Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

SNHG11: A New Budding Star in Tumors and Inflammatory Diseases

Author(s): Yinxin Wu*

Volume 23, Issue 20, 2023

Published on: 31 May, 2023

Page: [1993 - 2006] Pages: 14

DOI: 10.2174/1389557523666230509122402

Price: $65

Abstract

Background: Long non-coding RNAs (lncRNAs) are transcripts that are over 200 nucleotides in length and lack protein-coding potential. Despite their name, lncRNAs have important regulatory roles in transcription, translation, and protein function by interacting with DNA, RNA, and protein molecules. Small nucleolar RNAs (snoRNAs), found in various tumors, are encoded by lncRNAs and have gained attention in recent research. The lncRNAs, encoding snoRNAs are known as small nucleolar RNA host genes (SNHGs), a newly identified class of lncRNAs. SNHG11, a specific SNHG, is a critical regulatory factor involved in various biological processes. Accumulating evidence suggests that SNHG11 can impact tumor development and inflammatory diseases by modulating downstream gene expression through chromatin modification, transcription, or post-transcriptional mechanisms. The expression levels of SNHG11 vary significantly in different normal tissues, tumors, and stages of tumor development. Currently, treatment options for advanced cancers are mainly palliative and lack curative potential.

Objectives: This review aims to explore the modifications and functions of lncRNA SNHG11 in various tumors and inflammatory diseases. Through a comprehensive analysis of relevant literature on SNHG11 in PubMed, the review aims to provide a comprehensive description of the roles of SNHG11 in known tumors and inflammatory diseases and elucidate the specific mechanism’s underlying functions. The changes in SNHG11 expression in tumors and inflammatory diseases can serve as early biomarkers, therapeutic targets, and prognostic indicators. Improving the clinical detection, staging, treatment, and prognosis of tumors is of great value. Additionally, the structural modifications of SNHG11 can potentially enhance its function as a drug carrier to maximize the therapeutic potential of drugs. Furthermore, understanding the specific mechanisms of SNHG11 in tumors and inflammatory diseases may provide new ways for targeted therapy.

Materials and Methods: Relevant studies were retrieved and collected from the PubMed system. SNHG11 was identified as the research object, and research literature on SNHG11 in the past ten years was analyzed to determine its strong association with the onset and progression of various diseases. The precise mechanisms of SNHG11's mode of action were reviewed, and references were further determined based on their impact factors for comprehensive analysis.

Results: Through review and analysis, it was found that SNHG11 is involved in a wide range of tumors and inflammatory diseases through its high expression, including lung cancer, colorectal cancer, prostate cancer, hepatocellular carcinoma, triple-negative breast cancer, gastric cancer, glioma, ovarian cancer, pancreatic cancer, acute pancreatitis, and ischemic stroke, but with lower expression in virus myocarditis. SNHG11 is abnormally expressed in cells of these tumors and inflammatory diseases mainly contributes to disease proliferation, metastasis, ceRNA activity, miRNA sponging, drug resistance, and tumor prognosis. However, the specific mechanisms of SNHG11 in tumors and inflammatory diseases require further detailed exploration. Understanding the known regulatory mechanisms can expand the scope of clinical applications and promote early clinical detection, monitoring, and treatment.

Conclusion: LncRNA SNHG11 can serve as an early diagnostic biomarker, therapeutic target, and prognostic indicator in various diseases, particularly tumors. SNHG11 plays a crucial role in the occurrence and development of tumors and inflammatory diseases through various mechanisms, which has significant implications for clinical diagnosis and treatment.

« Previous
Graphical Abstract

[1]
Hon, C.C.; Ramilowski, J.A.; Harshbarger, J.; Bertin, N.; Rackham, O.J.L.; Gough, J.; Denisenko, E.; Schmeier, S.; Poulsen, T.M.; Severin, J.; Lizio, M.; Kawaji, H.; Kasukawa, T.; Itoh, M.; Burroughs, A.M.; Noma, S.; Djebali, S.; Alam, T.; Medvedeva, Y.A.; Testa, A.C.; Lipovich, L.; Yip, C.W.; Abugessaisa, I.; Mendez, M.; Hasegawa, A.; Tang, D.; Lassmann, T.; Heutink, P.; Babina, M.; Wells, C.A.; Kojima, S.; Nakamura, Y.; Suzuki, H.; Daub, C.O.; de Hoon, M.J.L.; Arner, E.; Hayashizaki, Y.; Carninci, P.; Forrest, A.R.R. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017, 543(7644), 199-204.
[http://dx.doi.org/10.1038/nature21374] [PMID: 28241135]
[2]
Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermüller, J.; Hofacker, I.L.; Bell, I.; Cheung, E.; Drenkow, J.; Dumais, E.; Patel, S.; Helt, G.; Ganesh, M.; Ghosh, S.; Piccolboni, A.; Sementchenko, V.; Tammana, H.; Gingeras, T.R. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316(5830), 1484-1488.
[http://dx.doi.org/10.1126/science.1138341] [PMID: 17510325]
[3]
Vennin, C.; Spruyt, N.; Robin, Y.M.; Chassat, T.; Le Bourhis, X.; Adriaenssens, E. The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett., 2017, 385, 198-206.
[http://dx.doi.org/10.1016/j.canlet.2016.10.023] [PMID: 27780718]
[4]
Hauptman, N.; Glavac, D. MicroRNAs and long non-coding RNAs: Prospects in diagnostics and therapy of cancer. Radiol. Oncol., 2013, 47(4), 311-318.
[http://dx.doi.org/10.2478/raon-2013-0062] [PMID: 24294175]
[5]
Wang, Y.; Yang, L.; Chen, T.; Liu, X.; Guo, Y.; Zhu, Q.; Tong, X.; Yang, W.; Xu, Q.; Huang, D.; Tu, K. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol. Cancer, 2019, 18(1), 28.
[http://dx.doi.org/10.1186/s12943-019-0957-7] [PMID: 30782188]
[6]
Wang, Y.; Sun, L.; Wang, L.; Liu, Z.; Li, Q.; Yao, B.; Wang, C.; Chen, T.; Tu, K.; Liu, Q. Long non-coding RNA DSCR8 acts as a molecular sponge for miR-485-5p to activate Wnt/β-catenin signal pathway in hepatocellular carcinoma. Cell Death Dis., 2018, 9(9), 851.
[http://dx.doi.org/10.1038/s41419-018-0937-7] [PMID: 30154476]
[7]
Gao, C.; Li, H.; Zhuang, J.; Zhang, H.; Wang, K.; Yang, J.; Liu, C.; Liu, L.; Zhou, C.; Sun, C. The construction and analysis of ceRNA networks in invasive breast cancer: A study based on the cancer genome atlas. Cancer Manag. Res., 2018, 11, 1-11.
[http://dx.doi.org/10.2147/CMAR.S182521] [PMID: 30588106]
[8]
Liu, W.; Ding, C. Roles of LncRNAs in viral infections. Front. Cell. Infect. Microbiol., 2017, 7, 205.
[http://dx.doi.org/10.3389/fcimb.2017.00205] [PMID: 28603696]
[9]
Cao, B.; Wang, T.; Qu, Q.; Kang, T.; Yang, Q.; Long Noncoding, R.N.A. Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson’s Disease via regulating miR-7/NLRP3 Pathway. Neuroscience, 2018, 388, 118-127.
[http://dx.doi.org/10.1016/j.neuroscience.2018.07.019] [PMID: 30031125]
[10]
Wu, D.; Guo, J.; Qi, B.; Xiao, H. TGF-β1 induced proliferation, migration, and ECM accumulation through the SNHG11/miR-34b/LIF pathway in human pancreatic stellate cells. Endocr. J., 2021, 68(11), 1347-1357.
[http://dx.doi.org/10.1507/endocrj.EJ21-0176] [PMID: 34261825]
[11]
Chao, Y.; Zhou, D. lncRNA-D16366 Is a Potential biomarker for diagnosis and prognosis of hepatocellular carcinoma. Med. Sci. Monit., 2019, 25, 6581-6586.
[http://dx.doi.org/10.12659/MSM.915100] [PMID: 31475695]
[12]
Li, L.; Wang, L.; Li, H.; Han, X.; Chen, S.; Yang, B.; Hu, Z.; Zhu, H.; Cai, C.; Chen, J.; Li, X.; Huang, J.; Gu, D. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis, 2018, 275, 359-367.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.866] [PMID: 30015300]
[13]
Geng, Y.B.; Xu, C.; Wang, Y.; Zhang, L.W. Long non-coding RNA SNHG11 promotes cell proliferation, invasion and migration in glioma by targeting miR-154-5p. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(9), 4901-4908.
[PMID: 32432753]
[14]
Jámbor, I.; Szabó, K.; Zeher, M.; Papp, G. The importance of microRNAs in the development of systemic autoimmune disorders. Orv. Hetil., 2019, 160(15), 563-572.
[PMID: 30957538]
[15]
Morales, S.; Monzo, M.; Navarro, A. Epigenetic regulation mechanisms of microRNA expression. Biomol. Concepts, 2017, 8(5-6), 203-212.
[http://dx.doi.org/10.1515/bmc-2017-0024] [PMID: 29161231]
[16]
Simonson, B.; Das, S.; Micro, R.N.A. MicroRNA Therapeutics: the Next Magic Bullet? Mini Rev. Med. Chem., 2015, 15(6), 467-474.
[http://dx.doi.org/10.2174/1389557515666150324123208] [PMID: 25807941]
[17]
Liu, Y.; Feng, W.; Liu, W.; Kong, X.; Li, L.; He, J.; Wang, D.; Zhang, M.; Zhou, G.; Xu, W.; Chen, W.; Gong, A.; Xu, M. Circulating lncRNA ABHD11-AS1 serves as a biomarker for early pancreatic cancer diagnosis. J. Cancer, 2019, 10(16), 3746-3756.
[http://dx.doi.org/10.7150/jca.32052] [PMID: 31333792]
[18]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[19]
Derycke, L.D.M.; Bracke, M.E. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int. J. Dev. Biol., 2004, 48(5-6), 463-476.
[http://dx.doi.org/10.1387/ijdb.041793ld] [PMID: 15349821]
[20]
Osuka, S.; Zhu, D.; Zhang, Z.; Li, C.; Stackhouse, C.T.; Sampetrean, O.; Olson, J.J.; Gillespie, G.Y.; Saya, H.; Willey, C.D.; Van Meir, E.G. N-cadherin upregulation mediates adaptive radioresistance in glioblastoma. J. Clin. Invest., 2021, 131(6), e136098.
[http://dx.doi.org/10.1172/JCI136098] [PMID: 33720050]
[21]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[22]
Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; Hamadeh, R.R.; Moore, A.; Werdecker, A.; Gessner, B.D.; Te Ao, B.; McMahon, B.; Karimkhani, C.; Yu, C.; Cooke, G.S.; Schwebel, D.C.; Carpenter, D.O.; Pereira, D.M.; Nash, D.; Kazi, D.S.; De Leo, D.; Plass, D.; Ukwaja, K.N.; Thurston, G.D.; Yun Jin, K. Simard, E.P.; Mills, E.; Park, E.K.; Catalá-López, F.; deVeber, G.; Gotay, C.; Khan, G.; Hosgood, H.D., III; Santos, I.S.; Leasher, J.L.; Singh, J.; Leigh, J.; Jonas, J.B.; Sanabria, J.; Beardsley, J.; Jacobsen, K.H.; Takahashi, K.; Franklin, R.C.; Ronfani, L.; Montico, M.; Naldi, L.; Tonelli, M.; Geleijnse, J.; Petzold, M.; Shrime, M.G.; Younis, M.; Yonemoto, N.; Breitborde, N.; Yip, P.; Pourmalek, F.; Lotufo, P.A.; Esteghamati, A.; Hankey, G.J.; Ali, R.; Lunevicius, R.; Malekzadeh, R.; Dellavalle, R.; Weintraub, R.; Lucas, R.; Hay, R.; Rojas-Rueda, D.; Westerman, R.; Sepanlou, S.G.; Nolte, S.; Patten, S.; Weichenthal, S.; Abera, S.F.; Fereshtehnejad, S.M.; Shiue, I.; Driscoll, T.; Vasankari, T.; Alsharif, U.; Rahimi-Movaghar, V.; Vlassov, V.V.; Marcenes, W.S.; Mekonnen, W.; Melaku, Y.A.; Yano, Y.; Artaman, A.; Campos, I.; MacLachlan, J.; Mueller, U.; Kim, D.; Trillini, M.; Eshrati, B.; Williams, H.C.; Shibuya, K.; Dandona, R.; Murthy, K.; Cowie, B.; Amare, A.T.; Antonio, C.A.; Castañeda-Orjuela, C.; van Gool, C.H.; Violante, F.; Oh, I.H.; Deribe, K.; Soreide, K.; Knibbs, L.; Kereselidze, M.; Green, M.; Cardenas, R.; Roy, N.; Tillmann, T.; Li, Y.; Krueger, H.; Monasta, L.; Dey, S.; Sheikhbahaei, S.; Hafezi-Nejad, N.; Kumar, G.A.; Sreeramareddy, C.T.; Dandona, L.; Wang, H.; Vollset, S.E.; Mokdad, A.; Salomon, J.A.; Lozano, R.; Vos, T.; Forouzanfar, M.; Lopez, A.; Murray, C.; Naghavi, M. the global burden of cancer 2013. JAMA Oncol., 2015, 1(4), 505-527.
[http://dx.doi.org/10.1001/jamaoncol.2015.0735] [PMID: 26181261]
[23]
Liu, S.; Yang, N.; Wang, L.; Wei, B.; Chen, J.; Gao, Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β‐catenin signaling pathway. J. Cell. Physiol., 2020, 235(10), 7541-7553.
[http://dx.doi.org/10.1002/jcp.29656] [PMID: 32239719]
[24]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[25]
Heist, R.S.; Engelman, J.A. SnapShot: Non-small cell lung cancer. Cancer cell, 2012, 21(3), 448.e2.
[26]
Prabhu, V.V.; Devaraj, S.N. KAI1/CD82, metastasis suppressor gene as a therapeutic target for non-small-cell lung carcinoma. J. Environ. Pathol. Toxicol. Oncol., 2017, 36(3), 269-275.
[27]
Wei, L.; Sun, J.J.; Cui, Y.C.; Jiang, S.L.; Wang, X.W.; Lv, L.Y.; Xie, L.; Song, X.R. Twist may be associated with invasion and metastasis of hypoxic NSCLC cells. Tumour Biol., 2016, 37(7), 9979-9987.
[http://dx.doi.org/10.1007/s13277-016-4896-2] [PMID: 26819207]
[28]
Akhade, V.S.; Pal, D.; Kanduri, C. Long noncoding rna: genome organization and mechanism of action. Adv. Exp. Med. Biol., 2017, 1008, 47-74.
[http://dx.doi.org/10.1007/978-981-10-5203-3_2] [PMID: 28815536]
[29]
Bahrami, A.; Khazaei, M.; Hasanzadeh, M. ShahidSales, S.; Joudi Mashhad, M.; Farazestanian, M.; Sadeghnia, H.R.; Rezayi, M.; Maftouh, M.; Hassanian, S.M.; Avan, A. Therapeutic potential of targeting PI3K/AKT pathway in treatment of colorectal cancer: Rational and progress. J. Cell. Biochem., 2018, 119(3), 2460-2469.
[http://dx.doi.org/10.1002/jcb.25950] [PMID: 28230287]
[30]
Deng, Y.; Zhang, L. LncRNA SNHG11 accelerates the progression of lung adenocarcinoma via activating Notch pathways. Pathol. Res. Pract., 2022, 234, 153849.
[http://dx.doi.org/10.1016/j.prp.2022.153849] [PMID: 35487027]
[31]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[32]
Cotton, P.B.; Durkalski, V.L.; Pineau, B.C.; Palesch, Y.Y.; Mauldin, P.D.; Hoffman, B.; Vining, D.J.; Small, W.C.; Affronti, J.; Rex, D.; Kopecky, K.K.; Ackerman, S.; Burdick, J.S.; Brewington, C.; Turner, M.A.; Zfass, A.; Wright, A.R.; Iyer, R.B.; Lynch, P.; Sivak, M.V.; Butler, H. Computed tomographic colonography (virtual colonoscopy): A multicenter comparison with standard colonoscopy for detection of colorectal neoplasia. JAMA, 2004, 291(14), 1713-1719.
[http://dx.doi.org/10.1001/jama.291.14.1713] [PMID: 15082698]
[33]
Nicolini, A.; Ferrari, P.; Duffy, M.J.; Antonelli, A.; Rossi, G.; Metelli, M.R.; Fulceri, F.; Anselmi, L.; Conte, M.; Berti, P.; Miccoli, P. Intensive risk-adjusted follow-up with the CEA, TPA, CA19.9, and CA72.4 tumor marker panel and abdominal ultrasonography to diagnose operable colorectal cancer recurrences: Effect on survival. Archives of surgery (Chicago, Ill. : 1960), 2010, 145(12), 1177-1183.
[34]
Thomas, D.S.; Fourkala, E-O.; Apostolidou, S.; Gunu, R.; Ryan, A.; Jacobs, I.; Menon, U.; Alderton, W.; Gentry-Maharaj, A.; Timms, J.F. Evaluation of serum CEA, CYFRA21-1 and CA125 for the early detection of colorectal cancer using longitudinal preclinical samples. Br. J. Cancer, 2015, 113(2), 268-274.
[http://dx.doi.org/10.1038/bjc.2015.202] [PMID: 26035703]
[35]
Lederer, M.; Bley, N.; Schleifer, C.; Hüttelmaier, S. The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin. Cancer Biol., 2014, 29, 3-12.
[http://dx.doi.org/10.1016/j.semcancer.2014.07.006] [PMID: 25068994]
[36]
Huang, W.; Dong, S.; Cha, Y.; Yuan, X. SNHG11 promotes cell proliferation in colorectal cancer by forming a positive regulatory loop with c-Myc. Biochem. Biophys. Res. Commun., 2020, 527(4), 985-992.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.002] [PMID: 32439170]
[37]
Huang, W.; Zhang, H.; Tian, Y.; Li, Y.; Li, J.; Zhong, X.; Yuan, X. LncRNA SNHG11 enhances bevacizumab resistance in colorectal cancer by mediating miR-1207-5p/ABCC1 axis. Anticancer Drugs, 2022, 33(6), 575-586.
[http://dx.doi.org/10.1097/CAD.0000000000001289] [PMID: 35324517]
[38]
Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793.
[http://dx.doi.org/10.1038/ng1834] [PMID: 16804544]
[39]
Kaidi, A.; Qualtrough, D.; Williams, A.C.; Paraskeva, C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res., 2006, 66(13), 6683-6691.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0425] [PMID: 16818642]
[40]
Xu, L.; Huan, L.; Guo, T.; Wu, Y.; Liu, Y.; Wang, Q.; Huang, S.; Xu, Y.; Liang, L.; He, X. LncRNA SNHG11 facilitates tumor metastasis by interacting with and stabilizing HIF-1α. Oncogene, 2020, 39(46), 7005-7018.
[http://dx.doi.org/10.1038/s41388-020-01512-8] [PMID: 33060856]
[41]
Boopathy, G.T.K.; Hong, W. Role of hippo pathway-YAP/TAZ signaling in angiogenesis. Front. Cell Dev. Biol., 2019, 7, 49.
[http://dx.doi.org/10.3389/fcell.2019.00049] [PMID: 31024911]
[42]
Avruch, J.; Zhou, D.; Bardeesy, N. YAP oncogene overexpression supercharges colon cancer proliferation. Cell Cycle, 2012, 11(6), 1090-1096.
[http://dx.doi.org/10.4161/cc.11.6.19453] [PMID: 22356765]
[43]
Xu, W.; Zhou, G.; Wang, H.; Liu, Y.; Chen, B.; Chen, W.; Lin, C.; Wu, S.; Gong, A.; Xu, M. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int. J. Cancer, 2020, 146(10), 2901-2912.
[http://dx.doi.org/10.1002/ijc.32747] [PMID: 31633800]
[44]
Kalsbeek, A.M.F.; Chan, E.K.F.; Corcoran, N.M.; Hovens, C.M.; Hayes, V.M. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget, 2017, 8(41), 71342-71357.
[http://dx.doi.org/10.18632/oncotarget.19926] [PMID: 29050365]
[45]
Lee, S.U.; Cho, K.H. Multimodal therapy for locally advanced prostate cancer: the roles of radiotherapy, androgen deprivation therapy, and their combination. Radiat. Oncol. J., 2017, 35(3), 189-197.
[http://dx.doi.org/10.3857/roj.2017.00318] [PMID: 29037021]
[46]
Puche-Sanz, I.; Alvarez-Cubero, M.J.; Pascual-Geler, M.; Rodríguez-Martínez, A.; Delgado-Rodríguez, M.; García-Puche, J.L.; Expósito, J.; Robles-Fernández, I.; Entrala-Bernal, C.; Lorente, J.A.; Cózar-Olmo, J.M.; Serrano, M.J. A comprehensive study of circulating tumour cells at the moment of prostate cancer diagnosis: biological and clinical implications of EGFR, AR and SNPs. Oncotarget, 2017, 8(41), 70472-70480.
[http://dx.doi.org/10.18632/oncotarget.19718] [PMID: 29050295]
[47]
Chen, H.X.; Sharon, E. IGF-1R as an anti-cancer target--trials and tribulations. Chin. J. Cancer, 2013, 32(5), 242-252.
[http://dx.doi.org/10.5732/cjc.012.10263] [PMID: 23601239]
[48]
Xie, Q.; Zhao, S.; Kang, R.; Wang, X. lncRNA SNHG11 facilitates prostate cancer progression through the upregulation of IGF 1R expression and by sponging miR 184. Int. J. Mol. Med., 2021, 48(3), 182.
[http://dx.doi.org/10.3892/ijmm.2021.5015] [PMID: 34328198]
[49]
Ye, G.; Guo, L.; Xing, Y.; Sun, W.; Yuan, M. Identification of prognostic biomarkers of prostate cancer with long non-coding RNA-mediated competitive endogenous RNA network. Exp. Ther. Med., 2019, 17(4), 3035-3040.
[http://dx.doi.org/10.3892/etm.2019.7277] [PMID: 30906477]
[50]
Li, Y.; Pan, B.; Guo, X.; Meng, X.; Tian, X. Prognostic value of long noncoding RNA SNHG11 in patients with prostate cancer. Horm. Metab. Res., 2022, 54(3), 187-193.
[51]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[52]
Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; Hellmann, M.D.; Barron, D.A.; Schram, A.M.; Hameed, M.; Dogan, S.; Ross, D.S.; Hechtman, J.F.; DeLair, D.F.; Yao, J.; Mandelker, D.L.; Cheng, D.T.; Chandramohan, R.; Mohanty, A.S.; Ptashkin, R.N.; Jayakumaran, G.; Prasad, M.; Syed, M.H.; Rema, A.B.; Liu, Z.Y.; Nafa, K.; Borsu, L.; Sadowska, J.; Casanova, J.; Bacares, R.; Kiecka, I.J.; Razumova, A.; Son, J.B.; Stewart, L.; Baldi, T.; Mullaney, K.A.; Al-Ahmadie, H.; Vakiani, E.; Abeshouse, A.A.; Penson, A.V.; Jonsson, P.; Camacho, N.; Chang, M.T.; Won, H.H.; Gross, B.E.; Kundra, R.; Heins, Z.J.; Chen, H.W.; Phillips, S.; Zhang, H.; Wang, J.; Ochoa, A.; Wills, J.; Eubank, M.; Thomas, S.B.; Gardos, S.M.; Reales, D.N.; Galle, J.; Durany, R.; Cambria, R.; Abida, W.; Cercek, A.; Feldman, D.R.; Gounder, M.M.; Hakimi, A.A.; Harding, J.J.; Iyer, G.; Janjigian, Y.Y.; Jordan, E.J.; Kelly, C.M.; Lowery, M.A.; Morris, L.G.T.; Omuro, A.M.; Raj, N.; Razavi, P.; Shoushtari, A.N.; Shukla, N.; Soumerai, T.E.; Varghese, A.M.; Yaeger, R.; Coleman, J.; Bochner, B.; Riely, G.J.; Saltz, L.B.; Scher, H.I.; Sabbatini, P.J.; Robson, M.E.; Klimstra, D.S.; Taylor, B.S.; Baselga, J.; Schultz, N.; Hyman, D.M.; Arcila, M.E.; Solit, D.B.; Ladanyi, M.; Berger, M.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2017, 23(6), 703-713.
[http://dx.doi.org/10.1038/nm.4333] [PMID: 28481359]
[53]
Chen, C.; Wang, K.; Wang, Q.; Wang, X. LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells, Brazilian journal of medical and biological research. Rev. Bras. Pesqui. Med. Biol., 2018, 51(6), e7080.
[54]
Wang, K.; Yang, C.; Shi, J.; Gao, T. Ox-LDL-induced lncRNA MALAT1 promotes autophagy in human umbilical vein endothelial cells by sponging miR-216a-5p and regulating Beclin-1 expression. Eur. J. Pharmacol., 2019, 858, 172338.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.019] [PMID: 31029709]
[55]
Huang, W.; Huang, F.; Lei, Z.; Luo, H. LncRNA SNHG11 Promotes proliferation, migration, apoptosis, and autophagy by regulating hsa-miR-184/AGO2 in HCC. OncoTargets Ther., 2020, 13, 413-421.
[http://dx.doi.org/10.2147/OTT.S237161] [PMID: 32021286]
[56]
Bergin, A.R.T.; Loi, S. Triple-negative breast cancer: Recent treatment advances. F1000 Res., 2019, 8, 1342.
[http://dx.doi.org/10.12688/f1000research.18888.1] [PMID: 31448088]
[57]
Lyons, T.G.; Traina, T.A. Emerging novel therapeutics in triple-negative breast cancer. Adv. Exp. Med. Biol., 2019, 1152, 377-399.
[http://dx.doi.org/10.1007/978-3-030-20301-6_20] [PMID: 31456195]
[58]
Yu, L.; Zhang, W.; Wang, P.; Zhang, Q.; Cong, A.; Yang, X.; Sang, K. LncRNA SNHG11 aggravates cell proliferation and migration in triple negative breast cancer via sponging miR 2355 5p and targeting CBX5. Exp. Ther. Med., 2021, 22(2), 892.
[http://dx.doi.org/10.3892/etm.2021.10324] [PMID: 34257707]
[59]
Deng, M.; Zeng, C.; Lu, X.; He, X.; Zhang, R.; Qiu, Q.; Zheng, G.; Jia, X.; Liu, H.; He, Z. miR-218 suppresses gastric cancer cell cycle progression through the CDK6/Cyclin D1/E2F1 axis in a feedback loop. Cancer Lett., 2017, 403, 175-185.
[http://dx.doi.org/10.1016/j.canlet.2017.06.006] [PMID: 28634044]
[60]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[61]
Wu, Q.; Ma, J.; Wei, J.; Meng, W.; Wang, Y.; Shi, M. lncRNA SNHG11 promotes gastric cancer progression by activating the Wnt/β-catenin pathway and oncogenic autophagy. Molecular therapy. J. American Soc. Gene Therapy, 2021, 29(3), 1258-1278.
[62]
Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the united states in 2013–2017. Neuro-oncol., 2020, 22(12)(Suppl. 1), iv1-iv96.
[http://dx.doi.org/10.1093/neuonc/noaa200] [PMID: 33123732]
[63]
Batash, R.; Asna, N.; Schaffer, P.; Francis, N.; Schaffer, M. Glioblastoma Multiforme, diagnosis and treatment; recent literature review. Curr. Med. Chem., 2017, 24(27), 3002-3009.
[PMID: 28521700]
[64]
Bush, N.A.O.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev., 2017, 40(1), 1-14.
[http://dx.doi.org/10.1007/s10143-016-0709-8] [PMID: 27085859]
[65]
Zhu, C.; Li, J.; Cheng, G.; Zhou, H.; Tao, L.; Cai, H.; Li, P.; Cao, Q.; Ju, X.; Meng, X.; Wang, M.; Zhang, Z.; Qin, C.; Hua, L.; Yin, C.; Shao, P. miR-154 inhibits EMT by targeting HMGA2 in prostate cancer cells. Mol. Cell. Biochem., 2013, 379(1-2), 69-75.
[http://dx.doi.org/10.1007/s11010-013-1628-4] [PMID: 23591597]
[66]
Yang, K.; Hou, Y.; Li, A.; Li, Z.; Wang, W.; Xie, H.; Rong, Z.; Lou, G.; Li, K. Identification of a six-lncRNA signature associated with recurrence of ovarian cancer. Sci. Rep., 2017, 7(1), 752.
[http://dx.doi.org/10.1038/s41598-017-00763-y] [PMID: 28389671]
[67]
Tripathi, M.K.; Doxtater, K.; Keramatnia, F.; Zacheaus, C.; Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Role of lncRNAs in ovarian cancer: defining new biomarkers for therapeutic purposes. Drug Discov. Today, 2018, 23(9), 1635-1643.
[http://dx.doi.org/10.1016/j.drudis.2018.04.010] [PMID: 29698834]
[68]
Zhai, X.; Xue, Q.; Liu, Q.; Guo, Y.; Chen, Z. Colon cancer recurrence-associated genes revealed by WGCNA co-expression network analysis. Mol. Med. Rep., 2017, 16(5), 6499-6505.
[http://dx.doi.org/10.3892/mmr.2017.7412] [PMID: 28901407]
[69]
Li, Y.; Chen, J.; Zhang, J.; Wang, Z.; Shao, T.; Jiang, C.; Xu, J.; Li, X. Construction and analysis of lncRNA-lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer. Oncotarget, 2015, 6(28), 25003-25016.
[http://dx.doi.org/10.18632/oncotarget.4660] [PMID: 26305674]
[70]
Zhao, Q.; Fan, C. A novel risk score system for assessment of ovarian cancer based on co-expression network analysis and expression level of five lncRNAs. BMC Med. Genet., 2019, 20(1), 103.
[http://dx.doi.org/10.1186/s12881-019-0832-9] [PMID: 31182053]
[71]
Yue, L.; Guo, J. LncRNA TUSC7 suppresses pancreatic carcinoma progression by modulating miR‐371a‐5p expression. J. Cell. Physiol., 2019, 234(9), 15911-15921.
[http://dx.doi.org/10.1002/jcp.28248] [PMID: 30714151]
[72]
Caporarello, N.; Lupo, G.; Olivieri, M.; Cristaldi, M.; Cambria, M.T.; Salmeri, M.; Anfuso, C.D. Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions. Mol. Med. Rep., 2017, 16(4), 4393-4402.
[http://dx.doi.org/10.3892/mmr.2017.7179] [PMID: 28791360]
[73]
Qiu, J.J.; Lin, X.J.; Tang, X.Y.; Zheng, T.T.; Lin, Y.Y.; Hua, K.Q. Exosomal metastasis associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int. J. Biol. Sci., 2018, 14(14), 1960-1973.
[http://dx.doi.org/10.7150/ijbs.28048] [PMID: 30585260]
[74]
Fang, X.; Cai, Y.; Xu, Y.; Zhang, H. Exosome‐mediated lncRNA SNHG11 regulates angiogenesis in pancreatic carcinoma through miR‐324‐3p/VEGFA axis. Cell Biol. Int., 2022, 46(1), 106-117.
[http://dx.doi.org/10.1002/cbin.11703] [PMID: 34519129]
[75]
Jagannath, S.; Garg, P.K. Novel and experimental therapies in chronic pancreatitis. Dig. Dis. Sci., 2017, 62(7), 1751-1761.
[http://dx.doi.org/10.1007/s10620-017-4604-0] [PMID: 28551708]
[76]
Thomas, D.; Radhakrishnan, P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol. Cancer, 2019, 18(1), 14.
[http://dx.doi.org/10.1186/s12943-018-0927-5] [PMID: 30665410]
[77]
Bynigeri, R.R.; Jakkampudi, A.; Jangala, R.; Subramanyam, C.; Sasikala, M.; Rao, G.V.; Reddy, D.N.; Talukdar, R. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J. Gastroenterol., 2017, 23(3), 382-405.
[http://dx.doi.org/10.3748/wjg.v23.i3.382] [PMID: 28210075]
[78]
Sun, L.; Xiu, M.; Wang, S.; Brigstock, D.R.; Li, H.; Qu, L.; Gao, R. Lipopolysaccharide enhances TGF ‐β1 signalling pathway and rat pancreatic fibrosis. J. Cell. Mol. Med., 2018, 22(4), 2346-2356.
[http://dx.doi.org/10.1111/jcmm.13526] [PMID: 29424488]
[79]
Ding, H.; Chen, J.; Qin, J.; Chen, R.; Yi, Z. TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells. Mol. Med., 2021, 27(1), 22.
[http://dx.doi.org/10.1186/s10020-021-00283-6] [PMID: 33663392]
[80]
Chen, Y.T.; Hsu, H.; Lin, C.C.; Pan, S.Y.; Liu, S.Y.; Wu, C.F.; Tsai, P.Z.; Liao, C.T.; Cheng, H.T.; Chiang, W.C.; Chen, Y.M.; Chu, T.S.; Lin, S.L. Inflammatory macrophages switch to CCL17‐expressing phenotype and promote peritoneal fibrosis. J. Pathol., 2020, 250(1), 55-66.
[http://dx.doi.org/10.1002/path.5350] [PMID: 31579932]
[81]
Chodorowska, G. Głowacka, A.; Tomczyk, M. Leukemia inhibitory factor (LIF) and its biological activity. Ann. Univ. Mariae Curie Sklodowska Med., 2004, 59(2), 189-193.
[PMID: 16146075]
[82]
Shi, Y.; Gao, W.; Lytle, N.K.; Huang, P.; Yuan, X.; Dann, A.M.; Ridinger-Saison, M.; DelGiorno, K.E.; Antal, C.E.; Liang, G.; Atkins, A.R.; Erikson, G.; Sun, H.; Meisenhelder, J.; Terenziani, E.; Woo, G.; Fang, L.; Santisakultarm, T.P.; Manor, U.; Xu, R.; Becerra, C.R.; Borazanci, E.; Von Hoff, D.D.; Grandgenett, P.M.; Hollingsworth, M.A.; Leblanc, M.; Umetsu, S.E.; Collisson, E.A.; Scadeng, M.; Lowy, A.M.; Donahue, T.R.; Reya, T.; Downes, M.; Evans, R.M.; Wahl, G.M.; Pawson, T.; Tian, R.; Hunter, T. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569(7754), 131-135.
[http://dx.doi.org/10.1038/s41586-019-1130-6] [PMID: 30996350]
[83]
Barthels, D.; Das, H. Current advances in ischemic stroke research and therapies. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(4), 165260.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.012] [PMID: 31699365]
[84]
Paul, S.; Candelario-Jalil, E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp. Neurol., 2021, 335, 113518.
[http://dx.doi.org/10.1016/j.expneurol.2020.113518] [PMID: 33144066]
[85]
Li, G. LeiQian; Gu, P.; Fan, D. Dexmedetomidine post-conditioning attenuates cerebral ischemia following asphyxia cardiac arrest through down-regulation of apoptosis and neuroinflammation in rats. BMC Anesthesiol., 2021, 21(1), 180.
[http://dx.doi.org/10.1186/s12871-021-01394-7] [PMID: 34182937]
[86]
Chen, Y.; Fan, Z.; Wu, Q. Dexmedetomidine improves oxygen-glucose deprivation/reoxygenation (OGD/R) -induced neurological injury through regulating SNHG11/miR-324-3p/VEGFA axis. Bioengineered, 2021, 12(1), 4794-4804.
[http://dx.doi.org/10.1080/21655979.2021.1957071] [PMID: 34334080]
[87]
Fairweather, D.; Stafford, K.A.; Sung, Y.K. Update on coxsackievirus B3 myocarditis. Curr. Opin. Rheumatol., 2012, 24(4), 401-407.
[http://dx.doi.org/10.1097/BOR.0b013e328353372d] [PMID: 22488075]
[88]
Fung, G.; Luo, H.; Qiu, Y.; Yang, D.; McManus, B. Myocarditis. Circ. Res., 2016, 118(3), 496-514.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306573] [PMID: 26846643]
[89]
Garmaroudi, F.S.; Marchant, D.; Hendry, R.; Luo, H.; Yang, D.; Ye, X.; Shi, J.; McManus, B.M. Coxsackievirus B3 replication and pathogenesis. Future Microbiol., 2015, 10(4), 629-653.
[http://dx.doi.org/10.2217/fmb.15.5] [PMID: 25865198]
[90]
Tong, L.; Qiu, Y.; Wang, H.; Qu, Y.; Zhao, Y.; Lin, L.; Wang, Y.; Xu, W.; Zhao, W.; He, H.; Zhao, G.; Zhang, M.H.; Yang, D.; Ge, X.; Zhong, Z. Expression profile and function analysis of long non-coding rnas in the infection of coxsackievirus B3. Virol. Sin., 2019, 34(6), 618-630.
[http://dx.doi.org/10.1007/s12250-019-00152-x] [PMID: 31388922]
[91]
Cheng, R.; Lu, X.; Xu, C.; Zhang, F.; Zhang, G. SNHG11 contributes to NSCLC cell growth and migration by targeting miR-485- 5p/BSG axis. Biomedic. pharmacother., 2020, 128, 110324.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy