Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthesis of Ferrocenylimidazo[1,2-a]pyridine-3-amines Using Catalyst ZrO(NO3)2.2H2O and their Theoretical Studies

Author(s): Nahid Shajari*, Hooriye Yahyaei and Seyyede Sanaz Zafarani

Volume 20, Issue 11, 2023

Published on: 22 June, 2023

Page: [1062 - 1069] Pages: 8

DOI: 10.2174/1570178620666230509120934

Price: $65

conference banner
Abstract

In this study, synthesis of ferrocenylimidazo[1,2-a]pyridine-3-amines was reported from the condensation reaction of ferrocenecarboxaldehyde, 2-aminopyridine, and isocyanides using ZrO(NO3)2.2H2O as an efficient, new, and reusable catalyst under reflux conditions in ethanol. The structures of the products were confirmed by IR, 1H NMR, 13C NMR, and elemental analysis. Quantum theoretical calculations for the structure of compounds (4a, 4b, and 4c) were done using the Def2 with the TZVPPD basis set. Geometric parameters were obtained from the optimized structures, and experimental results were analyzed with the calculated data. The structures of the products were proved by IR, 1H NMR, 13C NMR, and elemental analysis. Computations were carried out for the IR spectra data and 1H NMR and 13C NMR chemical shifts of the ferrocenylimidazo[1,2-a]pyridine-3- amine derivatives in the ground state. Ultimately, a great agreement was found between experimental and theoretical results.

[1]
Kishore, B.N.; Unyala, R.; Begum, A.; Hepsibha, C.; Reddy, B.M. Synthesis, characterization of some novel pyrazoline incorporated Imidazo[1,2-a]pyridines for anti-inflammatory and anti-bacterial activities. Pharma Chem., 2017, 9(12), 45-49.
[2]
Chezal, J.M.; Paeshuyse, J.; Gaumet, V.; Canitrot, D.; Maisonial, A.; Lartigue, C.; Gueiffier, A.; Moreau, E.; Teulade, J.C.; Chavignon, O.; Neyts, J. Synthesis and antiviral activity of an imidazo[1,2-a]pyrrolo[2,3-c]pyridine series against the bovine viral diarrhea virus. Eur. J. Med. Chem., 2010, 45(5), 2044-2047.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.023] [PMID: 20149501]
[3]
Ramachandran, S.; Panda, M.; Mukherjee, K.; Choudhury, N.R.; Tantry, S.J.; Kedari, C.K.; Ramachandran, V.; Sharma, S.; Ramya, V.K.; Guptha, S.; Sambandamurthy, V.K. Synthesis and structure activity relationship of imidazo[1,2-a]pyridine-8-carboxamides as a novel antimycobacterial lead series. Bioorg. Med. Chem. Lett., 2013, 23(17), 4996-5001.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.043] [PMID: 23867166]
[4]
Saddik, R.; Gaadaoui, A.; Hamal, A.; Zarrouk, A.; Touzani, R. Synthesis, antibacterial and antifungal activity of some new imidazo[1,2-a]pyridine derivatives. Pharm. Lett., 2014, 6(4), 343-348.
[5]
Ismail, M.A.; Arafa, R.K.; Wenzler, T.; Brun, R.; Tanious, F.A.; Wilson, W.D.; Boykin, D.W. Synthesis and antiprotozoal activity of novel bis-benzamidino imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines. Bioorg. Med. Chem., 2008, 16(2), 683-691.
[http://dx.doi.org/10.1016/j.bmc.2007.10.042] [PMID: 17976993]
[6]
Hosseini, H.; Bayat, M. An efficient synthesis of new imidazo[1,2- a]pyridine-6-carbohydrazide and pyrido[1,2- a]pyrimidine-7-carbohydrazide derivatives via a five-component cascade reaction. RSC Advances, 2019, 9(13), 7218-7227.
[http://dx.doi.org/10.1039/C9RA00350A] [PMID: 35519992]
[7]
López-Martínez, M.; Salgado-Zamora, H.; San-Juan, E.R.; Zamudio, S.; Picazo, O.; Campos, M.E.; Naranjo-Rodriguez, E.B. Anti-anxiety and sedative profile evaluation of imidazo[1,2-a]pyridine derivatives. Drug Dev. Res., 2010, 71(6), 371-381.
[http://dx.doi.org/10.1002/ddr.20382]
[8]
Enguehard-Gueiffier, C.; Fauvelle, F.; Debouzy, J.C.; Peinnequin, A.; Thery, I. 2,3-Diarylimidazo[1,2-a]Pyridines as potential inhibitors of UV-Induced Keratinocytes Apoptosis: Synthesis, pharmacological properties and interactions with model membranes and Oligonucleotides by NMR. Eur. J. Pharm. Sci., 2005, 24(2-3), 219-227.
[http://dx.doi.org/10.1016/j.ejps.2004.10.009]
[9]
Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46(5), 1874-1881.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[10]
Marhadour, S.; Marchand, P.; Pagniez, F.; Bazin, M.A.; Picot, C.; Lozach, O.; Ruchaud, S.; Antoine, M.; Meijer, L.; Rachidi, N.; Le Pape, P. Synthesis and biological evaluation of 2,3-diarylimidazo[1,2-a]pyridines as antileishmanial agents. Eur. J. Med. Chem., 2012, 58, 543-556.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.048] [PMID: 23164660]
[11]
Cesur, Z.; Cesur, N.; Birteksöz, S.; Otük, G. Synthesis and biological evaluation of some new Imidazo[1,2-a]pyridines. Acta Chim. Slov., 2010, 57(2), 355-362.
[PMID: 24061731]
[12]
Kong, D.; Wang, X.; Shi, Z.; Wu, M.; Lin, Q.; Wang, X. Solvent- and catalyst-free synthesis of imidazo[1,2-a]pyridines under microwave irradiation. J. Chem. Res., 2016, 40(9), 529-531.
[http://dx.doi.org/10.3184/174751916X14683327937934]
[13]
Lacerda, R.B.; de Lima, C.K.F.; da Silva, L.L.; Romeiro, N.C.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A.M. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg. Med. Chem., 2009, 17(1), 74-84.
[http://dx.doi.org/10.1016/j.bmc.2008.11.018] [PMID: 19059783]
[14]
Deep, A.; Bhatia, R.; Kaur, R.; Kumar, S.; Jain, U.; Singh, H.; Batra, S.; Kaushik, D.; Deb, P. Imidazo[1,2-a]pyridine Scaffold as prospective therapeutic agents. Curr. Top. Med. Chem., 2016, 17(2), 238-250.
[http://dx.doi.org/10.2174/1568026616666160530153233] [PMID: 27237332]
[15]
Scott, L.J. Rifaximin: A review of its use in reducing recurrence of overt hepatic encephalopathy episodes. Drugs, 2014, 74(18), 2153-2160.
[http://dx.doi.org/10.1007/s40265-014-0300-y] [PMID: 25352391]
[16]
Bagdi, A.K.; Santra, S.; Monir, K.; Hajra, A. Synthesis of imidazo[1,2-a]pyridines: A decade update. Chem. Commun., 2015, 51(9), 1555-1575.
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981]
[17]
Kumar, A.; Pericherla, K.; Kaswan, P.; Pandey, K. Recent developments in the synthesis of Imidazo[1,2-a]pyridines. Synthesis, 2015, 47(7), 887-912.
[http://dx.doi.org/10.1055/s-0034-1380182]
[18]
a) Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett., 1998, 39(22), 3635-3638.
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4];
b) Bienaymé, H.; Bouzid, K. Eine neue heterocyclische Mehrkomponentenreaktion für die kombinatorische Synthese von anellierten 3-Aminoimidazolen. Angew. Chem., 1998, 110(16), 2349-2352.
[http://dx.doi.org/10.1002/(SICI)1521-3757(19980817)110:16<2349:AID-ANGE2349>3.0.CO;2-W]
[19]
a) Keung, W.; Bakir, F.; Patron, A.P.; Rogers, D.; Priest, C.D.; Darmohusodo, V. Novel α-amino amidine synthesis via scandium(III) triflate mediated 3CC Ugi condensation reaction. Tetrahedron Lett., 2004, 45(4), 733-737.
[http://dx.doi.org/10.1016/j.tetlet.2003.11.051];
b) Khan, A.T. R, S.B.; Lal, M.; Mir, M.H. Formation of unexpected α-amino amidine through three-component ‘UGI condensation reaction’. RSC Advances, 2012, 2(13), 5506-5509.
[http://dx.doi.org/10.1039/c2ra20539d]
[20]
a) Boltjes, A.; Dömling, A. The Groebke-Blackburn-Bienaymé Reaction. Eur. J. Org. Chem., 2019, 2019(42), 7007-7049.
[http://dx.doi.org/10.1002/ejoc.201901124] [PMID: 34012704];
b) Saha, B.; Frett, B.; Wang, Y.; Li, H. A p-toluenesulfinic acid-catalyzed three-component Ugi-type reaction and its application for the synthesis of α-amino amides and amidines. Tetrahedron Lett., 2013, 54(19), 2340-2343.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.055];
c) Sharma, S.; Maurya, R.A.; Min, K.I.; Jeong, G.Y.; Kim, D.P. Odorless isocyanide chemistry: An integrated microfluidic system for a multistep reaction sequence. Angew. Chem. Int. Ed., 2013, 52(29), 7564-7568.
[http://dx.doi.org/10.1002/anie.201303213] [PMID: 23780803]
[21]
Kazemizadeh, A.R.; Shajari, N.; Shapouri, R.; Adibpour, N.; Teimuri-Mofrad, R.; Dinmohammadi, P. One-pot, four-component synthesis of 1,3,4-oxadiazole derivatives containing a ferrocene unit and their antimicrobial activity. Appl. Organomet. Chem., 2016, 30(3), 148-153.
[http://dx.doi.org/10.1002/aoc.3410]
[22]
Kazemizadeh, A.R.; Shajari, N.; Shapouri, R.; Adibpour, N.; Teimuri-Mofrad, R. Synthesis and anti-brucella activity of some new 1,3,4-oxadiazole derivatives containing a ferrocene unit. J. Indian Chem. Soc., 2016, 13(7), 1349-1355.
[http://dx.doi.org/10.1007/s13738-016-0849-3]
[23]
Shajari, N.; Kazemizadeh, A.R.; Ramazani, A. Synthesis of 5-aryl-$N$-(trichloroacetyl)-1,3,4-oxadiazole-2-carboxamide via three-component reaction of trichloroacetyl isocyanate, ($N$-isocyanimino)triphenylphosphorane, and benzoic acid derivatives. Turk. J. Chem., 2015, 39, 874-879.
[http://dx.doi.org/10.3906/kim-1501-43]
[24]
Akbarzadeh, R.; Shakibaei, G.I.; Bazgir, A. An efficient synthesis of ferrocenyl imidazo[1,2-a]pyridines. Monatsh. Chem., 2010, 141(10), 1077-1081.
[http://dx.doi.org/10.1007/s00706-010-0372-7]
[25]
Stepnicka, P. Ed.; Ferrocenes: Ligands, Materials and Biomolecules; John Wiley: New York, 2008.
[http://dx.doi.org/10.1002/9780470985663]
[26]
Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 1984, 106(14), 4049-4050.
[http://dx.doi.org/10.1021/ja00326a036]
[27]
Rubenstein, L.A.; Lanzara, R.G. Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. J. Mol. Struct. THEOCHEM, 1998, 430(1-3), 57-71.
[http://dx.doi.org/10.1016/S0166-1280(98)90217-2]
[28]
Sheikhi, M.; Shahab, S.; Filippovich, L.; Yahyaei, H.; Dikusar, E.; Khaleghian, M. New derivatives of (E,E)-azomethines: Design, quantum chemical modeling, spectroscopic (FT-IR, UV/Vis, polarization) studies, synthesis and their applications: Experimental and theoretical investigations. J. Mol. Struct., 2018, 1152, 368-385.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.108]
[29]
Shahab, S.; Filippovich, L.; Sheikhi, M.; Yahyaei, H.; Aharodnikova, M. Spectroscopic (Polarization, ExcitedState, FT-IR, UV/Vis and <sup>1</sup>H NMR) and Thermophysical investigations of new synthesized azo dye and its application in polarizing film. American J Mater Syn Proc., 2017, 2(2), 17-23.
[http://dx.doi.org/10.11648/j.ajmsp.20170202.11]
[30]
Shahab, S.; Sheikhi, M.; Filippovich, L.; Kumar, R.; Dikusar, E.; Yahyaei, H.; Khaleghian, M. Synthesis, geometry optimization, spectroscopic investigations (UV/Vis, excited states, FT-IR) and application of new azomethine dyes. J. Mol. Struct., 2017, 1148, 134-149.
[http://dx.doi.org/10.1016/j.molstruc.2017.07.036]
[31]
Shahab, S.; Filippovich, L.; Sheikhi, M.; Kumar, R.; Dikusar, E.; Yahyaei, H.; Muravsky, A. Polarization, excited states, trans - cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J. Mol. Struct., 2017, 1141, 703-709.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.014]
[32]
a) Dixit, S.; Patil, M.; Agarwal, N. Ferrocene catalysed heteroarylation of BODIPy and reaction mechanism studies by EPR and DFT methods. RSC Advances, 2016, 6(53), 47491-47497.
[http://dx.doi.org/10.1039/C6RA03705D];
b) Zheng, L.; Qiao, Y.; Lu, M.; Chang, J. Theoretical investigations of the reaction between 1,4-dithiane-2,5-diol and azomethine imines: Mechanisms and diastereoselectivity. Org. Biomol. Chem., 2015, 13(27), 7558-7569.
[http://dx.doi.org/10.1039/C5OB00807G] [PMID: 26079432]
[33]
a) Bekhradnia, A.; Norrby, P.O. New insights into the mechanism of iron-catalyzed cross-coupling reactions. Dalton Trans., 2015, 44(9), 3959-3962.
[http://dx.doi.org/10.1039/C4DT03491K] [PMID: 25649755];
b) Duca, D.; La Manna, G.; Rosa Russo, M. Computational studies on surface reaction mechanisms: Ethylene hydrogenation on platinum catalysts. Phys. Chem. Chem. Phys., 1999, 1(6), 1375-1382.
[http://dx.doi.org/10.1039/a808634f]
[34]
a) Smith, S.G.; Goodman, J.M. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. J. Am. Chem. Soc., 2010, 132(37), 12946-12959.
[http://dx.doi.org/10.1021/ja105035r] [PMID: 20795713];
b) Yang, Z.; Yu, P.; Houk, K.N. Molecular dynamics of Dimethyldioxirane C–H Oxidation. J. Am. Chem. Soc., 2016, 138(12), 4237-4242.
[http://dx.doi.org/10.1021/jacs.6b01028] [PMID: 26964643]
[35]
a) Hansen, P.E.; Spanget-Larsen, J. Structural studies on Mannich bases of 2-Hydroxy-3,4,5,6-tetrachlorobenzene. An UV, IR, NMR and DFT study. A mini-review. J. Mol. Struct., 2016, 1119, 235-239.
[http://dx.doi.org/10.1016/j.molstruc.2016.04.075];
b) Demir, S. Sarioğlu, A.O.; Güler, S.; Dege, N.; Sönmez, M. Synthesis, crystal structure analysis, spectral IR, NMR UV–Vis investigations, NBO and NLO of 2-benzoyl-N-(4-chlorophenyl)-3-oxo-3-phenylpropanamide with use of X-ray diffractions studies along with DFT calculations. J. Mol. Struct., 2016, 1118, 316-324.
[http://dx.doi.org/10.1016/j.molstruc.2016.04.042]
[36]
a) Saha, S.K.; Hens, A.; Murmu, N.C.; Banerjee, P. A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J. Mol. Liq., 2016, 215, 486-495.
[http://dx.doi.org/10.1016/j.molliq.2016.01.024];
b) Anderson, G.M.; Cameron, I.; Murphy, J.A.; Tuttle, T. Predicting the reducing power of organic super electron donors. RSC Advances, 2016, 6(14), 11335-11343.
[http://dx.doi.org/10.1039/C5RA26483A]
[37]
Kellie, J.L.; Wetmore, S.D. Selecting DFT methods for use in optimizations of enzyme active sites: Applications to ONIOM treatments of DNA glycosylases. Can. J. Chem., 2013, 91(7), 559-572.
[http://dx.doi.org/10.1139/cjc-2012-0506]
[38]
Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 1980, 72(1), 650-654.
[http://dx.doi.org/10.1063/1.438955]
[39]
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, 7(18), 3297-3305.
[http://dx.doi.org/10.1039/b508541a] [PMID: 16240044]
[40]
Blaudeau, J.P.; McGrath, M.P.; Curtiss, L.A.; Radom, L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys., 1997, 107(13), 5016-5021.
[http://dx.doi.org/10.1063/1.474865]
[41]
Curtiss, L.A.; McGrath, M.P.; Blaudeau, J.P.; Davis, N.E.; Binning, R.C., Jr; Radom, L. Extension of Gaussian‐2 theory to molecules containing third‐row atoms Ga–Kr. J. Chem. Phys., 1995, 103(14), 6104-6113.
[http://dx.doi.org/10.1063/1.470438]
[42]
Frisch, A.; Nielson, A.B.; Holder, A.J. Molecular structure, vibrational assignments and non-linear optical properties of 4,4′ Dimethylaminocyanobiphenyl (DMACB) by DFT and ab Initio HF calculations Adv. Mater. Phys. Chem., 2015, 5(7)
[43]
Shiri, L.; Sheikh, D.; Faraji, A.; Sheikhi, M.; Katouli, S. Selective oxidation of oximes to their corresponding carbonyl compounds by Sym-Collidinium Chlorochromate (S-COCC) as a efficient and novel oxidizing agent and theoretical study of NMR shielding tensors and thermochemical parameters. Lett. Org. Chem., 2014, 11(1), 18-28.
[http://dx.doi.org/10.2174/157017861101140113155817]
[44]
Guidara, S.; Feki, H.; Abid, Y. Molecular structure, NLO, MEP, NBO analysis and spectroscopic characterization of 2,5-dimethylanilinium dihydrogen phosphate with experimental (FT-IR and FT-Raman) techniques and DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 133, 856-866.
[http://dx.doi.org/10.1016/j.saa.2014.06.021] [PMID: 25014546]
[45]
Yahyaei, H.; Sharifi, S.; Shahab, S.; Sheikhi, M.; Ahmadianarog, M. Theoretical study of adsorption of Solriamfetol drug on surface of the B12N12 Fullerene: A DFT/TD-DFT approach. Lett. Org. Chem., 2021, 18(2), 115-127.
[http://dx.doi.org/10.2174/1570178617999200818104322]
[46]
Piryaei, F.; Shajari, N.; Yahyaei, H. Efficient ZrO(NO 3) 2. 2H 2 O Catalyzed Synthesis of 1 H -Indazolo[1,2- b] phthalazine-1,6,11(13 H)-triones and Electronic Properties Analyses, Vibrational Frequencies, NMR Chemical Shift Analysis, MEP: A DFT Study. Heteroatom Chem., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/9483520]
[47]
Yahyaei, H.; Kazemizadeh, A.R.; Ramazani, A. Synthesis and chemical shifts calculation of α-Acyloxycarboxamides derived from indane-1,2,3-trione by DFT and HF methods. Chinese J. Struct. Chem., 2012, 31(9), 1346-1356.
[48]
Saberi Biroon, S.; Shajari, N.; Yahyaei, H. Green and efficient synthesis of 1 H ‐indazolo[1,2‐ b] phthalazine‐1,6,11(13 H)‐triones using ZrO(NO 3) 2. 2H 2 O as a novel catalyst and theoretical study of synthesized compounds. J. Heterocycl. Chem., 2020, 57(6), 2433-2445.
[http://dx.doi.org/10.1002/jhet.3959]
[49]
Shajari, N.; Yahyaei, H.; Ramazani, A. Experimental and computational investigations of some new carbamothioate compounds. Chem. Rev. Lett., 2020, 4(1), 21-29.
[http://dx.doi.org/10.22034/CRL.2020.250849.1081]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy