Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Polyvinyl Alcohol Nanofibers Blends as Drug Delivery System in Tissue Regeneration

Author(s): Camila Beatriz Barros Araújo, Ingrid Larissa da Silva Soares, Diego Paulo da Silva Lima, Rafaella Moreno Barros, Bolívar Ponciano Goulart de Lima Damasceno and João Augusto Oshiro-Junior*

Volume 29, Issue 15, 2023

Published on: 15 May, 2023

Page: [1149 - 1162] Pages: 14

DOI: 10.2174/1381612829666230508144912

Price: $65

Abstract

Nanofibers have shown promising clinical results in the process of tissue regeneration since they provide a similar structure to the extracellular matrix of different tissues, high surface-to-volume ratio and porosity, flexibility, and gas permeation, offering topographical features that stimulate cell adhesion and proliferation. Electrospinning is one of the most used techniques for manufacturing nanomaterials due to its simplicity and low cost. In this review, we highlight the use of nanofibers produced with polyvinyl alcohol and polymeric associations (PVA/blends) as a matrix for release capable of modifying the pharmacokinetic profile of different active ingredients in the regeneration of connective, epithelial, muscular, and nervous tissues. Articles were selected by three independent reviewers by analyzing the databases, such as Web of Science, PubMed, Science Direct, and Google Scholar (last 10 years). Descriptors used were “nanofibers”, “poly (vinyl alcohol)”, “muscle tissue”, “connective tissue”, “epithelial tissue”, and “neural tissue engineering”. The guiding question was: How do different compositions of polyvinyl alcohol polymeric nanofibers modify the pharmacokinetics of active ingredients in different tissue regeneration processes? The results demonstrated the versatility of the production of PVA nanofibers by solution blow technique with different actives (lipo/hydrophilic) and with pore sizes varying between 60 and 450 nm depending on the polymers used in the mixture, which influences the drug release that can be controlled for hours or days. The tissue regeneration showed better cellular organization and greater cell proliferation compared to the treatment with the control group, regardless of the tissue analyzed. We highlight that, among all blends, the combinations PVA/PCL and PVA/CS showed good compatibility and slow degradation, indicating their use in prolonged times of biodegradation, thus benefiting tissue regeneration in bone and cartilage connective tissues, acting as a physical barrier that results in guided regeneration, and preventing the invasion of cells from other tissues with increased proliferation rate.

Next »
[1]
Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 2016; 53: 86-168.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.02.004] [PMID: 27022202]
[2]
Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: A review of the main topics. Drug Discov Today 2014; 19(6): 743-53.
[http://dx.doi.org/10.1016/j.drudis.2014.03.024] [PMID: 24704459]
[3]
Keane TJ, Badylak SF. Biomaterials for tissue engineering applications. Semin Pediatr Surg 2014; 23(3): 112-8.
[http://dx.doi.org/10.1053/j.sempedsurg.2014.06.010] [PMID: 24994524]
[4]
Zhang X, Li Z, Yang P, et al. Polyphenol scaffolds in tissue engineering. Mater Horiz 2021; 8(1): 145-67.
[http://dx.doi.org/10.1039/D0MH01317J] [PMID: 34821294]
[5]
Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release 2021; 333(333): 391-417.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.003] [PMID: 33823222]
[6]
Balusamy B, Senthamizhan A, Uyar T. Design and development of electrospun nanofibers in regenerative medicine. In: Nanomaterials for Regenerative Medicine. 2019; pp. 47-79.
[http://dx.doi.org/10.1007/978-3-030-31202-2_2]
[7]
Cassidy JW. Nanotechnology in the regeneration of complex tissues. Bone Tissue Regen Insights 2014; 5: BTRI.S12331.
[http://dx.doi.org/10.4137/BTRI.S12331]
[8]
Funda G, Taschieri S, Bruno GA, et al. Nanotechnology scaffolds for alveolar bone regeneration. Materials 2020; 13(1): 201.
[http://dx.doi.org/10.3390/ma13010201] [PMID: 31947750]
[9]
Lowe TL, Agrahari V, Kannan RM, Kannan S. Nanotechnology enabled regenerative medicine for neurological disorders. Adv Drug Deliv Rev 2019; 148: 1-2.
[http://dx.doi.org/10.1016/j.addr.2019.11.006] [PMID: 31787167]
[10]
Abukabda AB, Stapleton PA, Nurkiewicz TR. Metal nanomaterial toxicity variations within the vascular system. Curr Envir Health Rept 2016; 3: 379-91.
[http://dx.doi.org/10.1007/s40572-016-0112-1]
[11]
Biazar E. Application of polymeric nanofibers in soft tissues regeneration. Polym Adv Technol 2016; 27(11): 1404-12.
[http://dx.doi.org/10.1002/pat.3820]
[12]
Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh F, Bechelany M, et al. Biomedical applications of carbon nanomaterials: Fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials 2021; 14(20): 5978.
[13]
Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci 2020; 144(September 2019): 105224.
[http://dx.doi.org/10.1016/j.ejps.2020.105224]
[14]
Perán M, García M, Lopez-Ruiz E, Jiménez G, Marchal J. How can nanotechnology help to repair the body? Advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials 2013; 6(4): 1333-59.
[http://dx.doi.org/10.3390/ma6041333] [PMID: 28809213]
[15]
Ramírez-López E. Citrulline malate transdermal delivery through integrating into polyvinyl alcohol (PVA) nanofibers. J Drug Deliv Sci Technol 2021; 64: 102630.
[16]
Morie A, Garg T, Goyal AK, Rath G. Nanofibers as novel drug carrier-an overview. Artif Cells Nanomed Biotechnol 2016; 44(1): 135-43.
[http://dx.doi.org/10.3109/21691401.2014.927879] [PMID: 25016918]
[17]
Carvalho BM, Pellá MCG, Hardt JC, et al. Ecovio®-based nanofibers as a potential fast transdermal releaser of aceclofenac. J Mol Liq 2021; 325: 115206.
[http://dx.doi.org/10.1016/j.molliq.2020.115206]
[18]
Dicks LMT, Heunis TDJ. Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol 2010; 2010: 510682.
[19]
Fattahi FS. Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. Int Nano Lett 2021; 11(1): 1-23.
[http://dx.doi.org/10.1007/s40089-020-00318-6]
[20]
Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 2017; 104(Pt B): 1372-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.046] [PMID: 27993655]
[21]
Nemati S, Kim S, Shin YM, Shin H. Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg 2019; 6(1): 36.
[http://dx.doi.org/10.1186/s40580-019-0209-y] [PMID: 31701255]
[22]
Aslam M, Kalyar MA, Raza ZA. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 2018; 58(12): 2119-32.
[http://dx.doi.org/10.1002/pen.24855]
[23]
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, et al. Electrospinning for tissue engineering applications. Prog Mater Sci 2021; 117(July 2020): 100721.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100721]
[24]
Shahriar S, Mondal J, Hasan M, Revuri V, Lee D, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials 2019; 9(4): 532.
[http://dx.doi.org/10.3390/nano9040532] [PMID: 30987129]
[25]
Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev 2019; 119(8): 5298-415.
[http://dx.doi.org/10.1021/acs.chemrev.8b00593] [PMID: 30916938]
[26]
Silva TH, De Oliveira JE, De Medeiros ES. PVC micro and nanofibers produced via solution blow spinning. Polímeros 2015; 25(2): 229-35.
[http://dx.doi.org/10.1590/0104-1428.1694]
[27]
Dias G da C, Cellet TSP, Santos MC, Snches O, Malmonge LF. Aerography and the development of the technology for obtaining polymeric nanofibers based on solution blow spinning. Rev Eletrônica Mater e Process 2019; 14: 36-53.
[28]
Dadol GC, Kilic A, Tijing LD, et al. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications. Mater Today Commun 2020; 25(June): 101656.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101656]
[29]
Gao Y, Zhang J, Su Y, et al. Recent progress and challenges in solution blow spinning. Mater Horiz 2021; 8(2): 426-46.
[http://dx.doi.org/10.1039/D0MH01096K] [PMID: 34821263]
[30]
Baker MI, Walsh SP, Schwartz Z, Boyan BD. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res-Part B Appl Biomater 2012; 100 B(5): 1451-7.
[31]
Khoramabadi HN, Arefian M, Hojjati M, et al. A review of polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) composites for various applications. J Compos Compd 2020.
[32]
Salim SA, Loutfy SA, El-Fakharany EM, Taha TH, Hussien Y, Kamoun EA. Influence of chitosan and hydroxyapatite incorporation on properties of electrospun PVA/HA nanofibrous mats for bone tissue regeneration: Nanofibers optimization and in vitro assessment. J Drug Deliv Sci Technol 2021; 62(February): 102417.
[http://dx.doi.org/10.1016/j.jddst.2021.102417]
[33]
Teodorescu M, Bercea M, Morariu S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2019; 37(1): 109-31.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.008] [PMID: 30472307]
[34]
Muppalaneni S, Omidian H. Polyvinyl alcohol in medicine and pharmacy: A perspective. J Dev Drugs 2013; 2(3): 1-5.
[35]
Kumar A, Han SS. PVA-based hydrogels for tissue engineering: A review. Int J Polym Mater 2017; 66(4): 159-82.
[http://dx.doi.org/10.1080/00914037.2016.1190930]
[36]
Nagarkar R, Patel J. Acta scientific pharmaceutical sciences (ISSN: 2581-5423) polyvinyl alcohol: A comprehensive study. Department of Pharmaceutics, University of Sciences, Philadelphia, USA 2019; 3: 34-44.
[37]
Aziz SB, Marf AS, Dannoun EMA, Brza MA, Abdullah RM. The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers 2020; 12(10): 1-17.
[http://dx.doi.org/10.3390/polym12102184] [PMID: 33019543]
[38]
Hussein Y, El-Fakharany EM, Kamoun EA, et al. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation. Int J Biol Macromol 2020; 164: 667-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.126] [PMID: 32682043]
[39]
Gómez-Aldapa CA, Velazquez G, Gutierrez MC, Rangel-Vargas E, Castro-Rosas J, Aguirre-Loredo RY. Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Mater Chem Phys 2019; 2020: 239.
[40]
Adeli H, Khorasani MT, Parvazinia M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 2019; 122: 238-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.115] [PMID: 30342125]
[41]
Popescu MC. Structure and sorption properties of CNC reinforced PVA films. Int J Biol Macromol 2017; 101: 783-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.168] [PMID: 28366849]
[42]
Islam MS, Ang BC, Andriyana A, Afifi AM. A review on fabrication of nanofibers via electrospinning and their applications. SN Applied Sciences 2019; 1(10): 1248.
[http://dx.doi.org/10.1007/s42452-019-1288-4]
[43]
Teixeira MA, Amorim MTP, Felgueiras HP. Poly (vinyl alcohol)-based nanofibrous electrospun Sca ff olds for tissue engineering applications. 2020.
[44]
Ross MH, Pawlina W. Histology: text and tall. 7th ed. Guanabara Koogan, Rio de Janeiro 2016.
[45]
Junqueira L, Carneiro J. Histologia Básica: texto e altas. 13th ed. Guanabara Koogan, Rio de Janeiro 2018.
[46]
Brown TM, Krishnamurthy K. Histology, Dermis. Treasure Island 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535346/
[47]
Mirzaei-parsa MJ, Ghanbari H, Alipoor B, Tavakoli A, Najafabadi MRH, Faridi-Majidi R. Nanofiber-acellular dermal matrix as a bilayer scaffold containing mesenchymal stem cell for healing of full-thickness skin wounds. Cell Tissue Res 2019; 375(3): 709-21.
[http://dx.doi.org/10.1007/s00441-018-2927-6] [PMID: 30338376]
[48]
Rippa AL, Kalabusheva EP, Vorotelyak EA. Regeneration of dermis: Scarring and cells involved. Cells 2019; 8(6): 607.
[http://dx.doi.org/10.3390/cells8060607] [PMID: 31216669]
[49]
Yokoyama H, Kudo N, Todate M, Shimada Y, Suzuki M, Tamura K. Skin regeneration of amphibians: A novel model for skin regeneration as adults. Dev Growth Differ 2018; 60(6): 316-25.
[http://dx.doi.org/10.1111/dgd.12544] [PMID: 29947057]
[50]
Beznoska J, Uhlík J, Kestlerová A, Královič M, Divín R, Fedačko J, et al. PVA and PCL nanofibers are suitable for tissue covering and regeneration czech technical university in prague. Kladno , Czech: Faculty of Biomedical Engineering 2019; 68.
[51]
Asiri A, Saidin S, Sani MH, Al-Ashwal RH. Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold. Sci Rep 2021; 11(1): 5634.
[http://dx.doi.org/10.1038/s41598-021-85149-x] [PMID: 33707606]
[52]
Esparza Y, Ullah A, Boluk Y, Wu J. Preparation and characterization of thermally crosslinked poly(vinyl alcohol)/feather keratin nanofiber scaffolds. Mater Des 2017; 133: 1-9.
[http://dx.doi.org/10.1016/j.matdes.2017.07.052]
[53]
Abou Zekry SS, Abdellatif A, Azzazy HME. Fabrication of pomegranate/honey nanofibers for use as antibacterial wound dressings. Wound Med 2020; 28(August 2019): 100181.
[http://dx.doi.org/10.1016/j.wndm.2020.100181]
[54]
Boskey AL, Robey PG. The composition of bone. Prim Metab Bone Dis Disord Miner Metab 2018; 84-92.
[55]
Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. J Mater Sci Mater Med 2020; 31(3): 27.
[http://dx.doi.org/10.1007/s10856-020-06364-y] [PMID: 32124052]
[56]
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020; 5(8): 584-603.
[http://dx.doi.org/10.1038/s41578-020-0204-2]
[57]
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Advances 2019; 9(45): 26252-62.
[http://dx.doi.org/10.1039/C9RA05214C] [PMID: 35531040]
[58]
Hezma AM, El-Rafei AM, El-Bahy GS. Electrospun hydroxyapatite containing polyvinyl alcohol nanofibers doped with nanogold for bone tissue engineering. Interceram - International Ceramic Review 2017; 66(3-4): 96-100.
[http://dx.doi.org/10.1007/BF03401205]
[59]
Enayati MS, Behzad T, Sajkiewicz P, et al. Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res A 2018; 106(4): 1111-20.
[http://dx.doi.org/10.1002/jbm.a.36309] [PMID: 29266718]
[60]
Cheng X, Cheng G, Xing X, et al. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Control Release 2020; 319(319): 234-45.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.048] [PMID: 31899269]
[61]
Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021; 175: 495-515.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.196] [PMID: 33539959]
[62]
Irani S, Honarpardaz A, Choubini N, Pezeshki-Modaress M, Zandi M. Chondro-inductive nanofibrous scaffold based gelatin/polyvinyl alcohol/chondroitin sulfate for cartilage tissue engineering. Polym Adv Technol 2020; 31(6): 1395-402.
[http://dx.doi.org/10.1002/pat.4869]
[63]
Namkaew J, Laowpanitchakorn P, Sawaddee N, Jirajessada S, Honsawek S, Yodmuang S. Carboxymethyl cellulose entrapped in a poly(Vinyl) alcohol network: plant-based scaffolds for cartilage tissue engineering. Molecules 2021; 26(3): 578.
[http://dx.doi.org/10.3390/molecules26030578] [PMID: 33499342]
[64]
Shafiee A, Soleimani M, Chamheidari GA, et al. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res-Part A 2011; 99 A(3): 467-78.
[65]
Coburn JM, Gibson M, Monagle S, Patterson Z, Elisseeff JH. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc Natl Acad Sci USA 2012; 109(25): 10012-7.
[http://dx.doi.org/10.1073/pnas.1121605109] [PMID: 22665791]
[66]
Tai K, Cockburn K, Greco V. Flexibility sustains epithelial tissue homeostasis. Curr Opin Cell Biol 2019; 60(Figure 1): 84-91.
[http://dx.doi.org/10.1016/j.ceb.2019.04.009]
[67]
Arumugasaamy N, Navarro J, Kent Leach J, Kim PCW, Fisher JP. In vitro models for studying transport across epithelial tissue barriers. Ann Biomed Eng 2019; 47(1): 1-21.
[http://dx.doi.org/10.1007/s10439-018-02124-w] [PMID: 30218224]
[68]
Yang B, Chen Y, Li Z, Tang P, Tang Y, Zhang Y, et al. Konjac glucomannan/polyvinyl alcohol nanofibers with enhanced skin healing properties by improving fibrinogen adsorption. Mater Sci Eng C 2020; 110(September 2019): 110718.
[http://dx.doi.org/10.1016/j.msec.2020.110718]
[69]
Zahedi P, Rezaeian I, Jafari SH. In vitro and in vivo evaluations of phenytoin sodium-loaded electrospun PVA, PCL, and their hybrid nanofibrous mats for use as active wound dressings. J Mater Sci 2013; 48(8): 3147-59.
[http://dx.doi.org/10.1007/s10853-012-7092-9]
[70]
Ahmadi Majd S, Rabbani Khorasgani M, Moshtaghian SJ, Talebi A, Khezri M. Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int J Biol Macromol 2016; 92: 1162-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.035] [PMID: 27492559]
[71]
Tarun K, Gobi N. Calcium alginate/PVA blended nano fibre matrix for wound dressing. Indian J Fibre Text Res 2012; 37(2): 127-32.
[72]
Sun X, Yu Z, Cai Z, Yu L, Lv Y. Voriconazole composited polyvinyl alcohol/ hydroxypropyl-β-cyclodextrin nanofibers for ophthalmic delivery. PLoS One 2016; 11(12): e0167961.
[http://dx.doi.org/10.1371/journal.pone.0167961] [PMID: 27974859]
[73]
Vashisth P, Srivastava AK, Nagar H, et al. Drug functionalized microbial polysaccharide based nanofibers as transdermal substitute. Nanomedicine 2016; 12(5): 1375-85.
[http://dx.doi.org/10.1016/j.nano.2016.01.019] [PMID: 26964481]
[74]
Kharaghani D, Dutta D, Ho KKK, et al. Active loading graphite/hydroxyapatite into the stable hydroxyethyl cellulose scaffold nanofibers for artificial cornea application. Cellulose 2020; 27(6): 3319-34.
[http://dx.doi.org/10.1007/s10570-020-02999-w]
[75]
Kwee BJ, Mooney DJ. Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotechnol 2017; 47: 16-22.
[http://dx.doi.org/10.1016/j.copbio.2017.05.003] [PMID: 28575733]
[76]
Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF. Current methods for skeletal muscle tissue repair and regeneration. Biomed Res Int 2018; 2018.
[http://dx.doi.org/10.1155/2018/1984879]
[77]
Horst M, Eberli D, Gobet R, Salemi S. Tissue engineering in pediatric bladder reconstruction-The road to success. Front Pediatr 2019; 7(MAR): 91.
[http://dx.doi.org/10.3389/fped.2019.00091] [PMID: 30984717]
[78]
Dong R, Ma PX, Guo B. Conductive biomaterials for muscle tissue engineering. Biomaterials 2020; 229(October 2019): 119584.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119584]
[79]
Carnes ME, Pins GD. Skeletal muscle tissue engineering: Biomaterials-based strategies for the treatment of volumetric muscle loss. Bioengineering 2020; 7(3): 85.
[http://dx.doi.org/10.3390/bioengineering7030085] [PMID: 32751847]
[80]
Mokhames Z, Rezaie Z, Ardeshiryl A, Basiri A, Taheri M. Efficient differentiation of smooth muscle and smooth muscle cells from iPS cells on chitosan/collagen/polyvinyl alcohol curcumin incorporated nanofibers. In Vitro Cell Dev Biol Anim 2020; 56(4): 313-21.
[81]
Mombini S, Mohammadnejad J, Bakhshandeh B, et al. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol 2019; 140: 278-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.046] [PMID: 31400428]
[82]
Mousa HM, Hussein KH, Sayed MM, et al. Development of biocompatible tri-layered nanofibers patches with endothelial cells for cardiac tissue engineering. Eur Polym J 2020; 129(March): 109630.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109630]
[83]
Ravichandran R, Sridhar R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration. Macromol Biosci 2014; 14(4): 515-25.
[http://dx.doi.org/10.1002/mabi.201300407] [PMID: 24327549]
[84]
Kheradmandi M, Vasheghani-Farahani E, Ghiaseddin A, Ganji F. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. J Biomed Mater Res A 2016; 104(7): 1720-7.
[http://dx.doi.org/10.1002/jbm.a.35702] [PMID: 26945909]
[85]
Redondo-Gómez C, Leandro-Mora R, Blanch-Bermúdez D, Espinoza-Araya C, Hidalgo-Barrantes D, Vega-Baudrit J. Recent advances in carbon nanotubes for nervous tissue regeneration. Adv Polym Technol 2020; 2020(2): 1-16.
[http://dx.doi.org/10.1155/2020/6861205]
[86]
Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki- Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: A review. Artif Cells Nanomed Biotechnol 2019; 47(1): 3524-39.
[http://dx.doi.org/10.1080/21691401.2019.1639723] [PMID: 31437011]
[87]
Curcio M, Bradke F. Axon regeneration in the central nervous system: Facing the challenges from the inside. Annu Rev Cell Dev Biol 2018; 34(1): 495-521.
[http://dx.doi.org/10.1146/annurev-cellbio-100617-062508] [PMID: 30044649]
[88]
Houshyar S, Bhattacharyya A, Shanks R. Peripheral nerve conduit: Materials and structures. ACS Chem Neurosci 2019; 10(8): 3349-65.
[http://dx.doi.org/10.1021/acschemneuro.9b00203] [PMID: 31273975]
[89]
Varier P, Raju G, Madhusudanan P, Jerard C, Shankarappa SA. A brief review of in vitro models for injury and regeneration in the peripheral nervous system. Int J Mol Sci 2022; 23(2): 816.
[http://dx.doi.org/10.3390/ijms23020816] [PMID: 35055003]
[90]
Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V. Peripheral nerve conduits: Technology update. Med Devices 2014; 7: 405-24.
[PMID: 25489251]
[91]
Tian L, Prabhakaran MP, Ramakrishna S. Strategies for regeneration of components of nervous system: Scaffolds, cells and biomolecules. Regen Biomater 2015; 2(1): 31-45.
[http://dx.doi.org/10.1093/rb/rbu017] [PMID: 26813399]
[92]
Ibrahim S, Sayed HM, EL-Rafei AM, El Amir A, Ismail M, Allam NK. Improved genistein loading and release on electrospun chitosan nanofiber blends. J Mol Liq 2016; 223: 1056-61.
[http://dx.doi.org/10.1016/j.molliq.2016.09.033]
[93]
Ismail M, Ibrahim S, El-Amir A, EL-Rafei A, Allam N, Abdellatif A. Genistein loaded nanofibers protect spinal cord tissue following experimental injury in rats. Biomedicines 2018; 6(4): 96.
[http://dx.doi.org/10.3390/biomedicines6040096] [PMID: 30287760]
[94]
Boni R, Ali A, Giteru SG, Shavandi A, Clarkson AN. Silk fibroin nanoscaffolds for neural tissue engineering. J Mater Sci Mater Med 2020; 31(9): 81.
[http://dx.doi.org/10.1007/s10856-020-06422-5] [PMID: 32857207]
[95]
Guo T, Yang X, Deng J, Zhu L, Wang B, Hao S. Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. J Mater Sci Mater Med 2019; 30(1): 9.
[http://dx.doi.org/10.1007/s10856-018-6207-5] [PMID: 30594975]
[96]
Babaie A, Bakhshandeh B, Abedi A, et al. Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. Eur Polym J 2020; 140(June): 110051. [Internet].
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110051]
[97]
Hazeri Y, Irani S, Zandi M, Pezeshki-Modaress M. Polyvinyl alcohol/sulfated alginate nanofibers induced the neuronal differentiation of human bone marrow stem cells. Int J Biol Macromol 2020; 147: 946-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.061] [PMID: 31765746]
[98]
Leung V, Ko F. Biomedical applications of nanofibers. Polym Adv Technol 2011; 22(3): 350-65.
[http://dx.doi.org/10.1002/pat.1813]
[99]
Nava JLG, Rose JC, Altinova H, Dalton PD, Laporte L, Brook GA. Nanofibers and Nanostructured Scaffolds for Nervous System Lesions. In: Nanomedicines for Brain Drug Delivery. Humara: New York 2020; pp. 61-101.
[100]
Dziemidowicz K, Sang Q, Wu J, et al. Electrospinning for healthcare: Recent advancements. J Mater Chem B Mater Biol Med 2021; 9(4): 939-51.
[http://dx.doi.org/10.1039/D0TB02124E] [PMID: 33367446]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy