Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Age-Related Macular Degeneration - Therapies and Their Delivery

Author(s): Chandrasekar Ponnusamy*, Puratchikody Ayarivan, Preethi Selvamuthu and Subramanian Natesan

Volume 21, Issue 5, 2024

Published on: 09 June, 2023

Page: [683 - 696] Pages: 14

DOI: 10.2174/1567201820666230510100742

Price: $65

Abstract

Age-related macular degeneration (ARMD) is a degenerative ocular disease that is the most important cause of irreversible vision loss in old-aged people in developed countries. Around fifty percent of vision impairments in developed countries are due to ARMD. It is a multifaceted disease that is associated with both genetic and environmental risk factors. The most important treatments option for ARMD includes laser photocoagulation, photodynamic therapy (PDT), Anti-VEGF Injections, and combination therapies. In this review, we also propose that topical ocular drug delivery with nanocarriers has more attention for the treatment of ARMD. The nanocarriers were specially designed for enhanced corneal residential time, prolonged drug release and action, and minimizing the frequency of administrations. Different types of nanocarriers were developed for the topical ocular delivery system, such as nanomicelles, nanoemulsions, nanosuspensions, liposomes, and polymeric nanoparticles. These topical ocular nanocarriers were administered topically, and they can fix the hydrophobic substances, increase solubility and improve the bioavailability of an administered drug. Hence the topical ocular delivery systems with nanocarriers provide a safe and effective therapeutic strategy and promising tool for the treatment of posterior segment ocular diseases ARMD.

Graphical Abstract

[1]
Casaroli-Marano, R.; Gallego-Pinazo, R.; Fernández-Blanco, C.T.; Figueroa, M.S.; Pina Marín, B.; Fernández-Baca Vaca, G.; Piñero-Bustamante, A.; Donate López, J.; García-Arumí, J.; Farrés Martí, J. Age-related macular degeneration: Clinical findings following treatment with antiangiogenic drugs. J. Ophthalmol., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/346360] [PMID: 24693418]
[2]
Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet, 2018, 392(10153), 1147-1159.
[http://dx.doi.org/10.1016/S0140-6736(18)31550-2] [PMID: 30303083]
[3]
De Jong, E.K.; Geerlings, M.J.; Den Hollander, A.I. Age-related macular degeneration; Genetics and Genomics of Eye Disease Advancing to Precision Medicine, 2019, pp. 155-180.
[4]
Kawasaki, R.; Yasuda, M.; Song, S.J.; Chen, S.J.; Jonas, J.B.; Wang, J.J.; Mitchell, P.; Wong, T.Y. The prevalence of age-related macular degeneration in Asians: A systematic review and meta-analysis. Ophthalmology, 2010, 117(5), 921-927.
[http://dx.doi.org/10.1016/j.ophtha.2009.10.007] [PMID: 20110127]
[5]
Holz, F.G.; Sadda, S.R.; Busbee, B.; Chew, E.Y.; Mitchell, P.; Tufail, A.; Brittain, C.; Ferrara, D.; Gray, S.; Honigberg, L.; Martin, J.; Tong, B.; Ehrlich, J.S.; Bressler, N.M. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration. JAMA Ophthalmol., 2018, 136(6), 666-677.
[http://dx.doi.org/10.1001/jamaophthalmol.2018.1544] [PMID: 29801123]
[6]
Jonas, J.B.; Cheung, C.M.G.; Panda-Jonas, S. Updates on the epidemiology of age-related macular degeneration. Asia Pac. J. Ophthalmol., 2017, 6(6), 493-497.
[http://dx.doi.org/10.22608/APO.2017251] [PMID: 28906084]
[7]
Fernández-Robredo, P.; Sancho, A.; Johnen, S.; Recalde, S.; Gama, N.; Thumann, G.; Groll, J.; García-Layana, A. Current treatment limitations in age-related macular degeneration and future approaches based on cell therapy and tissue engineering. J. Ophthalmol., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/510285] [PMID: 24672707]
[8]
Hubschman, J.P.; Reddy, S.; Schwartz, S.D. Age-related macular degeneration: Current treatments. Clin. Ophthalmol., 2009, 3, 155-166.
[http://dx.doi.org/10.2147/OPTH.S2094] [PMID: 19668560]
[9]
Hernández-Zimbrón, L.F.; Zamora-Alvarado, R. Ochoa-De la, P.L.; Velez-Montoya, R.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H.; Gonzalez-Salinas, R. Age-related macular degeneration: New paradigms for treatment and management of AMD. Oxid. Med. Cell. Longev., 2018, 2018, 8374647.
[http://dx.doi.org/10.1155/2018/8374647] [PMID: 29484106]
[10]
Al-Zamil, W.; Yassin, S. Recent developments in age-related macular degeneration: A review. Clin. Interv. Aging, 2017, 12(12), 1313-1330.
[http://dx.doi.org/10.2147/CIA.S143508] [PMID: 28860733]
[11]
Cheung, N.; Wong, I.Y.; Wong, T.Y. Ocular anti-VEGF therapy for diabetic retinopathy: Overview of clinical efficacy and evolving applications. Diabetes Care, 2014, 37(4), 900-905.
[http://dx.doi.org/10.2337/dc13-1990] [PMID: 24652721]
[12]
Sun, X.; Yang, S.; Zhao, J. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: A comprehensive review. Drug Des. Devel. Ther., 2016, 10(10), 1857-1867.
[http://dx.doi.org/10.2147/DDDT.S97653] [PMID: 27330279]
[13]
Wykoff, C.C.; Clark, W.L.; Nielsen, J.S. Optimizing anti-vegf treatment outcomes for patients with neovascular age-related macular degeneration. J. Manag. Care Spec. Pharm., 2018, 24(S2a), S3-S15.
[http://dx.doi.org/10.18553/jmcp.2018.24.2-a.s3]
[14]
Willoughby, C.E.; Ponzin, D.; Ferrari, S.; Lobo, A.; Landau, K.; Omidi, Y. Anatomy and physiology of the human eye: Effects of mucopolysaccharidoses disease on structure and function - A review. Clin. Exp. Ophthalmol., 2010, 38, 2-11.
[http://dx.doi.org/10.1111/j.1442-9071.2010.02363.x]
[15]
Rehman, I.; Hazhirkarzar, B.; Patel, B.C. Anatomy, head and neck. StatPearls; StatPearls Publishing: Treasure Island, (FL), 2021.
[PMID: 29494035]
[16]
Blechinger, F.; Achtner, B. Handbook of Optical Systems: Survey of Optical Instruments; Wiley-VCH GmbH & Company KGaA, 2008.
[17]
Stjernschantz, J.; Astin, M. Anatomy and physiology of the eye.Physiological aspects of ocular drug therapy. Biopharmaceutics of ocular drug delivery; 2019, pp. 1-25.
[18]
Galloway, N.R.; Amoaku, W.M.; Galloway, P.H.; Browning, A.C. Common eye diseases and their management, 3rd ed; Springer-Verlag London Limited, 2006.
[19]
Wilson, C.G. Back of the eye anatomy and physiology: Impact on product development. Ophthalmic Product Development; Springer: Cham, 2021, pp. 67-92.
[http://dx.doi.org/10.1007/978-3-030-76367-1_4]
[20]
Hughes, M.O. A pictorial anatomy of the human eye/anophthalmic socket: A review for ocularists. Eye, 2007, 4(5), 51-63.
[21]
Ng, P.C.; Oliver, J.J. Anatomy of the eye. Handbook of Emergency Ophthalmology; Springer: Cham, 2018, pp. 1-12.
[http://dx.doi.org/10.1007/978-3-319-78945-3_1]
[22]
Garhart, C.; Lakshminarayanan, V. Anatomy of the Eye. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology, Springer, Berlin, Heidelberg, 2012, 74-82.
[http://dx.doi.org/10.1007/978-3-540-79567-4_4]
[23]
Grzybowski, A. Recent developments in cataract surgery. Ann. Transl. Med., 2020, 8(22), 1540.
[http://dx.doi.org/10.21037/atm-2020-rcs-16] [PMID: 33313285]
[24]
Alfonso, S.A.; Fawley, J.D.; Alexa Lu, X. Conjunctivitis. Prim. Care, 2015, 42(3), 325-345.
[http://dx.doi.org/10.1016/j.pop.2015.05.001] [PMID: 26319341]
[25]
Azari, A.A.; Arabi, A. Conjunctivitis: A systematic review. J. Ophthalmic Vis. Res., 2020, 15(3), 372-395.
[PMID: 32864068]
[26]
Conlon, R.; Saheb, H.; Ahmed, I.I.K. Glaucoma treatment trends: A review. Can. J. Ophthalmol., 2017, 52(1), 114-124.
[http://dx.doi.org/10.1016/j.jcjo.2016.07.013] [PMID: 28237137]
[27]
Lusthaus, J.; Goldberg, I. Current management of glaucoma. Med. J. Aust., 2019, 210(4), 180-187.
[http://dx.doi.org/10.5694/mja2.50020] [PMID: 30767238]
[28]
Vedana, G.; Villarreal, G., Jr; Jun, A.S. Fuchs endothelial corneal dystrophy: current perspectives. Clin. Ophthalmol., 2016, 10, 321-330.
[PMID: 26937169]
[29]
Nanda, G.G.; Alone, D.P. REVIEW: Current understanding of the pathogenesis of Fuchs’ endothelial corneal dystrophy. Mol. Vis., 2019, 25, 295-310.
[PMID: 31263352]
[30]
Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; Lois, N. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res., 2016, 51, 156-186.
[http://dx.doi.org/10.1016/j.preteyeres.2015.08.001] [PMID: 26297071]
[31]
Vujosevic, S.; Aldington, S.J.; Silva, P.; Hernández, C.; Scanlon, P.; Peto, T.; Simó, R. Screening for diabetic retinopathy: New perspectives and challenges. Lancet Diabetes Endocrinol., 2020, 8(4), 337-347.
[http://dx.doi.org/10.1016/S2213-8587(19)30411-5] [PMID: 32113513]
[32]
Steel, D. Retinal detachment; National Eye Institute, 2014.
[33]
Amer, R. Nalcı H.; Yalçındağ N. Exudative retinal detachment. Surv. Ophthalmol., 2017, 62(6), 723-769.
[http://dx.doi.org/10.1016/j.survophthal.2017.05.001] [PMID: 28506603]
[34]
Xu, X.; Wu, J.; Yu, X.; Tang, Y.; Tang, X.; Shentu, X. Regional differences in the global burden of age-related macular degeneration. BMC Public Health, 2020, 20(1), 410.
[http://dx.doi.org/10.1186/s12889-020-8445-y] [PMID: 32228540]
[35]
Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet, 2012, 379(9827), 1728-1738.
[http://dx.doi.org/10.1016/S0140-6736(12)60282-7] [PMID: 22559899]
[36]
Meng, J.M. Role and damage mechanism of retinal pigment epithelial cells in dry ARMD; International Eye Science, 2021, pp. 1200-1204.
[37]
Evans, J.R.; Lawrenson, J.G. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Libr., 2017, 2017(9), CD000254.
[http://dx.doi.org/10.1002/14651858.CD000254.pub4] [PMID: 28756618]
[38]
Cabral de Guimaraes, T.A.; Varela, M.D.; Georgiou, M.; Michaelides, M. Treatments for dry age-related macular degeneration: Therapeutic avenues, clinical trials and future directions. Br. J. Ophthalmol., 2021, 0, 1-8.
[PMID: 33741584]
[39]
Ambati, J.; Ambati, B.K.; Yoo, S.H.; Ianchulev, S.; Adamis, A.P. Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies. Surv. Ophthalmol., 2003, 48(3), 257-293.
[http://dx.doi.org/10.1016/S0039-6257(03)00030-4] [PMID: 12745003]
[40]
Tong, Y.; Zhou, Y.L.; Wang, Y.X.; Zhao, P.Q.; Wang, Z.Y. Retinal pigment epithelium cell-derived exosomes: Possible relevance to CNV in wet-age related macular degeneration. Med. Hypotheses, 2016, 97, 98-101.
[http://dx.doi.org/10.1016/j.mehy.2016.10.027] [PMID: 27876140]
[41]
Delaunay, K.; Sellam, A.; Dinet, V.; Moulin, A.; Zhao, M.; Gelizé, E.; Canonica, J.; Naud, M.C.; Crisanti-Lassiaz, P.; Behar-Cohen, F. Meteorin is a novel therapeutic target for wet age-related macular degeneration. J. Clin. Med., 2021, 10(13), 2973.
[http://dx.doi.org/10.3390/jcm10132973] [PMID: 34279457]
[42]
Wang, Y.; Wang, V.M.; Chan, C-C. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye, 2011, 25(2), 127-139.
[http://dx.doi.org/10.1038/eye.2010.196] [PMID: 21183941]
[43]
Knickelbein, J.E.; Chan, C.C.; Sen, H.N.; Ferris, F.L.; Nussenblatt, R.B. Inflammatory mechanisms of age-related macular degeneration. Int. Ophthalmol. Clin., 2015, 55(3), 63-78.
[http://dx.doi.org/10.1097/IIO.0000000000000073] [PMID: 26035762]
[44]
Wykoff, C.C. Aspirin and AMD: Confusion and More Data Needed; Medscape Ophthalmology, 2013, pp. 1-2.
[45]
Schoenberger, S.D.; Kim, S.J. Nonsteroidal anti-inflammatory drugs for retinal disease. Int. J. Inflamm., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/281981] [PMID: 23365785]
[46]
Abokyi, S.; To, C.H.; Lam, T.T.; Tse, D.Y. Central role of oxidative stress in age-related macular degeneration: Evidence from a review of the molecular mechanisms and animal models. Oxid. Med. Cell. Longev., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/7901270] [PMID: 32104539]
[47]
Schoenberger, S.D.; Kim, S.J.; Sheng, J.; Rezaei, K.A.; Lalezary, M.; Cherney, E. Increased prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy, and correlation with VEGF and inflammatory cytokines. Invest. Ophthalmol. Vis. Sci., 2012, 53(9), 5906-5911.
[http://dx.doi.org/10.1167/iovs.12-10410] [PMID: 22871833]
[48]
Modenese, A.; Gobba, F. Macular degeneration and occupational risk factors: A systematic review. Int. Arch. Occup. Environ. Health, 2019, 92(1), 1-11.
[http://dx.doi.org/10.1007/s00420-018-1355-y] [PMID: 30191305]
[49]
Heesterbeek, T.J.; Lorés-Motta, L.; Hoyng, C.B.; Lechanteur, Y.T.E.; den Hollander, A.I. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol. Opt., 2020, 40(2), 140-170.
[http://dx.doi.org/10.1111/opo.12675] [PMID: 32100327]
[50]
Thornton, J.; Edwards, R.; Mitchell, P.; Harrison, R.A.; Buchan, I.; Kelly, S.P. Smoking and age-related macular degeneration: A review of association. Eye (Lond.), 2005, 19(9), 935-944.
[http://dx.doi.org/10.1038/sj.eye.6701978] [PMID: 16151432]
[51]
Armstrong, R.A.; Mousavi, M. Overview of risk factors for age-related macular degeneration (AMD). J. Stem Cells, 2015, 10(3), 171-191.
[PMID: 27125062]
[52]
Raman, R.; Pal, S.S.; Ganesan, S.; Gella, L.; Vaitheeswaran, K.; Sharma, T. The prevalence and risk factors for age-related macular degeneration in rural-urban India, Sankara nethralaya rural–urban age-related macular degeneration study, Report No. 1. Eye, 2016, 30(5), 688-697.
[http://dx.doi.org/10.1038/eye.2016.14] [PMID: 26915746]
[53]
Schick, T.; Ersoy, L.; Lechanteur, Y.T.E.; Saksens, N.T.M.; Hoyng, C.B.; den Hollander, A.I.; Kirchhof, B.; Fauser, S. History of sunlight exposure is a risk factor for age-related macular degeneration. Retina, 2016, 36(4), 787-790.
[http://dx.doi.org/10.1097/IAE.0000000000000756] [PMID: 26441265]
[54]
Rastogi, N.; Smith, R.T. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease. Surv. Ophthalmol., 2016, 61(4), 422-433.
[http://dx.doi.org/10.1016/j.survophthal.2015.10.003] [PMID: 26518628]
[55]
Fuchs, F.D.; Whelton, P.K. High blood pressure and cardiovascular disease. Hypertension, 2020, 75(2), 285-292.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14240] [PMID: 31865786]
[56]
Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Food groups and risk of age-related macular degeneration: A systematic review with meta-analysis. Eur. J. Nutr., 2019, 58(5), 2123-2143.
[http://dx.doi.org/10.1007/s00394-018-1771-5] [PMID: 29978377]
[57]
Khoo, H.E.; Ng, H.S.; Yap, W.S.; Goh, H.J.H.; Yim, H.S. Nutrients for prevention of macular degeneration and eye-related diseases. Antioxidants, 2019, 8(4), 85.
[http://dx.doi.org/10.3390/antiox8040085]
[58]
Chapman, N.A.; Jacobs, R.J.; Braakhuis, A.J. Role of diet and food intake in age-related macular degeneration: A systematic review. Clin. Exp. Ophthalmol., 2019, 47(1), 106-127.
[http://dx.doi.org/10.1111/ceo.13343] [PMID: 29927057]
[59]
Majumdar, S.; Srirangam, R. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid. Pharm. Res., 2009, 26(5), 1217-1225.
[http://dx.doi.org/10.1007/s11095-008-9729-6] [PMID: 18810327]
[60]
Metelitsina, T.I.; Grunwald, J.E.; DuPont, J.C.; Ying, G.; Liu, C. Effect of viagra on retinal vein diameter in AMD patients. Exp. Eye Res., 2006, 83(1), 128-132.
[http://dx.doi.org/10.1016/j.exer.2005.11.012] [PMID: 16530757]
[61]
Adams, C.M.; Anderson, K.; Artman, G., III; Bizec, J.C.; Cepeda, R.; Elliott, J.; Fassbender, E.; Ghosh, M.; Hanks, S.; Hardegger, L.A.; Hosagrahara, V.P.; Jaffee, B.; Jendza, K.; Ji, N.; Johnson, L.; Lee, W.; Liu, D.; Liu, F.; Long, D.; Ma, F.; Mainolfi, N.; Meredith, E.L.; Miranda, K.; Peng, Y.; Poor, S.; Powers, J.; Qiu, Y.; Rao, C.; Shen, S.; Sivak, J.M.; Solovay, C.; Tarsa, P.; Woolfenden, A.; Zhang, C.; Zhang, Y. The discovery of N-(1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl)-5-((6- ((methylamino)methyl)pyrimidin-4-yl)oxy)-1H-indole-1-carboxamide (acrizanib), a VEGFR-2 inhibitor specifically designed for topical ocular delivery, as a therapy for neovascular age-related macular degeneration. J. Med. Chem., 2018, 61(4), 1622-1635.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01731] [PMID: 29400470]
[62]
Ambati, J.; Adamis, A.P. Transscleral drug delivery to the retina and choroid. Prog. Retin. Eye Res., 2002, 21(2), 145-151.
[http://dx.doi.org/10.1016/S1350-9462(01)00018-0] [PMID: 12062532]
[63]
Nomoto, H.; Shiraga, F.; Kuno, N.; Kimura, E.; Fujii, S.; Shinomiya, K.; Nugent, A.K.; Hirooka, K.; Baba, T. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest. Ophthalmol. Vis. Sci., 2009, 50(10), 4807-4813.
[http://dx.doi.org/10.1167/iovs.08-3148] [PMID: 19324856]
[64]
Davis, B.M.; Normando, E.M.; Guo, L.; Turner, L.A.; Nizari, S.; O’Shea, P.; Moss, S.E.; Somavarapu, S.; Cordeiro, M.F. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small, 2014, 10(8), 1575-1584.
[http://dx.doi.org/10.1002/smll.201303433] [PMID: 24596245]
[65]
Platania, C.; Fisichella, V.; Fidilio, A.; Geraci, F.; Lazzara, F.; Leggio, G.; Salomone, S.; Drago, F.; Pignatello, R.; Caraci, F.; Bucolo, C. Topical ocular delivery of TGF-β1 to the back of the eye: Implications in age-related neurodegenerative diseases. Int. J. Mol. Sci., 2017, 18(10), 2076.
[http://dx.doi.org/10.3390/ijms18102076] [PMID: 28973964]
[66]
Ozaki, T.; Nakazawa, M.; Yamashita, T.; Ishiguro, S. Delivery of topically applied calpain inhibitory peptide to the posterior segment of the rat eye. PLoS One, 2015, 10(6), e0130986.
[http://dx.doi.org/10.1371/journal.pone.0130986] [PMID: 26107400]
[67]
Wang, Y.; Lin, H.; Lin, S.; Qu, J.; Xiao, J.; Huang, Y.; Xiao, Y.; Fu, X.; Yang, Y.; Li, X. Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia-reperfusion injury in rats. J. Cell. Mol. Med., 2010, 14(7), 1998-2005.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00786.x] [PMID: 19432810]
[68]
Ambati, J.; Gragoudas, E.S.; Miller, J.W.; You, T.T.; Miyamoto, K.; Delori, F.C.; Adamis, A.P. Transscleral delivery of bioactive protein to the choroid and retina. Invest. Ophthalmol. Vis. Sci., 2000, 41(5), 1186-1191.
[PMID: 10752959]
[69]
Querques, G.; Cicinelli, M.V.; Rabiolo, A.; de Vitis, L.; Sacconi, R.; Querques, L.; Bandello, F. Laser photocoagulation as treatment of non-exudative age-related macular degeneration: state-of-the-art and future perspectives. Graefes Arch. Clin. Exp. Ophthalmol., 2018, 256(1), 1-9.
[http://dx.doi.org/10.1007/s00417-017-3848-x] [PMID: 29177712]
[70]
Dong, Y.; Wan, G.; Yan, P.; Chen, Y.; Wang, W.; Peng, G. Effect of anti-VEGF drugs combined with photodynamic therapy in the treatment of age-related macular degeneration. Exp. Ther. Med., 2016, 12(6), 3923-3926.
[http://dx.doi.org/10.3892/etm.2016.3886] [PMID: 28105123]
[71]
Yoshida, M.; Oishi, A.; Miyake, M.; Ooto, S.; Tamura, H.; Miyata, M.; Takahashi, A.; Hata, M.; Yamashiro, K.; Tsujikawa, A. Rescue photodynamic therapy for age-related macular degeneration refractory to anti-vascular endothelial growth factor monotherapy. Photodiagn. Photodyn. Ther., 2022, 38, 102745.
[http://dx.doi.org/10.1016/j.pdpdt.2022.102745] [PMID: 35123015]
[72]
Konan-Kouakou, Y.N.; Boch, R.; Gurny, R.; Allémann, E. in vitro and in vivo activities of verteporfin-loaded nanoparticles. J. Control. Release, 2005, 103(1), 83-91.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.023] [PMID: 15710502]
[73]
Ran, M.; Deng, Y.; Yan, J.; Zhang, A.; Wei, Y.; Li, X.; He, H.; Gou, J.; Yin, T.; Tang, X.; Kong, J.; Zhang, H.; Zhang, H.; Zhang, Y. Neovascularization-directed bionic eye drops for noninvasive renovation of age-related macular degeneration. Chem. Eng. J., 2022, 450, 138291.
[http://dx.doi.org/10.1016/j.cej.2022.138291]
[74]
Rao, P.; Lum, F.; Wood, K.; Salman, C.; Burugapalli, B.; Hall, R.; Singh, S.; Parke, D.W., II; Williams, G.A. Real-world vision in age-related macular degeneration patients treated with single anti–vegf drug type for 1 year in the iris registry. Ophthalmology, 2018, 125(4), 522-528.
[http://dx.doi.org/10.1016/j.ophtha.2017.10.010] [PMID: 29146306]
[75]
Sarao, V.; Veritti, D.; Boscia, F.; Lanzetta, P. Intravitreal steroids for the treatment of retinal diseases. ScientificWorldJournal, 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/989501] [PMID: 24526927]
[76]
Waugh, N.; Loveman, E.; Colquitt, J.; Royle, P.; Yeong, J.L.; Hoad, G.; Lois, N. Treatments for dry age-related macular degeneration and Stargardt disease: A systematic review. Health Technol. Assess., 2018, 22(27), 1-168.
[http://dx.doi.org/10.3310/hta22270] [PMID: 29846169]
[77]
Hagigit, T.; Abdulrazik, M.; Orucov, F.; Valamanesh, F.; Lambert, M.; Lambert, G.; Behar-Cohen, F.; Benita, S. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J. Control. Release, 2010, 145(3), 297-305.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.013] [PMID: 20420865]
[78]
Augustin, A.J.; Puls, S.; Offermann, I. Triple therapy for choroidal neovascularization due to age-related macular degeneration: verteporfin PDT, bevacizumab, and dexamethasone. Retina, 2007, 27(2), 133-140.
[http://dx.doi.org/10.1097/IAE.0b013e3180323de7] [PMID: 17290193]
[79]
Veritti, D.; Sarao, V.; Samassa, F.; Danese, C.; Löwenstein, A.; Schmidt-Erfurth, U.; Lanzetta, P. State-of-the art pharmacotherapy for non-neovascular age-related macular degeneration. Expert Opin. Pharmacother., 2020, 21(7), 773-784.
[http://dx.doi.org/10.1080/14656566.2020.1736557] [PMID: 32153203]
[80]
Meza-Rios, A.; Navarro-Partida, J.; Armendariz-Borunda, J.; Santos, A. Therapies based on nanoparticles for eye drug delivery. Ophthalmol. Ther., 2020, 9(3), 1-14.
[http://dx.doi.org/10.1007/s40123-020-00257-7] [PMID: 32383107]
[81]
Geroski, D.H.; Edelhauser, H.F. Drug delivery for posterior segment eye disease. Invest. Ophthalmol. Vis. Sci., 2000, 41(5), 961-964.
[PMID: 10752928]
[82]
Rapalli, V.K.; Gorantla, S.; Waghule, T.; Mahmood, A.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanotherapies for the treatment of age-related macular degeneration (AMD) Disease: Recent advancements and challenges. Recent Pat. Drug Deliv. Formul., 2020, 13(4), 283-290.
[http://dx.doi.org/10.2174/1872211314666200117095917] [PMID: 31951173]
[83]
Kindy, M.S.; Vertegel, A. Nanoparticles for neurotherapeutic drug delivery in neurodegenerative disorders: Application in neurotrauma. In: Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects; Kobeissy, F.H., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, 2015.
[84]
Natesan, S.; Vellayutham, R.; Krishnaswami, V.; Ponnusamy, C.; Thekkilaveedu, S.; Mohanan, D.; Kandasamy, R. Enhanced topical delivery of drugs to the eye using chitosan based systems. Chitosan for Biomaterials IV. Advances in Polymer Science; Jayakumar, R; Prabaharan, M., Ed.; Springer: Cham, 2021, Vol. 288, .
[http://dx.doi.org/10.1007/12_2021_105]
[85]
Yadav, M.; Schiavone, N.; Guzman-Aranguez, A.; Giansanti, F.; Papucci, L.; Perez de Lara, M.J.; Singh, M.; Kaur, I.P. Atorvastatin-loaded solid lipid nanoparticles as eye drops: Proposed treatment option for age-related macular degeneration (AMD). Drug Deliv. Transl. Res., 2020, 10(4), 919-944.
[http://dx.doi.org/10.1007/s13346-020-00733-4] [PMID: 32270439]
[86]
Sharma, P.; Mittal, S. Nanotechnology: Revolutionizing the delivery of drugs to treat age-related macular degeneration. Expert Opin. Drug Deliv., 2021, 18(8), 1131-1149.
[http://dx.doi.org/10.1080/17425247.2021.1888925] [PMID: 33691548]
[87]
Hirani, A.; Grover, A.; Lee, Y.W.; Pathak, Y.; Sutariya, V. Triamcinolone acetonide nanoparticles incorporated in thermoreversible gels for age-related macular degeneration. Pharm. Dev. Technol., 2016, 21(1), 61-67.
[http://dx.doi.org/10.3109/10837450.2014.965326] [PMID: 25259682]
[88]
Elsaid, N.; Somavarapu, S.; Jackson, T.L. Cholesterol-poly(ethylene) glycol nanocarriers for the transscleral delivery of sirolimus. Exp. Eye Res., 2014, 121, 121-129.
[http://dx.doi.org/10.1016/j.exer.2014.02.001] [PMID: 24530465]
[89]
Li, T.; Hou, X.; Deng, H.; Zhao, J.; Huang, N.; Zeng, J.; Chen, H.; Gu, Y. Liposomal hypocrellin B as a potential photosensitizer for age-related macular degeneration: pharmacokinetics, photodynamic efficacy, and skin phototoxicity in vivo. Photochem. Photobiol. Sci., 2015, 14(5), 972-981.
[http://dx.doi.org/10.1039/c4pp00412d] [PMID: 25793654]
[90]
Suri, R.; Neupane, Y.R.; Jain, G.K.; Kohli, K. Recent theranostic paradigms for the management of Age-related macular degeneration. Eur. J. Pharm. Sci., 2020, 153, 105489.
[http://dx.doi.org/10.1016/j.ejps.2020.105489] [PMID: 32717428]
[91]
Behroozi, F.; Abdkhodaie, M.J.; Abandansari, H.S.; Satarian, L.; Ashtiani, M.K.; Jaafari, M.R.; Baharvand, H. Smart liposomal drug delivery for treatment of oxidative stress model in human embryonic stem cell-derived retinal pigment epithelial cells. Int. J. Pharm., 2018, 548(1), 62-72.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.056]
[92]
Joseph, R.R.; Tan, D.W.N.; Ramon, M.R.M.; Natarajan, J.V.; Agrawal, R.; Wong, T.T.; Venkatraman, S.S. Characterization of liposomal carriers for the trans-scleral transport of Ranibizumab. Sci. Rep., 2017, 7(1), 16803.
[http://dx.doi.org/10.1038/s41598-017-16791-7] [PMID: 29196745]
[93]
Urtti, A. Topical delivery of avastin to the posterior segment of the eye in vivo using annexin a5-associated liposomes: Topical liposomal bevacizumab results in negligible retinal concentrations. Small, 2019, 15(15), 1805199.
[http://dx.doi.org/10.1002/smll.201805199] [PMID: 30977598]
[94]
Chen, L.; Tang, C.Y.; Chen, D.Z.; Wong, C.T.; Tsui, C.P. Fabrication and characterization of poly-d-l-lactide/nano-hydroxyapatite composite scaffolds with poly (ethylene glycol) coating and dexamethasone releasing. Compos. Sci. Technol., 2011, 71(16), 1842-1849.
[http://dx.doi.org/10.1016/j.compscitech.2011.08.015]
[95]
Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur. J. Pharm. Sci., 2017, 104(104), 302-314.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[96]
Lim, C.; Kim, D.; Sim, T.; Hoang, N.H.; Lee, J.W.; Lee, E.S.; Youn, Y.S.; Oh, K.T. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops. J. Drug Deliv. Sci. Technol., 2016, 36, 168-174.
[http://dx.doi.org/10.1016/j.jddst.2016.10.009]
[97]
Huang, L.; Liang, W.; Zhou, K.; Wassel, R.A.; Ridge, Z.D.; Ma, J.X.; Wang, B. Therapeutic effects of fenofibrate nano-emulsion eye drops on retinal vascular leakage and neovascularization. Biology, 2021, 10(12), 1328.
[http://dx.doi.org/10.3390/biology10121328] [PMID: 34943243]
[98]
Ponnusamy, C.; Sugumaran, A.; Krishnaswami, V.; Kandasamy, R.; Natesan, S. Design and development of artemisinin and dexamethasone loaded topical nanodispersion for the effective treatment of age-related macular degeneration. IET Nanobiotechnol., 2019, 13(8), 868-874.
[http://dx.doi.org/10.1049/iet-nbt.2019.0130] [PMID: 31625529]
[99]
Dhahir, R.K.; Al-Nima, A.M.; Al-Bazzaz, F. Nanoemulsions as ophthalmic drug delivery systems. Turk J Pharm Sci, 2021, 18(5), 652-664.
[http://dx.doi.org/10.4274/tjps.galenos.2020.59319] [PMID: 34708428]
[100]
Ge, Y.; Zhang, A.; Sun, R.; Xu, J.; Yin, T.; He, H.; Gou, J.; Kong, J.; Zhang, Y.; Tang, X. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin. Drug Deliv., 2020, 17(4), 603-619.
[http://dx.doi.org/10.1080/17425247.2020.1735348] [PMID: 32105151]
[101]
Paulsamy, M.; Ponnusamy, C.; Palanisami, M.; Nackeeran, G.; Paramasivam, S.; Sugumaran, A.; Kandasamy, R.; Natesan, S.; Palanichamy, R. Nepafenac loaded silica nanoparticles dispersed in-situ gel systems: Development and characterization. Int. J. Biol. Macromol., 2018, 110(110), 336-345.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.123] [PMID: 29408555]
[102]
Laradji, A.M.; Kolesnikov, A.V.; Karakoçak, B.B.; Kefalov, V.J.; Ravi, N. Redox-responsive hyaluronic acid-based nanogels for the topical delivery of the visual chromophore to retinal photoreceptors. ACS Omega, 2021, 6(9), 6172-6184.
[http://dx.doi.org/10.1021/acsomega.0c05535] [PMID: 33718708]
[103]
Ponnusamy, C.; Sugumaran, A.; Krishnaswami, V.; Palanichamy, R.; Velayutham, R.; Natesan, S. Development and evaluation of polyvinylpyrrolidone k90 and poloxamer 407 self-assembled nanomicelles: Enhanced topical ocular delivery of artemisinin. Polymers, 2021, 13(18), 3038.
[http://dx.doi.org/10.3390/polym13183038] [PMID: 34577939]
[104]
De Cogan, F.; Hill, L.J. Lynch. A.; Morgan-Warren, P.J.; Lechner, J.; Berwick, M.R.; Peacock, A.F.A.; Chen, M.; Scott, R.A.H.; Xu, H.; Logan, A. Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides. Invest. Ophthalmol. Vis. Sci., 2017, 58(5), 2578-2590.
[http://dx.doi.org/10.1167/iovs.16-20072] [PMID: 28494491]
[105]
Patel, S.; Garapati, C.; Chowdhury, P.; Gupta, H.; Nesamony, J.; Nauli, S.; Boddu, S.H.S. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application. J. Ocul. Pharmacol. Ther., 2015, 31(4), 215-227.
[http://dx.doi.org/10.1089/jop.2014.0152] [PMID: 25839185]
[106]
Ryu, W.M.; Kim, S.N.; Min, C.H.; Choy, Y.B. Dry tablet formulation of plga nanoparticles with a preocular applicator for topical drug delivery to the eye. Pharmaceutics, 2019, 11(12), 651.
[http://dx.doi.org/10.3390/pharmaceutics11120651] [PMID: 31817173]
[107]
Gote, V.; Mandal, A.; Alshamrani, M.; Pal, D. Self-assembling tacrolimus nanomicelles for retinal drug delivery. Pharmaceutics, 2020, 12(11), 1072.
[http://dx.doi.org/10.3390/pharmaceutics12111072] [PMID: 33182620]
[108]
Alshamrani, M.; Sikder, S.; Coulibaly, F.; Mandal, A.; Pal, D.; Mitra, A.K. Self-assembling topical nanomicellar formulation to improve curcumin absorption across ocular tissues. AAPS PharmSciTech, 2019, 20(7), 254.
[http://dx.doi.org/10.1208/s12249-019-1404-1] [PMID: 31317354]
[109]
Guo, C.; Zhang, Y.; Yang, Z.; Li, M.; Li, F.; Cui, F.; Liu, T.; Shi, W.; Wu, X. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Sci. Rep., 2015, 5(1), 12968.
[http://dx.doi.org/10.1038/srep12968]
[110]
Mehra, N.; Aqil, M.; Sultana, Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur. J. Pharm. Sci., 2021, 159, 105735.
[http://dx.doi.org/10.1016/j.ejps.2021.105735] [PMID: 33516808]
[111]
Battaglia, L.; Gallarate, M.; Serpe, L.; Foglietta, F.; Muntoni, E.; del Pozo, R.A.; Aspiazu, M.A.S. Ocular delivery of solid lipid nanoparticles. Lipid Nanocarriers for Drug Targeting; Applied Science Publishers, 2018, pp. 269-312.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00007-4]
[112]
Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm., 2016, 109, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[113]
Nair, A.; Shah, J.; Al-Dhubiab, B.; Jacob, S.; Patel, S.; Venugopala, K.; Morsy, M.; Gupta, S.; Attimarad, M.; Sreeharsha, N.; Shinu, P. Clarithromycin solid lipid nanoparticles for topical ocular therapy: Optimization, evaluation and in vivo studies. Pharmaceutics, 2021, 13(4), 523.
[http://dx.doi.org/10.3390/pharmaceutics13040523] [PMID: 33918870]
[114]
Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, 109, 224-235.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.015] [PMID: 27793755]
[115]
Swetledge, S.; Jung, J.P.; Carter, R.; Sabliov, C. Distribution of polymeric nanoparticles in the eye: Implications in ocular disease therapy. J. Nanobiotechnology, 2021, 19(1), 10.
[http://dx.doi.org/10.1186/s12951-020-00745-9] [PMID: 33413421]
[116]
Pandian, S.; Jeevanesan, V.; Ponnusamy, C.; Natesan, S. RES-loaded pegylated CS NPs: For efficient ocular delivery. IET Nanobiotechnol., 2017, 11(1), 32-39.
[http://dx.doi.org/10.1049/iet-nbt.2016.0069] [PMID: 28476958]
[117]
Seah, I.; Zhao, X.; Lin, Q.; Liu, Z.; Su, S.Z.Z.; Yuen, Y.S.; Hunziker, W.; Lingam, G.; Loh, X.J.; Su, X. Correction: Use of biomaterials for sustained delivery for anti-VEGF to treat retinal diseases. Eye, 2020, 34(8), 1341-1356.
[http://dx.doi.org/10.1038/s41433-020-0980-3]
[118]
Mazet, R.; Yaméogo, J.B.G.; Wouessidjewe, D.; Choisnard, L.; Gèze, A. Recent advances in the design of topical ophthalmic delivery systems in the treatment of ocular surface inflammation and their biopharmaceutical evaluation. Pharmaceutics, 2020, 12(6), 570.
[http://dx.doi.org/10.3390/pharmaceutics12060570] [PMID: 32575411]
[119]
Tahara, K.; Karasawa, K.; Onodera, R.; Takeuchi, H. Feasibility of drug delivery to the eye’s posterior segment by topical instillation of PLGA nanoparticles. Asian J. Pharm. Sci., 2017, 12(4), 394-399.
[http://dx.doi.org/10.1016/j.ajps.2017.03.002] [PMID: 32104351]
[120]
Luis de Redín, I.; Boiero, C.; Recalde, S.; Agüeros, M.; Allemandi, D.; Llabot, J.M.; García-Layana, A.; Irache, J.M. in vivo effect of bevacizumab-loaded albumin nanoparticles in the treatment of corneal neovascularization. Exp. Eye Res., 2019, 185, 107697.
[http://dx.doi.org/10.1016/j.exer.2019.107697] [PMID: 31228461]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy