Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Global Xenobiotic Profiling of Rat Plasma Using Untargeted Metabolomics and Background Subtraction-Based Approaches: Method Evaluation and Comparison

Author(s): Xiaojuan Jiang, Simian Chen, Mingshe Zhu* and Caisheng Wu*

Volume 24, Issue 3, 2023

Published on: 21 June, 2023

Page: [200 - 210] Pages: 11

DOI: 10.2174/1389200224666230508122240

Price: $65

Abstract

Background: Global xenobiotic profiling (GXP) is to detect and structurally characterize all xenobiotics in biological samples using mainly liquid chromatography-high resolution mass spectrometry (LC-HRMS) based methods. GXP is highly needed in drug metabolism study, food safety testing, forensic chemical analysis, and exposome research. For detecting known or predictable xenobiotics, targeted LC-HRMS data processing methods based on molecular weights, mass defects and fragmentations of analytes are routinely employed. For profiling unknown xenobiotics, untargeted and LC-HRMS based metabolomics and background subtraction-based approaches are required.

Objective: This study aimed to evaluate the effectiveness of untargeted metabolomics and the precise and thorough background subtraction (PATBS) in GXP of rat plasma.

Methods: Rat plasma samples collected from an oral administration of nefazodone (NEF) or Glycyrrhizae Radix et Rhizoma (Gancao, GC) were analyzed by LC-HRMS. NEF metabolites and GC components in rat plasma were thoroughly searched and characterized via processing LC-HRMS datasets using targeted and untargeted methods.

Results: PATBS detected 68 NEF metabolites and 63 GC components, while the metabolomic approach (MS-DIAL) found 67 NEF metabolites and 60 GC components in rat plasma. The two methods found 79 NEF metabolites and 80 GC components with 96% and 91% successful rates, respectively.

Conclusion: Metabolomics methods are capable of GXP and measuring alternations of endogenous metabolites in a group of biological samples, while PATBS is more suited for sensitive GXP of a single biological sample. A combination of metabolomics and PATBS approaches can generate better results in the untargeted profiling of unknown xenobiotics.

Graphical Abstract

[1]
Tiller, P.R.; Yu, S.; Castro-Perez, J.; Fillgrove, K.L.; Baillie, T.A. High-throughput, accurate mass liquid chromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a ‘first-line’ approach for metabolite identification studies. Rapid Commun. Mass Spectrom., 2008, 22(7), 1053-1061.
[http://dx.doi.org/10.1002/rcm.3472] [PMID: 18327855]
[2]
Zhu, M.; Zhang, H.; Humphreys, W.G. Drug metabolite profiling and identification by high-resolution mass spectrometry. J. Biol. Chem., 2011, 286(29), 25419-25425.
[http://dx.doi.org/10.1074/jbc.R110.200055] [PMID: 21632546]
[3]
Ruan, Q.; Peterman, S.; Szewc, M.A.; Ma, L.; Cui, D.; Humphreys, W.G.; Zhu, M. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: Application to indinavir metabolite detection. J. Mass Spectrom., 2008, 43(2), 251-261.
[http://dx.doi.org/10.1002/jms.1311] [PMID: 17968853]
[4]
Triolo, A.; Altamura, M.; Dimoulas, T.; Guidi, A.; Lecci, A.; Tramontana, M. In vivo metabolite detection and identification in drug discovery via LC-MS/MS with data-dependent scanning and postacquisition data mining. J. Mass Spectrom., 2005, 40(12), 1572-1582.
[http://dx.doi.org/10.1002/jms.934] [PMID: 16320289]
[5]
Su, C.Y.; Wang, J.H.; Chang, T.Y.; Shih, C.L. Mass defect filter technique combined with stable isotope tracing for drug metabolite identification using high-resolution mass spectrometry. Anal. Chim. Acta, 2022, 1208, 339814.
[http://dx.doi.org/10.1016/j.aca.2022.339814] [PMID: 35525585]
[6]
Zhu, C.; Wan, M.; Cheng, H.; Wang, H.; Zhu, M.; Wu, C. Rapid detection and structural characterization of verapamil metabolites in rats by UPLC-MSE and UNIFI platform. Biomed. Chromatogr., 2020, 34(1), e4702.
[http://dx.doi.org/10.1002/bmc.4702] [PMID: 31633811]
[7]
Huérfano, B.I.M.; España, A.J.C.; Guerrero, D.J.A. Development and validation of qualitative screening, quantitative determination and post-targeted pesticide analysis in tropical fruits and vegetables by LC-HRMS. Food Chem., 2022, 367, 130714.
[http://dx.doi.org/10.1016/j.foodchem.2021.130714] [PMID: 34388632]
[8]
Wong, J.W.; Wang, J.; Chow, W.; Carlson, R.; Jia, Z.; Zhang, K.; Hayward, D.G.; Chang, J.S. Perspectives on liquid chromatography-high-resolution mass spectrometry for pesticide screening in foods. J. Agric. Food Chem., 2018, 66(37), 9573-9581.
[http://dx.doi.org/10.1021/acs.jafc.8b03468] [PMID: 30169025]
[9]
Kintz, P.; Ameline, A.; Gheddar, L.; Raul, J.S. Testing for GW501516 (cardarine) in human hair using LC/MS-MS and confirmation by LC/HRMS. Drug Test. Anal., 2020, 12(7), 980-986.
[http://dx.doi.org/10.1002/dta.2802] [PMID: 32298044]
[10]
Knoop, A.; Thomas, A.; Fichant, E.; Delahaut, P.; Schänzer, W.; Thevis, M. Qualitative identification of growth hormone-releasing hormones in human plasma by means of immunoaffinity purification and LC-HRMS/MS. Anal. Bioanal. Chem., 2016, 408(12), 3145-3153.
[http://dx.doi.org/10.1007/s00216-016-9377-3] [PMID: 26879649]
[11]
Beck, O.; Ericsson, M. Methods for urine drug testing using one-step dilution and direct injection in combination with LC-MS/MS and LC-HRMS. Bioanalysis, 2014, 6(17), 2229-2244.
[http://dx.doi.org/10.4155/bio.14.192] [PMID: 25383734]
[12]
Dom, I.; Biré, R.; Hort, V.; Lavison-Bompard, G.; Nicolas, M.; Guérin, T. Extended targeted and non-targeted strategies for the analysis of marine toxins in mussels and oysters by (LC-HRMS). Toxins , 2018, 10(9), 375.
[http://dx.doi.org/10.3390/toxins10090375] [PMID: 30223487]
[13]
Klijnstra, M.D.; Faassen, E.J.; Gerssen, A. A generic LC-HRMS screening method for marine and freshwater phycotoxins in fish, shellfish, water, and supplements. Toxins , 2021, 13(11), 823.
[http://dx.doi.org/10.3390/toxins13110823] [PMID: 34822607]
[14]
Lange, T.; Walpurgis, K.; Thomas, A.; Geyer, H.; Thevis, M. Development of two complementary LC-HRMS methods for analyzing sotatercept in dried blood spots for doping controls. Bioanalysis, 2019, 11(10), 923-940.
[http://dx.doi.org/10.4155/bio-2018-0313] [PMID: 31218901]
[15]
Chang, W.; He, G.; Yan, K.; Wang, Z.; Zhang, Y.; Dong, T.; Liu, Y.; Zhang, L.; Hong, L. Doping control analysis of small peptides in human urine using LC-HRMS with parallel reaction monitoring mode: Screening and confirmation. Anal. Methods, 2021, 13(48), 5838-5850.
[http://dx.doi.org/10.1039/D1AY01677F] [PMID: 34847571]
[16]
Gajda, P.M.; Holm, N.B.; Hoej, L.J.; Rasmussen, B.S.; Dalsgaard, P.W.; Reitzel, L.A.; Linnet, K. Glycine-modified growth hormone secretagogues identified in seized doping material. Drug Test. Anal., 2019, 11(2), 350-354.
[http://dx.doi.org/10.1002/dta.2489] [PMID: 30136411]
[17]
You, Y.; Proctor, R.M.; Guo, K.; Li, X.; Xue, E.; Guan, F.; Robinson, M.A. Use of high resolution/accurate mass full scan/data-dependent acquisition for targeted/non-targeted screening in equine doping control. Anal. Methods, 2021, 13(13), 1565-1575.
[http://dx.doi.org/10.1039/D0AY02297G] [PMID: 33710179]
[18]
Kwok, W.H.; Choi, T.L.S.; Kwok, K.Y.; Chan, G.H.M.; Wong, J.K.Y.; Wan, T.S.M. Doping control analysis of 46 polar drugs in horse plasma and urine using a ‘dilute-and-shoot’ ultra high performance liquid chromatography-high resolution mass spectrometry approach. J. Chromatogr. A, 2016, 1451, 41-49.
[http://dx.doi.org/10.1016/j.chroma.2016.05.002] [PMID: 27180888]
[19]
Wu, C.; Zhang, H.; Wang, C.; Qin, H.; Zhu, M.; Zhang, J. An integrated approach for studying exposure, metabolism, and disposition of multiple component herbal medicines using high-resolution mass spectrometry and multiple data processing tools. Drug Metab. Dispos., 2016, 44(6), 800-808.
[http://dx.doi.org/10.1124/dmd.115.068189] [PMID: 27013399]
[20]
Chen, X.; Wu, Y.; Chen, C.; Gu, Y.; Zhu, C.; Wang, S.; Chen, J.; Zhang, L.; Lv, L.; Zhang, G.; Yuan, Y.; Chai, Y.; Zhu, M.; Wu, C. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm. Sin. B, 2021, 11(1), 222-236.
[http://dx.doi.org/10.1016/j.apsb.2020.10.002] [PMID: 33072499]
[21]
Chen, C.; Wohlfarth, A.; Xu, H.; Su, D.; Wang, X.; Jiang, H.; Feng, Y.; Zhu, M. Untargeted screening of unknown xenobiotics and potential toxins in plasma of poisoned patients using high-resolution mass spectrometry: Generation of xenobiotic fingerprint using background subtraction. Anal. Chim. Acta, 2016, 944, 37-43.
[http://dx.doi.org/10.1016/j.aca.2016.09.034] [PMID: 27776637]
[22]
Narduzzi, L.; Dervilly, G.; Marchand, A.; Audran, M.; Le Bizec, B.; Buisson, C. Applying metabolomics to detect growth hormone administration in athletes: Proof of concept. Drug Test. Anal., 2020, 12(7), 887-899.
[http://dx.doi.org/10.1002/dta.2798] [PMID: 32246894]
[23]
Narduzzi, L.; Dervilly, G.; Audran, M.; Le Bizec, B.; Buisson, C. A role for metabolomics in the antidoping toolbox? Drug Test. Anal., 2020, 12(6), 677-690.
[http://dx.doi.org/10.1002/dta.2788] [PMID: 32144900]
[24]
González-Domínguez, R.; Jáuregui, O.; Queipo-Ortuño, M.I.; Andrés-Lacueva, C. Characterization of the human exposome by a comprehensive and quantitative large-scale multianalyte metabolomics platform. Anal. Chem., 2020, 92(20), 13767-13775.
[http://dx.doi.org/10.1021/acs.analchem.0c02008] [PMID: 32966057]
[25]
Warth, B.; Spangler, S.; Fang, M.; Johnson, C.H.; Forsberg, E.M.; Granados, A.; Martin, R.L.; Domingo-Almenara, X.; Huan, T.; Rinehart, D.; Montenegro-Burke, J.R.; Hilmers, B.; Aisporna, A.; Hoang, L.T.; Uritboonthai, W.; Benton, H.P.; Richardson, S.D.; Williams, A.J.; Siuzdak, G. Exposome-scale investigations guided by global metabolomics, pathway analysis, and cognitive computing. Anal. Chem., 2017, 89(21), 11505-11513.
[http://dx.doi.org/10.1021/acs.analchem.7b02759] [PMID: 28945073]
[26]
Athersuch, T.J. The role of metabolomics in characterizing the human exposome. Bioanalysis, 2012, 4(18), 2207-2212.
[http://dx.doi.org/10.4155/bio.12.211] [PMID: 23046263]
[27]
Chen, Y.; Guo, J.; Xing, S.; Yu, H.; Huan, T. Global-scale metabolomic profiling of human hair for simultaneous monitoring of endogenous metabolome, short- and long-term exposome. Front Chem., 2021, 9, 674265.
[http://dx.doi.org/10.3389/fchem.2021.674265] [PMID: 34055742]
[28]
Ma, S.; Chowdhury, S.K. Data acquisition and data mining techniques for metabolite identification using LC coupled to high-resolution MS. Bioanalysis, 2013, 5(10), 1285-1297.
[http://dx.doi.org/10.4155/bio.13.103] [PMID: 23721449]
[29]
Wilkinson, S.D.; Martin, S.; Orton, A.L.; Markandu, R.; Jones, B.C. Drug metabolite identification using ultrahigh-performance liquid chromatography-ultraviolet spectroscopy and parallelized scans on a tribrid Orbitrap mass spectrometer. Rapid Commun. Mass Spectrom., 2020, 34(10), e8735.
[http://dx.doi.org/10.1002/rcm.8735] [PMID: 31967694]
[30]
Meyer, M.R.; Maurer, H.H. Current applications of high-resolution mass spectrometry in drug metabolism studies. Anal. Bioanal. Chem., 2012, 403(5), 1221-1231.
[http://dx.doi.org/10.1007/s00216-012-5807-z] [PMID: 22349341]
[31]
Wu, Y.; Pan, L.; Chen, Z.; Zheng, Y.; Diao, X.; Zhong, D. Metabolite identification in the preclinical and clinical phase of drug development. Curr. Drug Metab., 2021, 22(11), 838-857.
[http://dx.doi.org/10.2174/1389200222666211006104502] [PMID: 34620061]
[32]
Zhu, X.; Chen, Y.; Subramanian, R. Comparison of information-dependent acquisition, SWATH, and MS(All) techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem., 2014, 86(2), 1202-1209.
[http://dx.doi.org/10.1021/ac403385y] [PMID: 24383719]
[33]
Feng, C.; Xu, Q.; Qiu, X.; Jin, Y.; Ji, J.; Lin, Y.; Le, S.; She, J.; Lu, D.; Wang, G. Evaluation and application of machine learning-based retention time prediction for suspect screening of pesticides and pesticide transformation products in LC-HRMS. Chemosphere, 2021, 271, 129447.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129447] [PMID: 33476874]
[34]
Ma, S.; Zhu, M. Recent advances in applications of liquid chromatography-tandem mass spectrometry to the analysis of reactive drug metabolites. Chem. Biol. Interact., 2009, 179(1), 25-37.
[http://dx.doi.org/10.1016/j.cbi.2008.09.014] [PMID: 18848531]
[35]
Bateman, K.P.; Castro-Perez, J.; Wrona, M.; Shockcor, J.P.; Yu, K.; Oballa, R.; Nicoll-Griffith, D.A. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun. Mass Spectrom., 2007, 21(9), 1485-1496.
[http://dx.doi.org/10.1002/rcm.2996] [PMID: 17394128]
[36]
Zhu, M.; Ma, L.; Zhang, D.; Ray, K.; Zhao, W.; Humphreys, W.G.; Skiles, G.; Sanders, M.; Zhang, H. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metab. Dispos., 2006, 34(10), 1722-1733.
[http://dx.doi.org/10.1124/dmd.106.009241] [PMID: 16815965]
[37]
Zhang, H.; Zhang, D.; Ray, K.; Zhu, M. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J. Mass Spectrom., 2009, 44(7), 999-1016.
[http://dx.doi.org/10.1002/jms.1610] [PMID: 19598168]
[38]
Johnson, C.H.; Patterson, A.D.; Idle, J.R.; Gonzalez, F.J. Xenobiotic metabolomics: Major impact on the metabolome. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 37-56.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134748] [PMID: 21819238]
[39]
Chen, C.; Gonzalez, F.J.; Idle, J.R. LC-MS-based metabolomics in drug metabolism. Drug Metab. Rev., 2007, 39(2-3), 581-597.
[http://dx.doi.org/10.1080/03602530701497804] [PMID: 17786640]
[40]
Patterson, A.D.; Bonzo, J.A.; Li, F.; Krausz, K.W.; Eichler, G.S.; Aslam, S.; Tigno, X.; Weinstein, J.N.; Hansen, B.C.; Idle, J.R.; Gonzalez, F.J. Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. J. Biol. Chem., 2011, 286(22), 19511-19522.
[http://dx.doi.org/10.1074/jbc.M111.221739] [PMID: 21487016]
[41]
Zhang, P.; Carlsten, C.; Chaleckis, R.; Hanhineva, K.; Huang, M.; Isobe, T.; Koistinen, V.M.; Meister, I.; Papazian, S.; Sdougkou, K.; Xie, H.; Martin, J.W.; Rappaport, S.M.; Tsugawa, H.; Walker, D.I.; Woodruff, T.J.; Wright, R.O.; Wheelock, C.E. Defining the scope of exposome studies and research needs from a multidisciplinary perspective. Environ. Sci. Technol. Lett., 2021, 8(10), 839-852.
[http://dx.doi.org/10.1021/acs.estlett.1c00648] [PMID: 34660833]
[42]
Kiss, A.; Lucio, M.; Fildier, A.; Buisson, C.; Schmitt-Kopplin, P.; Cren-Olivé, C. Doping control using high and ultra-high resolution mass spectrometry based non-targeted metabolomics-a case study of salbutamol and budesonide abuse. PLoS One, 2013, 8(9), e74584.
[http://dx.doi.org/10.1371/journal.pone.0074584] [PMID: 24058591]
[43]
Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem., 2012, 32, 1-14.
[http://dx.doi.org/10.1016/j.trac.2011.08.009] [PMID: 22345829]
[44]
Holmes, E.; Loo, R.L.; Cloarec, O.; Coen, M.; Tang, H.; Maibaum, E.; Bruce, S.; Chan, Q.; Elliott, P.; Stamler, J.; Wilson, I.D.; Lindon, J.C.; Nicholson, J.K. Detection of urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal. Chem., 2007, 79(7), 2629-2640.
[http://dx.doi.org/10.1021/ac062305n] [PMID: 17323917]
[45]
Sun, J.; Schnackenberg, L.; Beger, R. Studies of acetaminophen and metabolites in urine and their correlations with toxicity using metabolomics. Drug Metab. Lett., 2009, 3(3), 130-136.
[http://dx.doi.org/10.2174/187231209789352139] [PMID: 19702550]
[46]
Guo, J.; Shen, S.; Liu, M.; Wang, C.; Low, B.; Chen, Y.; Hu, Y.; Xing, S.; Yu, H.; Gao, Y.; Fang, M.; Huan, T. JPA: Joint metabolic feature extraction increases the depth of chemical coverage for LC-MS-based metabolomics and exposomics. Metabolites, 2022, 12(3), 212.
[http://dx.doi.org/10.3390/metabo12030212] [PMID: 35323655]
[47]
Aurich, D; Miles, O; Schymanski, E L Historical exposomics and high resolution mass spectrometry. Exposome, 2021, 1(1), osab007.
[48]
Barupal, D.K. Response: Commentary: Data processing thresholds for abundance and sparsity and missed biological insights in an untargeted chemical analysis of blood specimens for exposomics. Front. Public Health, 2022, 10, 1003148.
[http://dx.doi.org/10.3389/fpubh.2022.1003148] [PMID: 36330107]
[49]
Rojano-Delgado, A.M.; Luque de Castro, M.D. Capillary electrophoresis and herbicide analysis: Present and future perspectives. Electrophoresis, 2014, 35(17), 2509-2519.
[http://dx.doi.org/10.1002/elps.201300556] [PMID: 24788107]
[50]
Shahid, M.; Singh, U.B.; Khan, M.S. Metabolomics-based mechanistic insights into revealing the adverse effects of pesticides on plants: An interactive review. Metabolites, 2023, 13(2), 246.
[http://dx.doi.org/10.3390/metabo13020246] [PMID: 36837865]
[51]
Yang, X.; Zhang, M.; Lu, T.; Chen, S.; Sun, X.; Guan, Y.; Zhang, Y.; Zhang, T.; Sun, R.; Hang, B.; Wang, X.; Chen, M.; Chen, Y.; Xia, Y. Metabolomics study and meta-analysis on the association between maternal pesticide exposome and birth outcomes. Environ. Res., 2020, 182, 109087.
[http://dx.doi.org/10.1016/j.envres.2019.109087] [PMID: 32069748]
[52]
Olesti, E.; De Toma, I.; Ramaekers, J.G.; Brunt, T.M.; Carbó, M.; Fernández-Avilés, C.; Robledo, P.; Farré, M.; Dierssen, M.; Pozo, Ó.J.; de la Torre, R. Metabolomics predicts the pharmacological profile of new psychoactive substances. J. Psychopharmacol., 2019, 33(3), 347-354.
[http://dx.doi.org/10.1177/0269881118812103] [PMID: 30451567]
[53]
Wu, H.; Li, X.; Yan, X.; An, L.; Luo, K.; Shao, M.; Jiang, Y.; Xie, R.; Feng, F. An untargeted metabolomics-driven approach based on LC-TOF/MS and LC-MS/MS for the screening of xenobiotics and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma. J. Pharm. Biomed. Anal., 2015, 115, 315-322.
[http://dx.doi.org/10.1016/j.jpba.2015.07.026] [PMID: 26275719]
[54]
Luo, K.; Feng, F. Identification of absorbed components and metabolites of Zhi-Zi-Hou-Po decoction in rat plasma after oral administration by an untargeted metabolomics-driven strategy based on LC-MS. Anal. Bioanal. Chem., 2016, 408(21), 5723-5735.
[http://dx.doi.org/10.1007/s00216-016-9674-x] [PMID: 27342796]
[55]
Zhang, A.; Sun, H.; Wang, X. Recent highlights of metabolomics for traditional Chinese medicine. Pharmazie, 2012, 67(8), 667-675.
[PMID: 22957430]
[56]
Zhang, X.; Li, Q.; Xu, Z.; Dou, J. Mass spectrometry-based metabolomics in health and medical science: A systematic review. RSC Advances, 2020, 10(6), 3092-3104.
[http://dx.doi.org/10.1039/C9RA08985C] [PMID: 35497733]
[57]
Keen, B.; Cawley, A.; Reedy, B.; Fu, S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test. Anal., 2022, 14(5), 794-807.
[http://dx.doi.org/10.1002/dta.3245] [PMID: 35194967]
[58]
Zhang, H.; Ma, L.; He, K.; Zhu, M. An algorithm for thorough background subtraction from high-resolution LC/MS data: Application to the detection of troglitazone metabolites in rat plasma, bile, and urine. J. Mass Spectrom., 2008, 43(9), 1191-1200.
[http://dx.doi.org/10.1002/jms.1432] [PMID: 18521834]
[59]
Zhang, H.; Yang, Y. An algorithm for thorough background subtraction from high-resolution LC/MS data: Application for detection of glutathione-trapped reactive metabolites. J. Mass Spectrom., 2008, 43(9), 1181-1190.
[http://dx.doi.org/10.1002/jms.1390] [PMID: 18300330]
[60]
Zhang, H.; Grubb, M.; Wu, W.; Josephs, J.; Humphreys, W.G. Algorithm for thorough background subtraction of high-resolution LC/MS data: Application to obtain clean product ion spectra from nonselective collision-induced dissociation experiments. Anal. Chem., 2009, 81(7), 2695-2700.
[http://dx.doi.org/10.1021/ac8027189] [PMID: 19254033]
[61]
Xing, J.; Zang, M.; Zhang, H.; Zhu, M. The application of high-resolution mass spectrometry-based data-mining tools in tandem to metabolite profiling of a triple drug combination in humans. Anal. Chim. Acta, 2015, 897, 34-44.
[http://dx.doi.org/10.1016/j.aca.2015.09.034] [PMID: 26515003]
[62]
Zhu, P.; Ding, W.; Tong, W.; Ghosal, A.; Alton, K.; Chowdhury, S. A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) for extraction of drug metabolites in liquid chromatography/mass spectrometry data from biological matrices. Rapid Commun. Mass Spectrom., 2009, 23(11), 1563-1572.
[http://dx.doi.org/10.1002/rcm.4041] [PMID: 19408276]
[63]
Shekar, V.; Shah, A.; Shadid, M.; Wu, J.T.; Bolleddula, J.; Chowdhury, S. An accelerated background subtraction algorithm for processing high-resolution MS data and its application to metabolite identification. Bioanalysis, 2016, 8(16), 1693-1707.
[http://dx.doi.org/10.4155/bio-2016-0101] [PMID: 27460980]
[64]
Zhu, C.; Cai, T.; Jin, Y.; Chen, J.; Liu, G.; Xu, N.; Shen, R.; Chen, Y.; Han, L.; Wang, S.; Wu, C.; Zhu, M. Artificial intelligence and network pharmacology based investigation of pharmacological mechanism and substance basis of Xiaokewan in treating diabetes. Pharmacol. Res., 2020, 159, 104935.
[http://dx.doi.org/10.1016/j.phrs.2020.104935] [PMID: 32464328]
[65]
Chen, J.; Jiang, X.; Zhu, C.; Yang, L.; Liu, M.; Zhu, M.; Wu, C. Exploration of Q-marker of rhubarb based on intelligent data processing techniques and the AUC pooled method. Front. Pharmacol., 2022, 13, 865066.
[http://dx.doi.org/10.3389/fphar.2022.865066] [PMID: 35387347]
[66]
Zhu, C.; Lai, G.; Jin, Y.; Xu, D.; Chen, J.; Jiang, X.; Wang, S.; Liu, G.; Xu, N.; Shen, R.; Wang, L.; Zhu, M.; Wu, C. Suspect screening and untargeted analysis of veterinary drugs in food by LC-HRMS: Application of background exclusion-dependent acquisition for retrospective analysis of unknown xenobiotics. J. Pharm. Biomed. Anal., 2022, 210, 114583.
[http://dx.doi.org/10.1016/j.jpba.2022.114583] [PMID: 35033942]
[67]
Zhang, H.; Patrone, L.; Kozlosky, J.; Tomlinson, L.; Cosma, G.; Horvath, J. Pooled sample strategy in conjunction with high-resolution liquid chromatography-mass spectrometry-based background subtraction to identify toxicological markers in dogs treated with ibipinabant. Anal. Chem., 2010, 82(9), 3834-3839.
[http://dx.doi.org/10.1021/ac100287a] [PMID: 20387806]
[68]
Zhang, H.; Gan, J.; Shu, Y.Z.; Humphreys, W.G. High-resolution mass spectrometry-based background subtraction for identifying protein modifications in a complex biological system: Detection of acetaminophen-bound microsomal proteins including argininosuccinate synthetase. Chem. Res. Toxicol., 2015, 28(4), 775-781.
[http://dx.doi.org/10.1021/tx500526s] [PMID: 25654186]
[69]
Li, A.C.; Shou, W.Z.; Mai, T.T.; Jiang, X. Complete profiling and characterization of in vitro nefazodone metabolites using two different tandem mass spectrometric platforms. Rapid Commun. Mass Spectrom., 2007, 21(24), 4001-4008.
[http://dx.doi.org/10.1002/rcm.3303] [PMID: 18000840]
[70]
Jiang, X.; Lin, Y.; Wu, Y.; Yuan, C.; Lang, X.; Chen, J.; Zhu, C.; Yang, X.; Huang, Y.; Wang, H.; Wu, C. Identification of potential anti-pneumonia pharmacological components of Glycyrrhizae Radix et Rhizoma after the treatment with Gan An He Ji oral liquid. J. Pharm. Anal., 2022, 12(6), 839-851.
[http://dx.doi.org/10.1016/j.jpha.2022.07.004] [PMID: 36605579]
[71]
Lan, X.; Olaleye, O.E.; Lu, J.; Yang, W.; Du, F.; Yang, J.; Cheng, C.; Shi, Y.; Wang, F.; Zeng, X.; Tian, N.; Liao, P.; Yu, X.; Xu, F.; Li, Y.; Wang, H.; Zhang, N.; Jia, W.; Li, C. Pharmacokinetics-based identification of pseudoaldosterogenic compounds originating from Glycyrrhiza uralensis roots (Gancao) after dosing LianhuaQingwen capsule. Acta Pharmacol. Sin., 2021, 42(12), 2155-2172.
[http://dx.doi.org/10.1038/s41401-021-00651-2] [PMID: 33931765]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy