[http://dx.doi.org/10.1074/jbc.271.17.9982] [PMID: 8626637]
[23]
Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 1999, 344(Pt 1), 109-116.
[24]
Scheijen, J.L.J.M.; Schalkwijk, C.G. Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra perfor-mance liquid chromatography tandem mass spectrometry: Evaluation of blood specimen. Clin. Chem. Lab. Med., 2014, 52(1), 85-91.
[http://dx.doi.org/10.1515/cclm-2012-0878] [PMID: 23492564]
[25]
Al-Abed, Y.; Bucala, R. Nε-carboxymethyllysine formation by direct addition of glyoxal to lysine during the Maillard reaction. Bioorg. Med. Chem. Lett., 1995, 5(18), 2161-2162.
[http://dx.doi.org/10.1016/0960-894X(95)00375-4]
[26]
Wells-Knecht, K.J.; Brinkmann, E.; Baynes, J.W. Characterization of an imidazolium salt formed from glyoxal and N.alpha.-Hippuryllysine: A Model for Maillard reaction crosslinks in proteins. J. Org. Chem., 1995, 60(20), 6246-6247.
[http://dx.doi.org/10.1021/jo00125a001]
[27]
Glomb, M.A.; Lang, G. Isolation and characterization of glyoxal-arginine modifications. J. Agric. Food Chem., 2001, 49(3), 1493-1501.
[http://dx.doi.org/10.1021/jf001082d] [PMID: 11312885]
[28]
Thorpe, S.R.; Baynes, J.W. Maillard reaction products in tissue proteins: New products and new perspectives. Amino Acids, 2003, 25(3-4), 275-281.
[http://dx.doi.org/10.1007/s00726-003-0017-9] [PMID: 14661090]
[29]
Ahmed, M.U.; Brinkmann Frye, E.; Degenhardt, T.P.; Thorpe, S.R.; Baynes, J.W. N-epsilon-(carboxyethyl)lysine, a product of the chemi-cal modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J., 1997, 324(Pt 2), 565-570.
[30]
Nagaraj, R.H.; Shipanova, I.N.; Faust, F.M. Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem., 1996, 271(32), 19338-19345.
[http://dx.doi.org/10.1074/jbc.271.32.19338] [PMID: 8702619]
[31]
Shipanova, I.N.; Glomb, M.A.; Nagaraj, R.H. Protein modification by methylglyoxal: Chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys., 1997, 344(1), 29-36.
[http://dx.doi.org/10.1006/abbi.1997.0195] [PMID: 9244378]
[32]
Henle, T.; Walter, A.W.; Haeßner, R.; Klostermeyer, H. Detection and identification of a protein-bound imidazolone resulting from the reaction of arginine residues and methylglyoxal. Z. Lebensm. Unters., 1994, 199(1), 55-58.
[http://dx.doi.org/10.1007/BF01192954]
[33]
Portero-Otin, M.; Nagaraj, R.H.; Monnier, V.M. Chromatographic evidence for pyrraline formation during protein glycation in vitro and in vivo. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1995, 1247(1), 74-80.
[http://dx.doi.org/10.1016/0167-4838(94)00209-Y] [PMID: 7873594]
[34]
Dyer, D.G.; Blackledge, J.A.; Thorpe, S.R.; Baynes, J.W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J. Biol. Chem., 1991, 266(18), 11654-11660.
[http://dx.doi.org/10.1016/S0021-9258(18)99007-1] [PMID: 1904867]
[35]
Baynes, J.W. Role of oxidative stress in development of complications in diabetes. Diabetes, 1991, 40(4), 405-412.
[http://dx.doi.org/10.2337/diab.40.4.405] [PMID: 2010041]
[36]
Reddy, V.P.; Beyaz, A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov. Today, 2006, 11(13-14), 646-654.
[http://dx.doi.org/10.1016/j.drudis.2006.05.016] [PMID: 16793534]
[37]
Snelson, M.; Coughlan, M. Dietary advanced Glycation end products: Digestion, metabolism and modulation of gut microbial ecology. Nutrients, 2019, 11(2), 215.
[http://dx.doi.org/10.3390/nu11020215] [PMID: 30678161]
[38]
Bettiga, A.; Fiorio, F.; Di Marco, F.; Trevisani, F.; Romani, A.; Porrini, E.; Salonia, A.; Montorsi, F.; Vago, R. The Modern western diet rich in advanced Glycation End-Products (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients, 2019, 11(8), 1748.
[http://dx.doi.org/10.3390/nu11081748] [PMID: 31366015]
[39]
Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end pro-ducts in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc., 2010, 110(6), 911-916.e12.
[http://dx.doi.org/10.1016/j.jada.2010.03.018] [PMID: 20497781]
[40]
Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA, 1997, 94(12), 6474-6479.
[http://dx.doi.org/10.1073/pnas.94.12.6474] [PMID: 9177242]
[41]
Delgado-Andrade, C.; Tessier, F.J.; Niquet-Leridon, C.; Seiquer, I.; Pilar Navarro, M. Study of the urinary and faecal excretion of N ε-carboxymethyllysine in young human volunteers. Amino Acids, 2012, 43(2), 595-602.
[http://dx.doi.org/10.1007/s00726-011-1107-8] [PMID: 21984382]
[42]
Vlassara, H.; Cai, W.; Crandall, J.; Goldberg, T.; Oberstein, R.; Dardaine, V.; Peppa, M.; Rayfield, E.J. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15596-15601.
[http://dx.doi.org/10.1073/pnas.242407999] [PMID: 12429856]
[43]
Uribarri, J.; Peppa, M.; Cai, W.; Goldberg, T.; Lu, M.; He, C.; Vlassara, H. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J. Am. Soc. Nephrol., 2003, 14(3), 728-731.
[http://dx.doi.org/10.1097/01.ASN.0000051593.41395.B9] [PMID: 12595509]
[44]
Uribarri, J.; Cai, W.; Ramdas, M.; Goodman, S.; Pyzik, R.; Chen, X.; Zhu, L.; Striker, G.E.; Vlassara, H. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: Potential role of AGER1 and SIRT1. Diabetes Care, 2011, 34(7), 1610-1616.
[http://dx.doi.org/10.2337/dc11-0091] [PMID: 21709297]
[45]
Garay-Sevilla, M.E.; Rojas, A.; Portero-Otin, M.; Uribarri, J. Dietary AGEs as exogenous boosters of inflammation. Nutrients, 2021, 13(8), 2802.
[http://dx.doi.org/10.3390/nu13082802] [PMID: 34444961]
[46]
Gill, V.; Kumar, V.; Singh, K.; Kumar, A.; Kim, J.J. Advanced Glycation End Products (AGEs) may be a striking link between modern diet and health. Biomolecules, 2019, 9(12), 888.
[http://dx.doi.org/10.3390/biom9120888] [PMID: 31861217]
[47]
Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol., 2014, 2, 411-429.
[http://dx.doi.org/10.1016/j.redox.2013.12.016] [PMID: 24624331]
[48]
van Beijnum, J.R.; Buurman, W.A.; Griffioen, A.W. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis, 2008, 11(1), 91-99.
[http://dx.doi.org/10.1007/s10456-008-9093-5] [PMID: 18264787]
[49]
Miyazaki, A.; Nakayama, H.; Horiuchi, S. Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc. Med., 2002, 12(6), 258-262.
[http://dx.doi.org/10.1016/S1050-1738(02)00171-8] [PMID: 12242049]
[50]
Le Bagge, S.; Fotheringham, A.K.; Leung, S.S.; Forbes, J.M. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med. Res. Rev., 2020, 40(4), 1200-1219.
[http://dx.doi.org/10.1002/med.21654] [PMID: 32112452]
[51]
van Zoelen, M.A.D.; Yang, H.; Florquin, S.; Meijers, J.C.M.; Akira, S.; Arnold, B.; Nawroth, P.P.; Bierhaus, A.; Tracey, K.J.; Poll, T. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock, 2009, 31(3), 280-284.
[http://dx.doi.org/10.1097/SHK.0b013e318186262d] [PMID: 19218854]
[52]
Xue, J.; Ray, R.; Singer, D.; Böhme, D.; Burz, D.S.; Rai, V.; Hoffmann, R.; Shekhtman, A. The receptor for advanced glycation end pro-ducts (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry, 2014, 53(20), 3327-3335.
[http://dx.doi.org/10.1021/bi500046t] [PMID: 24824951]
[53]
Hudson, B.I.; Carter, A.M.; Harja, E.; Kalea, A.Z.; Arriero, M.; Yang, H.; Grant, P.J.; Schmidt, A.M. Identification, classification, and ex-pression of RAGE gene splice variants. FASEB J., 2008, 22(5), 1572-1580.
[http://dx.doi.org/10.1096/fj.07-9909com] [PMID: 18089847]
[54]
Sessa, L.; Gatti, E.; Zeni, F.; Antonelli, A.; Catucci, A.; Koch, M.; Pompilio, G.; Fritz, G.; Raucci, A.; Bianchi, M.E. The receptor for ad-vanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One, 2014, 9(1), e86903.
[http://dx.doi.org/10.1371/journal.pone.0086903] [PMID: 24475194]
[55]
Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic hyperglycemia mediated physiological alteration and metabolic dis-tortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxi-city. Biomed. Pharmacother., 2018, 107, 306-328.
[http://dx.doi.org/10.1016/j.biopha.2018.07.157] [PMID: 30098549]
[56]
Bongarzone, S.; Savickas, V.; Luzi, F.; Gee, A.D. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A medicinal che-mistry perspective. J. Med. Chem., 2017, 60(17), 7213-7232.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00058] [PMID: 28482155]
[57]
Wen, Y.; Liu, R.; Lin, N.; Luo, H.; Tang, J.; Huang, Q.; Sun, H.; Tang, L. NADPH oxidase hyperactivity contributes to cardiac dysfunction and apoptosis in rats with severe experimental pancreatitis through ROS-Mediated MAPK signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/4578175] [PMID: 31210840]
[58]
D’Ignazio, L.; Bandarra, D.; Rocha, S. NF-κB and HIF crosstalk in immune responses. FEBS J., 2016, 283(3), 413-424.
[http://dx.doi.org/10.1111/febs.13578] [PMID: 26513405]
[59]
Gąsiorowski, K.; Brokos, B.; Echeverria, V.; Barreto, G.E.; Leszek, J. RAGE-TLR crosstalk sustains chronic inflammation in Neurodege-neration. Mol. Neurobiol., 2018, 55(2), 1463-1476.
[http://dx.doi.org/10.1007/s12035-017-0419-4] [PMID: 28168427]
[60]
Sergi, D.; Naumovski, N.; Heilbronn, L.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (Dys)function and insulin resistance: From pathophysiological molecular mechanisms to the impact of diet. Front. Physiol., 2019, 10, 532.
[http://dx.doi.org/10.3389/fphys.2019.00532] [PMID: 31130874]
[61]
Lin, N.; Zhang, H.; Su, Q. Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress. Diabetes Metab., 2012, 38(3), 250-257.
[http://dx.doi.org/10.1016/j.diabet.2012.01.003] [PMID: 22386833]
[62]
Song, B.J.; Akbar, M.; Abdelmegeed, M.A.; Byun, K.; Lee, B.; Yoon, S.K.; Hardwick, J.P. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol., 2014, 3, 109-123.
[http://dx.doi.org/10.1016/j.redox.2014.10.004] [PMID: 25465468]
[63]
Drews, G.; Krippeit-Drews, P.; Düfer, M. Oxidative stress and beta-cell dysfunction. Pflugers Arch., 2010, 460(4), 703-718.
[http://dx.doi.org/10.1007/s00424-010-0862-9] [PMID: 20652307]
[64]
You, J.; Wang, Z.; Xu, S.; Zhang, W.; Fang, Q.; Liu, H.; Peng, L.; Deng, T.; Lou, J. Advanced glycation end products impair glucose-stimulated insulin secretion of a pancreatic β -Cell Line INS-1-3 by disturbance of microtubule cytoskeleton via p38/MAPK activation. J. Diabetes Res., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/9073037] [PMID: 27635403]
[65]
Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L. Advanced Glycation End-Products affect transcription factors regulating insulin gene ex-pression. Biochem. Biophys. Res. Commun., 2010, 395(1), 122-125.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.152] [PMID: 20353756]
[66]
Simmons, R.A. Role of metabolic programming in the pathogenesis of β-cell failure in postnatal life. Rev. Endocr. Metab. Disord., 2007, 8(2), 95-104.
[http://dx.doi.org/10.1007/s11154-007-9045-1] [PMID: 17680370]
[67]
Anastasiou, I.A.; Eleftheriadou, I.; Tentolouris, A.; Koliaki, C.; Kosta, O.A.; Tentolouris, N. The effect of oxidative stress and antioxidant therapies on pancreatic β-cell dysfunction: Results from in vitro and in vivo studies. Curr. Med. Chem., 2021, 28(7), 1328-1346.
[http://dx.doi.org/10.2174/0929867327666200526135642] [PMID: 32452321]
[68]
Bierhaus, A.; Schiekofer, S.; Schwaninger, M.; Andrassy, M.; Humpert, P.M.; Chen, J.; Hong, M.; Luther, T.; Henle, T.; Klöting, I.; Mor-cos, M.; Hofmann, M.; Tritschler, H.; Weigle, B.; Kasper, M.; Smith, M.; Perry, G.; Schmidt, A.M.; Stern, D.M.; Häring, H.U.; Schleicher, E.; Nawroth, P.P. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes, 2001, 50(12), 2792-2808.
[http://dx.doi.org/10.2337/diabetes.50.12.2792] [PMID: 11723063]
[69]
Libermann, T.A.; Baltimore, D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol. Cell. Biol., 1990, 10(5), 2327-2334.
[http://dx.doi.org/10.1128/MCB.10.5.2327] [PMID: 2183031]
[70]
Ueda, A.; Ishigatsubo, Y.; Okubo, T.; Yoshimura, T. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J. Biol. Chem., 1997, 272(49), 31092-31099.
[http://dx.doi.org/10.1074/jbc.272.49.31092] [PMID: 9388261]
[71]
Li, J.; Schmidt, A.M. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J. Biol. Chem., 1997, 272(26), 16498-16506.
[http://dx.doi.org/10.1074/jbc.272.26.16498] [PMID: 9195959]
[72]
Grimm, S.; Horlacher, M.; Catalgol, B.; Hoehn, A.; Reinheckel, T.; Grune, T. Cathepsins D and L reduce the toxicity of advanced glycation end products. Free Radic. Biol. Med., 2012, 52(6), 1011-1023.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.12.021] [PMID: 22245096]
[73]
Hirose, A.; Tanikawa, T.; Mori, H.; Okada, Y.; Tanaka, Y. Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett., 2010, 584(1), 61-66.
[http://dx.doi.org/10.1016/j.febslet.2009.11.082] [PMID: 19944695]
[74]
Tanikawa, T.; Okada, Y.; Tanikawa, R.; Tanaka, Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J. Vasc. Res., 2009, 46(6), 572-580.
[http://dx.doi.org/10.1159/000226225] [PMID: 19571577]
[75]
Li, J.H.; Wang, W.; Huang, X.R.; Oldfield, M.; Schmidt, A.M.; Cooper, M.E.; Lan, H.Y. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am. J. Pathol., 2004, 164(4), 1389-1397.
[http://dx.doi.org/10.1016/S0002-9440(10)63225-7] [PMID: 15039226]
[76]
Guimarães, E.L.M.; Empsen, C.; Geerts, A.; van Grunsven, L.A. Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J. Hepatol., 2010, 52(3), 389-397.
[http://dx.doi.org/10.1016/j.jhep.2009.12.007] [PMID: 20133001]
[77]
Zhang, M.; Kho, A.L.; Anilkumar, N.; Chibber, R.; Pagano, P.J.; Shah, A.M.; Cave, A.C. Glycated proteins stimulate reactive oxygen spe-cies production in cardiac myocytes: Involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation, 2006, 113(9), 1235-1243.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.581397] [PMID: 16505175]
[78]
Lim, M.; Park, L.; Shin, G.; Hong, H.; Kang, I.; Park, Y. Induction of apoptosis of β cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Ann. N. Y. Acad. Sci., 2008, 1150(1), 311-315.
[http://dx.doi.org/10.1196/annals.1447.011] [PMID: 19120318]
[79]
Thirumoorthy, N.; Shyam Sunder, A.; Manisenthil Kumar, K.T. Senthil kumar, M.; Ganesh, G.N.K.; Chatterjee, M. A review of metallot-hionein isoforms and their role in pathophysiology. World J. Surg. Oncol., 2011, 9(1), 54.
[http://dx.doi.org/10.1186/1477-7819-9-54] [PMID: 21599891]
[80]
Luciano Viviani, G.; Puddu, A.; Sacchi, G.; Garuti, A.; Storace, D.; Durante, A.; Monacelli, F.; Odetti, P. Glycated fetal calf serum affects the viability of an insulin-secreting cell line in vitro. Metabolism, 2008, 57(2), 163-169.
[http://dx.doi.org/10.1016/j.metabol.2007.08.020] [PMID: 18191044]
[81]
Zhu, Y.; Shu, T.; Lin, Y.; Wang, H.; Yang, J.; Shi, Y.; Han, X. Inhibition of the receptor for advanced glycation endproducts (RAGE) pro-tects pancreatic β-cells. Biochem. Biophys. Res. Commun., 2011, 404(1), 159-165.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.085] [PMID: 21111711]
[82]
Langtry, H.D.; Balfour, J.A. Glimepiride. Drugs, 1998, 55(4), 563-584.
[http://dx.doi.org/10.2165/00003495-199855040-00007] [PMID: 9561345]
[83]
Guan, S.S.; Sheu, M.L.; Yang, R.S.; Chan, D.C.; Wu, C.T.; Yang, T.H.; Chiang, C.K.; Liu, S.H. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction. Oncotarget, 2016, 7(17), 23072-23087.
[http://dx.doi.org/10.18632/oncotarget.8604] [PMID: 27056903]
[84]
Ghosh, J.C.; Siegelin, M.D.; Dohi, T.; Altieri, D.C. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res., 2010, 70(22), 8988-8993.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2225] [PMID: 20978188]
[85]
Kong, X.; Lu, A.L.; Yao, X.M.; Hua, Q.; Li, X.Y.; Qin, L.; Zhang, H.M.; Meng, G.X.; Su, Q. Activation of NLRP3 inflammasome by ad-vanced Glycation end products promotes pancreatic islet damage. Oxid. Med. Cell. Longev., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/9692546] [PMID: 29230270]
[86]
Schroder, K.; Tschopp, J. The inflammasomes. Cell, 2010, 140(6), 821-832.
[http://dx.doi.org/10.1016/j.cell.2010.01.040] [PMID: 20303873]
[87]
Raimundo, A.F.; Ferreira, S.; Martins, I.C.; Menezes, R. Islet Amyloid Polypeptide: A partner in crime with Aβ in the pathology of Alz-heimer’s disease. Front. Mol. Neurosci., 2020, 13, 35.
[http://dx.doi.org/10.3389/fnmol.2020.00035] [PMID: 32265649]
[88]
Grimm, S.; Ernst, L.; Grötzinger, N.; Höhn, A.; Breusing, N.; Reinheckel, T.; Grune, T. Cathepsin D is one of the major enzymes involved in intracellular degradation of AGE-modified proteins. Free Radic. Res., 2010, 44(9), 1013-1026.
[http://dx.doi.org/10.3109/10715762.2010.495127] [PMID: 20560835]
[89]
Nowotny, K.; Schröter, D.; Schreiner, M.; Grune, T. Dietary advanced glycation end products and their relevance for human health. Ageing Res. Rev., 2018, 47, 55-66.
[http://dx.doi.org/10.1016/j.arr.2018.06.005] [PMID: 29969676]
[90]
Rhee, S.Y.; Kim, Y.S. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab. J., 2018, 42(3), 188-195.
[http://dx.doi.org/10.4093/dmj.2017.0105] [PMID: 29885110]
[91]
Kwok, J.M.F.; Ma, C.C.H.; Ma, S. Recent development in the effects of statins on cardiovascular disease through Rac1 and NADPH oxida-se. Vascul. Pharmacol., 2013, 58(1-2), 21-30.
[http://dx.doi.org/10.1016/j.vph.2012.10.003] [PMID: 23085091]
[92]
Ishibashi, Y.; Yamagishi, S.; Matsui, T.; Ohta, K.; Tanoue, R.; Takeuchi, M.; Ueda, S.; Nakamura, K.; Okuda, S. Pravastatin inhibits ad-vanced glycation end products (AGEs)-induced proximal tubular cell apoptosis and injury by reducing receptor for AGEs (RAGE) level. Metabolism, 2012, 61(8), 1067-1072.
[http://dx.doi.org/10.1016/j.metabol.2012.01.006] [PMID: 22386936]
[93]
Yamagishi, S. Possible involvement of advanced glycation end products in carry-over benefits of atorvastatin in ASCOT-BPLA. Eur. Heart J., 2008, 29(15), 1922-1922.
[http://dx.doi.org/10.1093/eurheartj/ehn244] [PMID: 18523056]
[94]
Sho-ichi, Yamagishi, Kazuo Nakamura; Takanori Matsui, Potential utility of telmisartan, an angiotensin II type 1 receptor blocker with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity for the treatment of cardiometabolic disorders. Curr. Mol. Med., 2007, 7(5), 463-469.
[http://dx.doi.org/10.2174/156652407781387073] [PMID: 17691961]
[95]
Yamagishi, S.; Nakamura, K.; Matsui, T. Regulation of advanced glycation end product (AGE)-receptor (RAGE) system by PPAR-gamma agonists and its implication in cardiovascular disease. Pharmacol. Res., 2009, 60(3), 174-178.
[http://dx.doi.org/10.1016/j.phrs.2009.01.006] [PMID: 19646657]
[96]
Coughlan, M.T.; Thallas-Bonke, V.; Pete, J.; Long, D.M.; Gasser, A.; Tong, D.C.K.; Arnstein, M.; Thorpe, S.R.; Cooper, M.E.; Forbes, J.M. Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme in-hibitors in diabetes: Synergy or redundancy? Endocrinology, 2007, 148(2), 886-895.
[http://dx.doi.org/10.1210/en.2006-1300] [PMID: 17110423]
[97]
Ihm, S.H.; Chang, K.; Kim, H.Y.; Baek, S.H.; Youn, H.J.; Seung, K.B.; Kim, J.H. Peroxisome proliferator-activated receptor-γ activation attenuates cardiac fibrosis in type 2 diabetic rats: The effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res. Cardiol., 2010, 105(3), 399-407.
[http://dx.doi.org/10.1007/s00395-009-0071-x] [PMID: 19902320]
[98]
Nakashima, S.; Matsui, T.; Takeuchi, M.; Yamagishi, S.I. Linagliptin blocks renal damage in type 1 diabetic rats by suppressing advanced glycation end products-receptor axis. Horm. Metab. Res., 2014, 46(10), 717-721.
[http://dx.doi.org/10.1055/s-0034-1371892] [PMID: 24710699]
[99]
Matsui, T.; Nakashima, S.; Nishino, Y.; Ojima, A.; Nakamura, N.; Arima, K.; Fukami, K.; Okuda, S.; Yamagishi, S. Dipeptidyl peptidase-4 deficiency protects against experimental diabetic nephropathy partly by blocking the advanced glycation end products-receptor axis. Lab. Invest., 2015, 95(5), 525-533.
[http://dx.doi.org/10.1038/labinvest.2015.35] [PMID: 25730373]
[100]
Nilsson, B.O. Biological effects of aminoguanidine: An update. Inflamm. Res., 1999, 48(10), 509-515.
[http://dx.doi.org/10.1007/s000110050495] [PMID: 10563466]
[101]
Thornalley, P.J.; Yurek-George, A.; Argirov, O.K. Kinetics and mechanism of the reaction of aminoguanidine with the α-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions. Biochem. Pharmacol., 2000, 60(1), 55-65.
[http://dx.doi.org/10.1016/S0006-2952(00)00287-2] [PMID: 10807945]
[102]
Soulis-Liparota, T.; Cooper, M.; Papazoglou, D.; Clarke, B.; Jerums, G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes, 1991, 40(10), 1328-1334.
[http://dx.doi.org/10.2337/diab.40.10.1328] [PMID: 1834497]
[103]
Kranstuber, A.L.; del Rio, C.; Biesiadecki, B.J.; Hamlin, R.L.; Ottobre, J.; Gyorke, S.; Lacombe, V.A. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front. Physiol., 2012, 3, 292.
[http://dx.doi.org/10.3389/fphys.2012.00292] [PMID: 22934044]
[104]
Piercy, V.; Toseland, C.D.N.; Turner, N.C. Potential benefit of inhibitors of advanced glycation end products in the progression of type II diabetes: A study with aminoguanidine in C57/BLKsJ diabetic mice. Metabolism, 1998, 47(12), 1477-1480.
[http://dx.doi.org/10.1016/S0026-0495(98)90073-7] [PMID: 9867077]
[105]
Yonekura, H.; Yamamoto, Y.; Sakurai, S.; Petrova, R.G.; Abedin, M.J.; Li, H.; Yasui, K.; Takeuchi, M.; Makita, Z.; Takasawa, S.; Okamo-to, H.; Watanabe, T.; Yamamoto, H. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascu-lar endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem. J., 2003, 370(3), 1097-1109.
[http://dx.doi.org/10.1042/bj20021371] [PMID: 12495433]
[106]
Cai, W.; Torreggiani, M.; Zhu, L.; Chen, X.; He, J.C.; Striker, G.E.; Vlassara, H. AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-δ: Implications for vascular disease. Am. J. Physiol. Cell Physiol., 2010, 298(3), C624-C634.
[http://dx.doi.org/10.1152/ajpcell.00463.2009] [PMID: 19955485]
[107]
Lu, C.; He, J.C.; Cai, W.; Liu, H.; Zhu, L.; Vlassara, H. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11767-11772.
[http://dx.doi.org/10.1073/pnas.0401588101] [PMID: 15289604]
[108]
Vlassara, H.; Cai, W.; Goodman, S.; Pyzik, R.; Yong, A.; Chen, X.; Zhu, L.; Neade, T.; Beeri, M.; Silverman, J.M.; Ferrucci, L.; Tansman, L.; Striker, G.E.; Uribarri, J. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: Role of the antiinflammatory AGE receptor-1. J. Clin. Endocrinol. Metab., 2009, 94(11), 4483-4491.
[http://dx.doi.org/10.1210/jc.2009-0089] [PMID: 19820033]
[109]
Cai, W.; Ramdas, M.; Zhu, L.; Chen, X.; Striker, G.E.; Vlassara, H. Oral advanced glycation endproducts (AGEs) promote insulin resis-tance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. USA, 2012, 109(39), 15888-15893.
[http://dx.doi.org/10.1073/pnas.1205847109] [PMID: 22908267]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy