Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Novel Penicillin Derivatives Against Selected Multiple-drug Resistant Bacterial Strains: Design, Synthesis, Structural Analysis, In Silico and In Vitro Studies

Author(s): Narmin Hamaamin Hussen, Shokhan Jamal Hamid, Mohammed Nawzad Sabir, Aso Hameed Hasan*, Sewara Jalal Mohammed and Aras Ahmed Kamal Shali

Volume 21, Issue 5, 2024

Published on: 17 July, 2023

Page: [684 - 703] Pages: 20

DOI: 10.2174/1570179420666230510104319

Price: $65

Abstract

Introduction: The rising numbers of multiple drug-resistant (MDR) pathogens and the consequent antibacterial therapy failure that resulted in severe medical conditions push to illustrate new molecules with extended activity against the resistant strains. In this manner, chemical derivatization of known antibiotics is proposed to save efforts in drug discovery, and penicillins serve as an ideal in this regard.

Methods: Seven synthesized 6-aminopenicillanic acid-imine derivatives (2a-g) were structure elucidated using FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. In silico molecular docking and ADMET studies were made. The analyzed compounds obeyed Lipinski’s rule of five and showed promising in vitro bactericidal potential when assayed against E. coli, E. cloacae, P. aeruginosa, S. aureus, and A. baumannii. MDR strains using disc diffusion and microplate dilution techniques.

Results: The MIC values were 8 to 32 μg/mL with more potency than ampicillin, explained by better membrane penetration and more ligand-protein binding capacity. The 2g entity was active against E. coli. This study was designed to find new active penicillin derivatives against MDR pathogens.

Conclusion: The products showed antibacterial activity against selected MDR species and good PHK, PHD properties, and low predicted toxicity, offering them as future candidates that require further preclinical assays.

Graphical Abstract

[1]
Aarjane, M.; Slassi, S.; Tazi, B.; Maouloua, M.; Amine, A. Synthesis, antibacterial evaluation and molecular docking studies of novel series of acridone-1,2,3-triazole derivatives. Struct. Chem., 2020, 31(4), 1523-1531.
[http://dx.doi.org/10.1007/s11224-020-01512-0]
[2]
C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[3]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles, A.G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef, H.B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire, D.R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Mussi-Pinhata, M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Sifuentes-Osornio, J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[4]
Kakoullis, L.; Papachristodoulou, E.; Chra, P.; Panos, G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics, 2021, 10(4), 415.
[http://dx.doi.org/10.3390/antibiotics10040415] [PMID: 33920199]
[5]
Straume, D.; Piechowiak, K.W.; Olsen, S.; Stamsås, G.A.; Berg, K.H.; Kjos, M.; Heggenhougen, M.V.; Alcorlo, M.; Hermoso, J.A.; Håvarstein, L.S. Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall. Proc. Natl. Acad. Sci., 2020, 117(11), 6129-6138.
[http://dx.doi.org/10.1073/pnas.1917820117] [PMID: 32123104]
[6]
Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol., 2018, 9, 2928.
[http://dx.doi.org/10.3389/fmicb.2018.02928] [PMID: 30555448]
[7]
Maya-Martinez, R.; Alexander, J.A.N.; Otten, C.F.; Ayala, I.; Vollmer, D.; Gray, J.; Bougault, C.M.; Burt, A.; Laguri, C.; Fonvielle, M.; Arthur, M.; Strynadka, N.C.J.; Vollmer, W.; Simorre, J.P. Recognition of peptidoglycan fragments by the transpeptidase pbp4 from staphylococcus aureus. Front. Microbiol., 2019, 9, 3223.
[http://dx.doi.org/10.3389/fmicb.2018.03223] [PMID: 30713527]
[8]
Mohamed, S.B.; Adlan, T.A.; Khalafalla, N.A.; Abdalla, N.I.; Ali, Z.S.A.; Munir KA, A.; Hassan, M.M.; Elnour, M.A.B. Proteomics and docking study targeting penicillin-binding protein and penicillin-binding protein2a of methicillin-resistant staphylococcus aureus strain SO-1977 isolated from Sudan. Evol. Bioinform. Online, 2019, 15.
[http://dx.doi.org/10.1177/1176934319864945] [PMID: 31360059]
[9]
Lima, L.M.; Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem., 2020, 208, 112829.
[http://dx.doi.org/10.1016/j.ejmech.2020.112829] [PMID: 33002736]
[10]
Sun, Z.; Hu, L.; Sankaran, B.; Prasad, B.V.V.; Palzkill, T. Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nat. Commun., 2018, 9(1), 4524.
[http://dx.doi.org/10.1038/s41467-018-06839-1] [PMID: 30375382]
[11]
Turner, J.; Muraoka, A.; Bedenbaugh, M.; Childress, B.; Pernot, L.; Wiencek, M.; Peterson, Y.K. The chemical relationship among beta-lactam antibiotics and potential impacts on reactivity and decomposition. Front. Microbiol., 2022, 13, 807955.
[http://dx.doi.org/10.3389/fmicb.2022.807955] [PMID: 35401470]
[12]
Sawant, A.M.; Sunder, A.V.; Vamkudoth, K.R.; Ramasamy, S.; Pundle, A. Process development for 6-aminopenicillanic acid production using lentikats-encapsulated escherichia coli cells expressing penicillin V acylase. ACS Omega, 2020, 5(45), 28972-28976.
[http://dx.doi.org/10.1021/acsomega.0c02813] [PMID: 33225127]
[13]
De Rosa, M.; Vigliotta, G.; Palma, G.; Saturnino, C.; Soriente, A. Novel penicillin-type analogues bearing a variable substituted 2-azetidinone ring at position 6: Synthesis and biological evaluation. Molecules, 2015, 20(12), 22044-22057.
[http://dx.doi.org/10.3390/molecules201219828] [PMID: 26690391]
[14]
Vardhan, S.; Sahoo, S.K. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput. Biol. Med., 2020, 124, 103936.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103936] [PMID: 32738628]
[15]
Hasan, A.H.; Hussen, N.H.; Shakya, S.; Jamalis, J.; Pratama, M.R.F.; Chander, S.; Kharkwal, H.; Murugesan, S. In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Struct. Chem., 2022, 33(5), 1645-1665.
[http://dx.doi.org/10.1007/s11224-022-01996-y]
[16]
Hasan, A.H.; Amran, S.I.; Saeed Hussain, F.H.; Jaff, B.A.; Jamalis, J. Molecular docking and recent advances in the design and development of cholinesterase inhibitor scaffolds: Coumarin hybrids. ChemistrySelect, 2019, 4(48), 14140-14156.
[http://dx.doi.org/10.1002/slct.201903607]
[17]
Kumar, A.; Lal, K.; Poonia, N.; Kumar, A.; Kumar, A. Synthesis, antimicrobial evaluation and docking studies of fluorinated imine linked 1,2,3-triazoles. Res. Chem. Intermed., 2022, 48(7), 2933-2948.
[http://dx.doi.org/10.1007/s11164-022-04737-2]
[18]
Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A review on the antimicrobial activity of schiff bases: Data collection and recent studies. Antibiotics, 2022, 11(2), 191.
[http://dx.doi.org/10.3390/antibiotics11020191] [PMID: 35203793]
[19]
Rojas-Ortiz, J.J.; Contreras-Celedón, C.; Gómez-Hurtado, M.A.; Chacón-García, L.; Cortes-García, C.J. Synthesis of novel schiff base derivates containing a fragment of the hiv integrase inhibitor drug raltegravir. Proceedings., 2019, 41(1), 5.
[20]
Alorini, T.A.; Al-Hakimi, A.N.; El-Sayed Saeed, S.; Alhamzi, E.H.L.; Albadri, A.E.A.E. Synthesis, characterization, and anticancer activity of some metal complexes with a new Schiff base ligand. Arab. J. Chem., 2022, 15(2), 103559.
[http://dx.doi.org/10.1016/j.arabjc.2021.103559]
[21]
Murtaza, S.; Akhtar, M.S.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim, S. Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. J. Saudi Chem. Soc., 2017, 21, S359-S372.
[http://dx.doi.org/10.1016/j.jscs.2014.04.003]
[22]
Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study. Comb. Chem. High Throughput Screen., 2018, 21(3), 194-203.
[http://dx.doi.org/10.2174/1386207321666180213092911] [PMID: 29436997]
[23]
Uzzaman, M.; Junaid, M.; Uddin, M.N. Evaluation of anti-tuberculosis activity of some oxotitanium(IV) Schiff base complexes; molecular docking, dynamics simulation and ADMET studies. SN Appl. Sci., 2020, 2(5), 880.
[http://dx.doi.org/10.1007/s42452-020-2644-0]
[24]
Dang, Y.; Wang, Y.; Li, Y.; Xu, M.; Jia, C.; Lu, Y.; Zhang, L.; Li, Y.; Xia, Y. Nucleophilic addition and α-C–H substitution reactions of an imine mediated by dibutylmagnesium and organolithium reagents. Organometallics, 2021, 40(12), 1830-1837.
[http://dx.doi.org/10.1021/acs.organomet.0c00815]
[25]
Fonkui, T.Y.; Ikhile, M.I.; Njobeh, P.B.; Ndinteh, D.T. Benzimidazole Schiff base derivatives: Synthesis, characterization and antimicrobial activity. BMC Chem., 2019, 13(1), 127.
[http://dx.doi.org/10.1186/s13065-019-0642-3] [PMID: 31728454]
[26]
Özdemir, Ö.; Gürkan, P.; Özçelik, B.; Oyardı, Ö. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid. J. Mol. Struct., 2016, 1106, 181-191.
[http://dx.doi.org/10.1016/j.molstruc.2015.10.074]
[27]
Mukhtar, S.S.; Hassan, A.S.; Morsy, N.M.; Hafez, T.S.; Saleh, F.M.; Hassaneen, H.M. Design, synthesis, molecular prediction and biological evaluation of pyrazole-azomethine conjugates as antimicrobial agents. Synth. Commun., 2021, 51(10), 1-17.
[http://dx.doi.org/10.1080/00397911.2021.1894338]
[28]
Warad, I.; Ali, O.; Al Ali, A.; Jaradat, N.A.; Hussein, F.; Abdallah, L.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A. Synthesis and spectral identification of three schiff bases with a 2-(Piperazin-1-yl)-N-(thiophen-2-yl methylene)ethanamine moiety acting as novel pancreatic lipase inhibitors: Thermal, DFT, antioxidant, antibacterial, and molecular docking investigations. Molecules, 2020, 25(9), 2253.
[http://dx.doi.org/10.3390/molecules25092253] [PMID: 32403218]
[29]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[30]
Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42(W1), W53-W58.
[http://dx.doi.org/10.1093/nar/gku401] [PMID: 24838562]
[31]
Hamaamin Hussen, N.; Hameed Hasan, A.; Jamalis, J.; Shakya, S.; Chander, S.; Kharkwal, H.; Murugesan, S.; Ajit Bastikar, V.; Pyarelal Gupta, P. Potential inhibitory activity of phytoconstituents against black fungus: in silico ADMET, molecular docking and MD simulation studies. Comput. Toxicol., 2022, 24, 100247.
[http://dx.doi.org/10.1016/j.comtox.2022.100247] [PMID: 36193218]
[32]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B]
[33]
Hasan, A.H.; Murugesan, S.; Amran, S.I.; Chander, S.; Alanazi, M.M.; Hadda, T.B.; Shakya, S.; Pratama, M.R.F.; Das, B.; Biswas, S.; Jamalis, J. Novel thiophene chalcones-coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg. Chem., 2022, 119, 105572.
[http://dx.doi.org/10.1016/j.bioorg.2021.105572] [PMID: 34971946]
[34]
Salih, R.H.H.; Hasan, A.H.; Hussein, A.J.; Samad, M.K.; Shakya, S.; Jamalis, J.; Hawaiz, F.E.; Pratama, M.R.F. One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promising SARS-CoV-2 main protease inhibitors. Res. Chem. Intermed., 2022, 48(11), 4729-4751.
[http://dx.doi.org/10.1007/s11164-022-04831-5]
[35]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[36]
Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother., 2001, 48(S1), 5-16.
[http://dx.doi.org/10.1093/jac/48.suppl_1.5] [PMID: 11420333]
[37]
Dege, N.; Tamer, Ö.; Şimşek, M.; Avcı, D.; Yaman, M.; Başoğlu, A.; Atalay, Y. Experimental and theoretical approaches on structural, spectroscopic (FT‐IR and UV‐Vis), nonlinear optical, and molecular docking analyses for Zn (II) and Cu (II) complexes of 6‐chloropyridine‐2‐carboxylic acid. Appl. Organomet. Chem., 2022, 36(6), e6678.
[http://dx.doi.org/10.1002/aoc.6678]
[38]
Xu, J.; Zhao, N.; Qin, B.; Qu, M.; Wang, X.; Ridi, B.; Li, C.; Gao, Y. Optical wavelength selective photoactuation of nanometal-doped liquid crystalline elastomers by using surface plasmon resonance. ACS Appl. Mater. Interfaces, 2021, 13(37), 44833-44843.
[http://dx.doi.org/10.1021/acsami.1c08464] [PMID: 34499488]
[39]
Wang, H.; Eberhardt, T.L.; Wang, C.; Gao, S.; Pan, H. Demethylation of alkali lignin with halogen acids and its application to phenolic resins. Polymers, 2019, 11(11), 1771.
[http://dx.doi.org/10.3390/polym11111771] [PMID: 31661762]
[40]
Zhao, N.; Wang, X.; Yao, L.; Yan, H.; Qin, B.; Li, C.; Zhang, J. Actuation performance of a liquid crystalline elastomer composite reinforced by eiderdown fibers. Soft Matter, 2022, 18(6), 1264-1274.
[http://dx.doi.org/10.1039/D1SM01356D] [PMID: 35044410]
[41]
Foschi, M.; Marziale, M.; Biancolillo, A. Advanced analytical approach based on combination of FT-IR and chemometrics for quality control of pharmaceutical preparations. Pharmaceuticals, 2022, 15(6), 763.
[http://dx.doi.org/10.3390/ph15060763] [PMID: 35745682]
[42]
Fillmore, B.C.; Price, J.; Dean, R.; Brown, A.A.; Decken, A.; Eisler, S. Accessing the ene–imine motif in 1 H -Isoindole, thienopyrrole, and thienopyridine building blocks. ACS Omega, 2020, 5(36), 22914-22925.
[http://dx.doi.org/10.1021/acsomega.0c02282] [PMID: 32954140]
[43]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[44]
Rankovic, Z. CNS drug design: Balancing physicochemical properties for optimal brain exposure. J. Med. Chem., 2015, 58(6), 2584-2608.
[http://dx.doi.org/10.1021/jm501535r] [PMID: 25494650]
[45]
Lakshmipraba, J.; Arunachalam, S.; Solomon, R.V.; Venuvanalingam, P.; Riyasdeen, A.; Dhivya, R.; Akbarsha, M.A. Surfactant–copper(II) Schiff base complexes: Synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity. J. Biomol. Struct. Dyn., 2015, 33(4), 877-891.
[http://dx.doi.org/10.1080/07391102.2014.918523] [PMID: 24854148]
[46]
Daina, A.; Zoete, V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[47]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19(10), 1446-1457.
[http://dx.doi.org/10.1023/A:1020444330011] [PMID: 12425461]
[48]
Hernández-Vázquez, E.; Salgado-Barrera, S.; Ramírez-Espinosa, J.J.; Estrada-Soto, S.; Hernández-Luis, F. Synthesis and molecular docking of N′-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypoglycemic and antioxidant dual agents. Bioorg. Med. Chem., 2016, 24(10), 2298-2306.
[http://dx.doi.org/10.1016/j.bmc.2016.04.007] [PMID: 27079123]
[49]
Salih, R.H.H.; Hasan, A.H.; Hussen, N.H.; Hawaiz, F.E.; Hadda, T.B.; Jamalis, J.; Almalki, F.A.; Adeyinka, A.S.; Coetzee, L-C.C.; Oyebamiji, A.K. Thiazole-pyrazoline hybrids as potential antimicrobial agent: Synthesis, biological evaluation, molecular docking, DFT studies and POM analysis. J. Mol. Struct., 2023, 1282, 135191.
[http://dx.doi.org/10.1016/j.molstruc.2023.135191]
[50]
Moustafa, G.; Khalaf, H.; Naglah, A.; Al-Wasidi, A.; Al-Jafshar, N.; Awad, H. Synthesis, molecular docking studies, in vitro antimicrobial and antifungal activities of novel dipeptide derivatives based on N-(2-(2-Hydrazinyl-2-oxoethylamino)-2-oxoethyl)-Nicotinamide. Molecules, 2018, 23(4), 761.
[http://dx.doi.org/10.3390/molecules23040761] [PMID: 29584635]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy