Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Ionic Liquids as a Non-conventional Catalyst for the Synthesis of N-heterocycles

Author(s): Pradeep Pratap Singh, Saraswati Kanodia and Ambika*

Volume 21, Issue 7, 2024

Published on: 21 June, 2023

Page: [742 - 763] Pages: 22

DOI: 10.2174/1570193X20666230507183754

Price: $65

Abstract

Ionic liquids (ILs) have emerged as one of the potential alternates of organic solvents in chemistry. Nitrogen-containing heterocyclic compounds are the important structural motifs of some bioactive compounds. A variety of ILs, such as first-generation, second-generation, and thirdgeneration ILs have been used in the synthesis of various types of nitrogen-containing heterocyclic compounds, such as aziridine, indole, pyrrazole, imidazole, oxazole, thiazole, triazole, pyridine, pyrimidine, quinolones, benzodiazapiene and their derivatives. Due to their unique chemical and physical properties, ILs can act as both solvent and catalyst and have contributed towards high efficiency, improved yield and recyclability for the synthesis of heterocyclic skeleton. In this review, the application of ILs in the synthesis of different nitrogen-containing heterocyclic compounds has been discussed.

Graphical Abstract

[1]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[2]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review onrecent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[3]
Ferlin, F.; Luciani, L.; Viteritti, O.; Brunori, F.; Piermatti, O.; Santoro, S.; Vaccaro, L. Polarclean as a sustainable reaction medium for the waste minimized synthesis of heterocyclic compounds. Front Chem., 2019, 6, 659.
[http://dx.doi.org/10.3389/fchem.2018.00659] [PMID: 30761286]
[4]
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6(2), 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032]
[5]
Jangir, N.; Bagaria, S.K.; Jangid, D.K. Nanocatalysts: Applications for the synthesis of N-containing five-membered heterocycles. RSC Advances, 2022, 12(30), 19640-19666.
[http://dx.doi.org/10.1039/D2RA03122A] [PMID: 35865567]
[6]
Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium-catalyzed oxidative addition. Chem. Rev., 2006, 106(11), 4644-4680.
[http://dx.doi.org/10.1021/cr0683966] [PMID: 17091931]
[7]
Jiménez-González, L.; García-Muñoz, S.; Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Silver-catalyzed asymmetric synthesis of 2,3-dihydrobenzofurans: A new chiral synthesis of pterocarpans. Chemistry, 2006, 12(34), 8762-8769.
[http://dx.doi.org/10.1002/chem.200600332] [PMID: 16953512]
[8]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen., 2010, 373(1-2), 1-56.
[http://dx.doi.org/10.1016/j.apcata.2009.10.008]
[9]
Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq., 2020, 297, 112038.
[http://dx.doi.org/10.1016/j.molliq.2019.112038]
[10]
Hajipour, A.R.; Rafiee, F. Recent progress in ionic liquids and their applications in organic synthesis. Org. Prep. Proced. Int., 2015, 47(4), 249-308.
[http://dx.doi.org/10.1080/00304948.2015.1052317]
[11]
Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[12]
Itoh, T. Ionic liquids as tool to improve enzymatic organic synthesis. Chem. Rev., 2017, 117(15), 10567-10607.
[http://dx.doi.org/10.1021/acs.chemrev.7b00158] [PMID: 28745876]
[13]
Wells, A.S.; Coombe, V.T. On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org. Process Res. Dev., 2006, 10(4), 794-798.
[http://dx.doi.org/10.1021/op060048i]
[14]
Endres, F.; Zein El Abedin, S. Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys., 2006, 8(18), 2101-2116.
[http://dx.doi.org/10.1039/b600519p] [PMID: 16751868]
[15]
Moustafa, E.M.; Zein El Abedin, S.; Shkurankov, A.; Zschippang, E.; Saad, A.Y.; Bund, A.; Endres, F. Electrodeposition of Al in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids: In situ STM and EQCM studies. J. Phys. Chem. B, 2007, 111(18), 4693-4704.
[http://dx.doi.org/10.1021/jp0670687] [PMID: 17388503]
[16]
Docherty, K.M.; Kulpa, C.F., Jr Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem., 2005, 7(4), 185-189.
[http://dx.doi.org/10.1039/b419172b]
[17]
Gorke, J.; Srienc, F.; Kazlauskas, R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol. Bioprocess Eng.; BBE, 2010, 15(1), 40-53.
[http://dx.doi.org/10.1007/s12257-009-3079-z] [PMID: 34290544]
[18]
Mutelet, F.; Butet, V.; Jaubert, J.N. Application of inverse gas chromatography and regular solution theory for characterization of ionic liquids. Ind. Eng. Chem. Res., 2005, 44(11), 4120-4127.
[http://dx.doi.org/10.1021/ie048806l]
[19]
Turguła, A.; Stęsik, K.; Materna, K.; Klejdysz, T.; Praczyk, T.; Pernak, J. Third-generation ionic liquids with N -alkylated 1,4-diazabicyclo[2.2.2]octane cations and pelargonate anions. RSC Advances, 2020, 10(15), 8653-8663.
[http://dx.doi.org/10.1039/D0RA00766H] [PMID: 35496559]
[20]
Gorke, J.; Srienc, F.; Kazlauskas, R.J. Hydrolasecatalyzed biotransformations in deep euthetic solvents. Chem. Comm., 2008, 1235-1237.
[21]
Wasserscheid, P.; Keim, W. Ionic liquids-new solutions for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39(21), 3773-3789.
[22]
Marcos, A.P.M.; Clarissa, P.F.; Dayse, N.M.; Nilo, Z.; Helio, G.B. Ionic liquids in heterocyclic synthesis. Chem. Rev., 2008, 108, 2015-2050.
[23]
Steinrück, H.P.; Wasserscheid, P. Ionic liquids in catalysis. Catal. Lett., 2015, 145(1), 380-397.
[http://dx.doi.org/10.1007/s10562-014-1435-x]
[24]
Bartlewicz, O. Dąbek, I.; Szymańska, A.; Maciejewski, H. Heterogeneous catalysis with the participation of ionic liquids. Catalysts, 2020, 10(11), 1227.
[http://dx.doi.org/10.3390/catal10111227]
[25]
Singh, P.P. Ambika, Supported ionic liquids and their applications in organic transformations. Curr. Org. Synth., 2022, 19(8), 905-922.
[http://dx.doi.org/10.2174/1570179419666220303110933] [PMID: 36267047]
[26]
Ambika; Singh, P.P.; Chauhan, S.M.S. Chemoselective esterification of phenolic acids in the presence of sodium bicarbonate in ionic liquids. Syn.Comm., 2008, 926-936.
[27]
Singh, P.P. Ambika; Chauhan, S.M.S. Chemoselective epoxidation of electron rich and electron deficient olefins catalyzed by meso-tetraarylporphyrin iron(iii) chlorides in imidazolium ionic liquids. New J. Chem., 2012, 36(3), 650-655.
[http://dx.doi.org/10.1039/c1nj20739c]
[28]
Howarth, J.; James, P.; Ryan, R. Sodium borohydride reduction of aldehydes and ketones in the recyclable ionic liquid [bmim]PF6. Syn. Comm, 2001, 31, 2935-2938.
[29]
Yadav, J.S.; Reddy, B.V.; Reddy, P.N.; Rao, M.S. Bi(OTf)3-[Bmim]PF6: A novel and reusable catalytic system for the synthesis of cis-aziridine carboxylates. Synthesis, 2003, 2003(9), 1387-1390.
[http://dx.doi.org/10.1055/s-2003-40212]
[30]
Rebeiro, G.L.; Khadilkar, B.M. Chloroaluminate ionic liquid for fischer indole synthesis. Synthesis, 2001, 2001(3), 0370-0372.
[http://dx.doi.org/10.1055/s-2001-11441]
[31]
Xu, D.Q.; Yang, W.L.; Luo, S.P.; Wang, B.T.; Wu, J.; Xu, Z.Y. Fischer indole synthesis in Brønsted acidic ionic liquids: A green, mild, and regiospecific reaction system. Eur. J. Org. Chem., 2007, 2007(6), 1007-1012.
[http://dx.doi.org/10.1002/ejoc.200600886]
[32]
Calderon Morales, R.; Tambyrajah, V.; Jenkins, P.R.; Davies, D.L.; Abbott, A.P. The regiospecific Fischer indole reaction in choline chloride•2ZnCl 2 with product isolation by direct sublimation from the ionic liquid. Chem. Commun. , 2004, 2(2), 158-159.
[http://dx.doi.org/10.1039/B313655H] [PMID: 14737527]
[33]
Neuhaus, W.C.; Bakanas, I.J.; Lizza, J.R.; Boon, C.T., Jr; Moura-Letts, G. Novel biodegradable protonic ionic liquid for the Fischer indole synthesis reaction. Green Chem. Lett. Rev., 2016, 9(1), 39-43.
[http://dx.doi.org/10.1080/17518253.2016.1149231]
[34]
Xu, D.Q.; Wu, J.; Luo, S.P.; Zhang, J.X.; Wu, J.Y.; Du, X.H.; Xu, Z.Y. Fischer indole synthesis catalyzed by novel SO3H-functionalized ionic liquids in water. Green Chem., 2009, 11(8), 1239-1246.
[http://dx.doi.org/10.1039/b901010f]
[35]
Li, B.L.; Xu, D.Q.; Zhong, A.G. Novel SO3H-functionalized ionic liquids catalyzed a simple, green and efficient procedure for Fischer indole synthesis in water under microwave irradiation. J. Fluor. Chem., 2012, 144, 45-50.
[http://dx.doi.org/10.1016/j.jfluchem.2012.09.010]
[36]
Tao, L.L.; Jiang, J.; Pan, Y.C.; Yang, X.; Li, B.L. SO3H-functionalized ionic liquids-catalyzed facile and efficient procedure for Fischer indole synthesis under ultrasound irradiation. Adv. Mat. Res., 2013, 661, 150-153.
[37]
Malik, M.S.; Alsantali, R.I.; Alsharif, M.A.; Aljayzani, S.I.; Morad, M.; Jassas, R.S.; Al-Rooqi, M.M.; Alsimaree, A.A.; Altass, H.M.; Asghar, B.H.; Khder, A.S.; Ahmed, S.A. Ionic liquid mediated four-component synthesis of novel phthalazinone based indole-pyran hybrids as cytotoxic agents. Arab. J. Chem., 2022, 15(2), 103560.
[http://dx.doi.org/10.1016/j.arabjc.2021.103560]
[38]
Safaei, S.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Kia, R. Application of a multi-SO3H Brønsted acidic ionic liquid in water: A highly efficient and reusable catalyst for the regioselective and scaled-up synthesis of pyrazoles under mild conditions. RSC Advances, 2012, 2(13), 5610-5616.
[http://dx.doi.org/10.1039/c2ra20624b]
[39]
Ebrahimi, J.; Mohammadi, A.; Pakjoo, V.; Bahramzade, E.; Habibi, A. Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst. J. Chem. Sci., 2012, 124(5), 1013-1017.
[http://dx.doi.org/10.1007/s12039-012-0310-9]
[40]
Isambert, N.; Duque, M.M.S.; Plaquevent, J.C.; Génisson, Y.; Rodriguez, J.; Constantieux, T. Multicomponent reactions and ionic liquids: A perfect synergy for eco-compatible heterocyclic synthesis. Chem. Soc. Rev., 2011, 40(3), 1347-1357.
[http://dx.doi.org/10.1039/C0CS00013B] [PMID: 20963207]
[41]
Pogaku, V.; Krishna, V.S.; Sriram, D.; Rangan, K.; Basavoju, S. Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1,2,4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett., 2019, 29(13), 1682-1687.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.026] [PMID: 31047752]
[42]
Noura, S.; Ghorbani, M.; Zolfigol, M.A.; Narimani, M.; Yarie, M.; Oftadeh, M. Biological based (nano) gelatoric ionic liquids (NGILs): Application as catalysts in the synthesis of a substituted pyrazole via vinylogous anomeric based oxidation. J. Mol. Liq., 2018, 271, 778-785.
[http://dx.doi.org/10.1016/j.molliq.2018.09.023]
[43]
Bhosle, M.R.; Khillare, L.D.; Dhumal, S.T.; Mane, R.A. A facile synthesis of 6-amino-2H, 4H-pyrano[2,3-с]pyrazole-5-carbonitriles in deep eutectic solvent. Chin. Chem. Lett., 2016, 27(3), 370-374.
[http://dx.doi.org/10.1016/j.cclet.2015.12.005]
[44]
Zakeri, M.; Nasef, M.M.; Kargaran, T.; Ahmad, A.; Abouzari-Lotf, E.; Asadi, J. Synthesis of pyrano[2,3-c]pyrazoles by ionic liquids under green and eco-safe conditions. Res. Chem. Intermed., 2017, 43(2), 717-728.
[http://dx.doi.org/10.1007/s11164-016-2648-y]
[45]
Sadeghzadeh, S.M. A heteropolyacid-based ionic liquid immobilized onto magnetic fibrous nano-silica as robust and recyclable heterogeneous catalysts for the synthesis of tetrahydrodipyrazolopyridines in water. RSC Advances, 2016, 6(79), 75973-75980.
[http://dx.doi.org/10.1039/C6RA15766A]
[46]
Sadjadi, S.; Heravi, M.M.; Daraie, M. A novel hybrid catalytic system based on immobilization of phosphomolybdic acid on ionic liquid decorated cyclodextrin-nanosponges: Efficient catalyst for the green synthesis of benzochromeno-pyrazole through cascade reaction: Triply green. J. Mol. Liq., 2017, 231, 98-105.
[http://dx.doi.org/10.1016/j.molliq.2017.01.072]
[47]
Mofatehnia, P.; Mohammadi Ziarani, G.; Elhamifar, D.; Badiei, A. A new yolk-shell hollow mesoporous nanocomposite, Fe3O4@SiO2@MCM41-IL/WO42-, as a catalyst in the synthesis of novel pyrazole coumarin compounds. J. Phys. Chem. Solids, 2021, 155, 110097.
[http://dx.doi.org/10.1016/j.jpcs.2021.110097]
[48]
Kalhor, M.; Orouji, Z.; Khalaj, M. 4-Methylpyridinium chloride ionic liquid grafted on Mn@zeolite-Y: Design, fabrication and performance as a novel multi-functional nanocatalyst in the four-component synthesis of pyrazolophthalazine-diones. Microporous Mesoporous Mater., 2022, 329, 111498.
[http://dx.doi.org/10.1016/j.micromeso.2021.111498]
[49]
Ghorbani‐Vaghei, R.; Mahmoodi, J.; Shahriari, A.; Maghbooli, Y. Synthesis of pyrano[2,3‐c]pyrazole derivatives using Fe3O4@SiO2@piperidinium benzene‐1,3‐disulfonate (Fe3O4@SiO2 nanoparticle‐supported IL) as a novel, green and heterogeneous catalyst. Appl. Organomet. Chemal., 2017, 31(12), e3816.
[50]
Rezaei, F.; Amrollahi, M.A.; Khalifeh, R. Bronsted acidic dicationic ionic liquid immobilized on Fe3O4@SiO2 nanoparticles as an efficient and magnetically separable catalyst for the synthesis of bispyrazoles. Chem. Select, 2020, 5, 1760-1766.
[51]
Kargar, S.; Elhamifar, D.; Zarnegaryan, A. Ionic liquid modified graphene oxide supported Mo-complex: A novel, efficient and highly stable catalyst. Surf. Interfaces, 2021, 23, 100946.
[http://dx.doi.org/10.1016/j.surfin.2021.100946]
[52]
Hamidinasab, M.; Bodaghifard, M.A.; Mobinikhaledi, A. Green synthesis of 1 H ‐pyrazolo[1,2‐ b]phthalazine‐2‐carbonitrile derivatives using a new bifunctional base–ionic liquid hybrid magnetic nanocatalyst. Appl. Organomet. Chem., 2020, 34(2), e5386.
[http://dx.doi.org/10.1002/aoc.5386]
[53]
Siddiqui, S.A.; Narkhede, U.C.; Palimkar, S.S.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron, 2005, 61(14), 3539-3546.
[http://dx.doi.org/10.1016/j.tet.2005.01.116]
[54]
Nadaf, R.; Siddiqui, S.A.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. J. Mol. Catal. Chem., 2004, 214(1), 155-160.
[http://dx.doi.org/10.1016/j.molcata.2003.10.064]
[55]
Shaterian, H.R.; Ranjbar, M. An environmental friendly approach for the synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, N-methyl-2-pyrrolidonium hydrogen sulfate, as reusable catalyst. J. Mol. Liq., 2011, 160(1), 40-49.
[http://dx.doi.org/10.1016/j.molliq.2011.02.012]
[56]
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A.; Asgari, Z.; Khakyzadeh, V.; Hasaninejad, A. Design of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as a dual-catalyst for the one-pot multi-component synthesis of 1,2,4,5-tetrasubstituted imidazoles. J. Ind. Eng. Chem., 2013, 19(3), 721-726.
[http://dx.doi.org/10.1016/j.jiec.2012.10.014]
[57]
Akbari, A. Tri(1-butyl-3-methylimidazolium) gadolinium hexachloride, ([bmim]3[GdCl6]), a magnetic ionic liquid as a green salt and reusable catalyst for the synthesis of tetrasubstituted imidazoles. Tetrahedron Lett., 2016, 57(3), 431-434.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.053]
[58]
Safari, J.; Zarnegar, Z. Magnetic nanoparticle supported ionic liquid as novel and effective heterogeneous catalyst for synthesis of substituted imidazoles under ultrasonic irradiation. Monatsh. Chem., 2013, 144(9), 1389-1396.
[http://dx.doi.org/10.1007/s00706-013-1015-6]
[59]
Saffari Jourshari, M.; Mamaghani, M.; Shirini, F.; Tabatabaeian, K.; Rassa, M.; Langari, H. An expedient one-pot synthesis of highly substituted imidazoles using supported ionic liquid-like phase (SILLP) as a green and efficient catalyst and evaluation of their anti-microbial activity. Chin. Chem. Lett., 2013, 24(11), 993-996.
[http://dx.doi.org/10.1016/j.cclet.2013.06.005]
[60]
Zang, H.; Su, Q.; Mo, Y.; Cheng, B.W.; Jun, S. Ionic liquid [EMIM]OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrason. Sonochem., 2010, 17(5), 749-751.
[http://dx.doi.org/10.1016/j.ultsonch.2010.01.015] [PMID: 20194046]
[61]
Khosropour, A.R.; Mohammadpoor-Baltork, I.; Kiani, F. Green, new and efficient tandem oxidation and conversion of aryl alcohols to 2,4,6-triarylpyridines promoted by [HMIm]NO3-[BMIm]BF4 as a binary ionic liquid. C. R. Chim., 2011, 14(5), 441-445.
[http://dx.doi.org/10.1016/j.crci.2010.10.002]
[62]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab. J. Chem., 2017, 10(2), S2754-S2761.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.022]
[63]
Fang, D.; Yang, J.; Jiao, C. Thermal-regulated PEG1000-based ionic liquid/PM for one-pot three-component synthesis of 2,4,5-trisubstituted imidazoles. Catal. Sci. Technol., 2011, 1(2), 243-245.
[http://dx.doi.org/10.1039/c0cy00016g]
[64]
Tan, J.; Rui Li J.; Lin Hu, Y. Novel and efficient multifunctional periodic mesoporous organosilica supported benzotriazolium ionic liquids for reusable synthesis of 2,4,5-trisubstituted imidazoles. J. Saudi Chem. Soc., 2020, 24(10), 777-784.
[http://dx.doi.org/10.1016/j.jscs.2020.08.006]
[65]
Fan, X.; He, Y.; Wang, Y.; Zhang, X.; Wang, J.; Chin, J. An efficient synthesis of 2-substituted benzoxazoles via RuCl3•3H2O catalyzed tandem reactions in ionic liquid. Chin. J. Chem., 2011, 29(4), 773-777.
[http://dx.doi.org/10.1002/cjoc.201190156]
[66]
Yu, X.Q.; Wu, B.; Wen, J.; Zhang, J.; Li, J.; Xiang, Y.Z. One-pot van Leusen synthesis of 4,5-disubstituted oxazoles in ionic liquids. Synlett, 2009, 2009(3), 500-504.
[http://dx.doi.org/10.1055/s-0028-1087547]
[67]
Savanur, H.M.; Kalkhambkar, R.G.; Laali, K.K. Libraries of C-5 substituted imidazoles and oxazoles by sequential van Leusen (VL)-Suzuki, VL-Heck and VL-Sonogashira in imidazolium-ILs with piperidine-appended-IL as base. Eur. J. Org. Chem., 2018, 2018(38), 5285-5288.
[http://dx.doi.org/10.1002/ejoc.201800804]
[68]
Izumisawa, Y.; Togo, H. Preparation of α-bromoketones and thiazoles from ketones with nbs and thioamides in ionic liquids. Green Sustain. Chem, 2011, 1(3), 54-62.
[http://dx.doi.org/10.4236/gsc.2011.13010]
[69]
Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D. Ionic liquid-promoted one-pot synthesis of thiazole–imidazo[2,1-b][1,3,4]thiadiazole hybrids and their antitubercular activity. MedChemComm, 2016, 7(2), 338-344.
[http://dx.doi.org/10.1039/C5MD00346F] [PMID: 30108749]
[70]
Nikpassand, M.; Zare Fekri, L.; Sanagou, S. One-pot synthesis of 2-hydrazonyl-4-phenylthiazoles via [PDBMDIm]Br-catalyzed reaction under solvent-free conditions. Heterocycl. Commun., 2016, 22(4), 243-246.
[http://dx.doi.org/10.1515/hc-2016-0024]
[71]
Jawale, D.V.; Pratap, U.R.; Lingampalle, D.L.; Mane, R.A. Dicationic ionic liquid mediated synthesis of 5-arylidine-2,4-thiazolidinediones. Chin. J. Chem., 2011, 29(5), 942-946.
[http://dx.doi.org/10.1002/cjoc.201190192]
[72]
De Nino, A.; Merino, P.; Algieri, V.; Nardi, M.; Di Gioia, M.L.; Russo, B.; Tallarida, M.A.; Maiuolo, L. Synthesis of 1,5-functionalized 1,2,3-triazoles using ionic liquid/iron(III) chloride as an efficient and reusable homogeneous catalyst. Catalysts, 2018, 8(9), 364.
[http://dx.doi.org/10.3390/catal8090364]
[73]
Phukan, P.; Kulshrestha, A.; Kumar, A. chakraborti, S.; Chattopadhyay, P.; Sarma, D. Cu(II) ionic liquid promoted simple and economical synthesis of 1,4-disubstituted-1,2,3-triazoles with low catalyst loading. J. Chem. Sci., 2021, 133(4), 131.
[http://dx.doi.org/10.1007/s12039-021-01980-9]
[74]
Valizadeh, H.; Gholipour, H.; Mahmoodian, M. Facile synthesis of benzotriazole derivatives using nanoparticles of organosilane-based nitrite ionic liquid immobilized on silica and two room-temperature nitrite ionic liquids. Synth. Commun.,, 2013, 43(20), 2801-2808.
[http://dx.doi.org/10.1080/00397911.2012.744840]
[75]
Shaterian, H.; Kangani, M. Mild Brønsted basic ionic liquids catalyzed three component synthesis of pyrazolo[1,2-a][1,2,4]triazole-1, 3-dione and 2-amino-3-cyano-5,10-dioxo-4-phenyl-5, 10-dihydro-4H-benzo[g]chromene derivatives. Sci. Iran., 2013, 2.
[76]
Koguchi, S.; Izawa, K. Ionic liquid-phase synthesis of 1,5-disubstituted 1,2,3-triazoles. ACS Comb. Sci., 2014, 16(8), 381-385.
[http://dx.doi.org/10.1021/co500065e] [PMID: 25036551]
[77]
Epishina, M.A.; Kulikov, A.S.; Ignat’ev, N.V.; Schulte, M.; Makhova, N.N. Ionic liquid-assisted synthesis of 5-monoand 1,5-disubstituted tetrazoles. Mendeleev Commun., 2011, 21(6), 334-336.
[http://dx.doi.org/10.1016/j.mencom.2011.11.014]
[78]
Li, T.J.; Yao, C.S.; Yu, C.X.; Wang, X.S.; Tu, S.J. Ionic liquid-mediated one-pot synthesis of 5-(trifluoromethyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine derivatives. Synth. Commun., 2012, 42(18), 2728-2738.
[http://dx.doi.org/10.1080/00397911.2011.566460]
[79]
Aali, E.; Gholizadeh, M.; Noroozi-Shad, N. 1-Disulfo-[2,2-bipyridine]-1,1-diium chloride ionic liquid as an efficient catalyst for the green synthesis of 5-substituted 1H-tetrazoles. J. Mol. Struct., 2022, 1247, 131289.
[http://dx.doi.org/10.1016/j.molstruc.2021.131289]
[80]
Nasrollahzadeh, M.; Motahharifar, N.; Nezafat, Z.; Shokouhimehr, M. Chitosan supported 1-phenyl-1H-tetrazole-5-thiol ionic liquid copper(II) complex as an efficient catalyst for the synthesis of arylaminotetrazoles. J. Mol. Liq., 2021, 341, 117398.
[http://dx.doi.org/10.1016/j.molliq.2021.117398]
[81]
Zhang, M.; Zhou, Y.; Li, Y.; Liu, Y.; Wang, X. Green synthesis of pyrano[3,2-c]pyridine derivatives in ionic liquids. Youji Huaxue, 2013, 33(8), 1728-1733.
[http://dx.doi.org/10.6023/cjoc201302019]
[82]
Liu, X.; Hu, Y.; Fu, W. Basic ionic liquid as catalyst in synthesis of dimethyl 4-(2-(2,6-Bis(methoxycarbonyl)pyridine-4-yl)vinyl)pyri-dine-2,6-dicarboxylate. J. Chem., 2018, 2018, 9536838.
[http://dx.doi.org/10.1155/2018/9536838]
[83]
Wu, H.; Wan, Y.; Ye, L.; Lu, L. One-pot synthesis of triarylpyridines in ionic liquid and their catalyzed active on a simple Diels-Alder reaction. Asian J. Chem., 2009, 21(1), 155-164.
[84]
Sobhani, S.; Honarmand, M. 2-Hydroxyethylammonium acetate: A reusable task-specific ionic liquid promoting one-pot, three-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines. C. R. Chim., 2013, 16(3), 279-286.
[http://dx.doi.org/10.1016/j.crci.2012.10.011]
[85]
Poor Heravi, M.R.; Fakhr, F.; Farnazalsadat, F. Ultrasound-promoted synthesis of 2-amino-6-(arylthio)-4-arylpyridine-3,5-dicarbonitriles using ZrOCl2•8H2O/NaNH2 as the catalyst in the ionic liquid [bmim]BF4 at room temperature. Tetrahedron Lett., 2011, 52(50), 6779-6782.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.031]
[86]
Huang, Z.; Hu, Y.; Zhou, Y.; Shi, D. Efficient one-pot three-component synthesis of fused pyridine derivatives in ionic liquid. ACS Comb. Sci., 2011, 13(1), 45-49.
[http://dx.doi.org/10.1021/co1000162] [PMID: 21247124]
[87]
Ghosh, S.; Kundu, D.; Dey, A.; Majee, A.; Hajra, A. Functionalized ionic liquid tagged Cu(II) catalyst: Design, characterization, and application in synthesis of imidazo[1,2-a]pyridine. J. Indian Chem. Soc., 2020, 97(12a), 2533-2539.
[88]
Tamaddon, F.; Azadi, D. Nicotinium methane sulfonate (NMS): A bio-renewable protic ionic liquid and bi-functional catalyst for synthesis of 2-amino-3-cyano pyridines. J. Mol. Liq., 2018, 249, 789-794.
[http://dx.doi.org/10.1016/j.molliq.2017.10.153]
[89]
Rahmani, F.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Novel multicomponent synthesis of pyridine-pyrimidines and their bis-derivatives catalyzed by triazine diphosphonium hydrogen sulfate ionic liquid supported on functionalized nanosilica. ACS Comb. Sci., 2018, 20(1), 19-25.
[http://dx.doi.org/10.1021/acscombsci.7b00079] [PMID: 29215873]
[90]
Veisi, H.; Mohammadi, P.; Ozturk, T. Design, synthesis, characterization, and catalytic properties of g-C3N4-SO3H as an efficient nanosheet ionic liquid for one-pot synthesis of pyrazolo[3,4-b]pyridines and bis(indolyl)methanes. J. Mol. Liq., 2020, 303, 112625.
[http://dx.doi.org/10.1016/j.molliq.2020.112625]
[91]
Shojaei, R.; Zahedifar, M.; Mohammadi, P.; Saidi, K.; Sheibani, H. Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. J. Mol. Struct., 2019, 1178, 401-407.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.052]
[92]
Sobhani, S.; Honarmand, M. Ionic liquid immobilized on γ-Fe2O3 nanoparticles: A new magnetically recyclable heterogeneous catalyst for one-pot three-component synthesis of 2-amino-3,5-dicarbonitrile-6-thio-pyridines. Appl. Catal. A Gen., 2013, 467, 456-462.
[http://dx.doi.org/10.1016/j.apcata.2013.08.006]
[93]
Wan, J.P.; Liu, Y. Recent advances in new multicomponent synthesis of structurally diversified 1,4-dihydropyridines. RSC Advances, 2012, 2(26), 9763-9777.
[http://dx.doi.org/10.1039/c2ra21406g]
[94]
Reddy, B.P.; Rajesh, K.; Vijayakumar, V. Ionic liquid [EMIM]OAc under ultrasonic irradiation towards synthesis of 1,4-DHP’s. J. Chin. Chem. Soc. , 2011, 58(3), 384-388.
[http://dx.doi.org/10.1002/jccs.201190041]
[95]
Sajjadifar, S.; Zolfigol, M.A.; Tami, F. Application of 1-methyl imidazole-based ionic liquid-stabilized silica-coated Fe 3 O 4 as a novel modified magnetic nanocatalyst for the synthesis of pyrano[2,3-d]pyrimidines. J. Chin. Chem. Soc. , 2019, 66(3), 307-315.
[http://dx.doi.org/10.1002/jccs.201800171]
[96]
Abaeezadeh, S.; Elhamifar, D.; Norouzi, M.; Shaker, M. Magnetic nanoporous MCM‐41 supported ionic liquid/palladium complex: An efficient nanocatalyst with high recoverability. Appl. Organomet. Chem., 2019, 33(6), e4862.
[http://dx.doi.org/10.1002/aoc.4862]
[97]
Zulfiqar, F.; Kitazume, T. One-pot aza-Diels–Alder reactions in ionic liquids. Green Chem., 2000, 2(4), 137-139.
[http://dx.doi.org/10.1039/b002671i]
[98]
Loncaric, C.; Manabe, K.; Kobayashi, S. Alkaline salt-catalyzed aza Diels–Alder reactions of Danishefsky’s diene with imines in water under neutral conditions. Chem. Commun., 2003, 5(5), 574-575.
[http://dx.doi.org/10.1039/b300880k] [PMID: 12669831]
[99]
Vo-Thanh, G.; Pégot, B. Ionic liquid promoted aza-Diels-Alder Reaction of Danishefsky’s diene with imines. Synlett, 2005, 9(9), 1409-1412.
[http://dx.doi.org/10.1055/s-2005-869837]
[100]
Moreira, D.N.; Frizzo, C.P.; Longhi, K.; Soares, A.B.; Marzari, M.R.B.; Buriol, L.; Brondani, S.; Zanatta, N.; Bonacorso, H.G.; Martins, M.A.P. Ionic liquid and Lewis acid combination in the synthesis of novel (E)-1-(benzylideneamino)-3-cyano-6-(trifluoromethyl)-1H-2-pyridones. Monatsh. Chem., 2011, 142(12), 1265-1270.
[http://dx.doi.org/10.1007/s00706-011-0563-x]
[101]
Chavan, S.S.; Degani, M.S. Ionic liquid catalyzed 4,6-disubstituted-3-cyano-2-pyridone synthesis under solvent-free conditions. Catal. Lett., 2011, 141(11), 1693-1697.
[http://dx.doi.org/10.1007/s10562-011-0700-5]
[102]
Prola, L.D.T.; Buriol, L.; Frizzo, C.P.; Caleffi, G.S.; Marzari, M.R.B.; Moreira, D.N.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Synthesis of novel quinolines using TsOH/ionic liquid under microwave. J. Braz. Chem. Soc., 2012, 23(9), 1663-1668.
[http://dx.doi.org/10.1590/S0103-50532012005000030]
[103]
Wan, Y.; Yuan, R.; Zhang, F.R.; Pang, L.L.; Ma, R.; Yue, C.H.; Lin, W.; Yin, W.; Bo, R.C.; Wu, H. One-pot synthesis of N2-substituted 2-amino-4-aryl-5,6,7,8-tetrahydroquinoline-3-carbonitrile in basic ionic liquid [bmim]OH. Synth. Commun., 2011, 41(20), 2997-3015.
[http://dx.doi.org/10.1080/00397911.2010.516459]
[104]
Parmar, N.J.; Patel, R.A.; Parmar, B.D.; Talpada, N.P. An efficient domino reaction in ionic liquid: Synthesis and biological evaluation of some pyrano- and thiopyrano-fused heterocycles. Bioorg. Med. Chem. Lett., 2013, 23(6), 1656-1661.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.079] [PMID: 23414843]
[105]
Zare, A.; Abi, F.; Moosavi-Zare, A.R.; Beyzavi, M.H.; Zolfigol, M.A. Synthesis, characterization and application of ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient catalyst for the preparation of hexahydroquinolines. J. Mol. Liq., 2013, 178, 113-121.
[http://dx.doi.org/10.1016/j.molliq.2012.10.045]
[106]
Khaligh, N.G. Synthesis of benzo[g]indeno[2,1-b]quinoline derivatives via four-component and one-pot synthesis in presence of 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate. Chin. J. Catal., 2014, 35(11), 1858-1863.
[http://dx.doi.org/10.1016/S1872-2067(14)60186-8]
[107]
Tashrifi, Z.; Rad-Moghadam, K.; Mehrdad, M. Catalytic performance of a new Brønsted acidic oligo(ionic liquid) in efficient synthesis of pyrano[3,2-c]quinolines and pyrano[2,3-d]pyrimidines. J. Mol. Liq., 2017, 248, 278-285.
[http://dx.doi.org/10.1016/j.molliq.2017.10.065]
[108]
Shirini, F.; Langarudi, M.S.N.; Daneshvar, N.; Mashhadinezhad, M.; Nabinia, N.; Nabinia, N. Preparation of a new DABCO-based ionic liquid and investigation on its application in the synthesis of benzimidazoquinazolinone and pyrimido[4,5-b]-quinoline derivatives. J. Mol. Liq., 2017, 243, 302-312.
[http://dx.doi.org/10.1016/j.molliq.2017.07.080]
[109]
Amarasekara, A.S.; Hasan, M.A. 1-(1-Alkylsulfonic)-3-methylimidazolium chloride Brönsted acidic ionic liquid catalyzed Skraup synthesis of quinolines under microwave heating. Tetrahedron Lett., 2014, 55(22), 3319-3321.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.047]
[110]
Shirini, F.; Akbari-Dadamahaleh, S.; Rahimi-Mohseni, M.; Goli-Jelodar, O. Introduction of a novel Brønsted acidic ionic liquid for the promotion of the synthesis of quinolines. J. Mol. Liq., 2014, 198, 139-148.
[http://dx.doi.org/10.1016/j.molliq.2014.06.005]
[111]
Dadhania, H.; Raval, D.; Dadhania, A. A highly efficient and solvent-free approach for the synthesis of quinolines and fused polycyclic quinolines catalyzed by magnetite nanoparticle-supported acidic ionic liquid. Polycycl. Aromat. Compd., 2021, 41(2), 440-453.
[http://dx.doi.org/10.1080/10406638.2019.1595057]
[112]
Azizi, M.; Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Kia, R. Synthesis of quinolines and pyrido[3,2-g or 2,3-g]quinolines catalyzed by heterogeneous propylphosphonium tetrachloroindate ionic liquid. J. Org. Chem., 2018, 83(23), 14743-14750.
[http://dx.doi.org/10.1021/acs.joc.8b02261] [PMID: 30398359]
[113]
Singh, R.R.K.; Devi, T.J.; Devi, T.J.; Singh, O.M. Choline based deep eutectic solvent mediated friedlander annulation: A sustainable and regiospecific approach to polysubstituted quinoline. Cur. Res. Green Sustain. Chem., 2022, 5, 100272.
[114]
Gholami, A.; Mokhtary, M.; Nikpassand, M. Choline chloride/Oxalic acid (ChCl/Oxa) catalyzed one-pot synthesis of novel azo and sulfonated pyrimido[4,5-b]quinoline derivatives. Dyes Pigments, 2020, 180, 108453.
[http://dx.doi.org/10.1016/j.dyepig.2020.108453]
[115]
Mohammadi, B.; Behbahani, F.K.; Marandi, G.B.; Mirza, B. One-pot synthesis of 3,4-dihydropyrimidin-2(1 H)-ones, thiones and 2-selenoxo DHPMs using 1-butyl-3-methylimidazolium hydrogen sulfate as non-halogenated ionic liquid. Phospho. Sulf. Silic. Relat. Elem., 2021, 196(1), 54-60.
[http://dx.doi.org/10.1080/10426507.2020.1800702]
[116]
Hajipour, A.R.; Khazdooz, L.; Zarei, A. Brønsted acidic ionic liquid-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones under solvent-free conditions. Synth. Commun., 2011, 41(15), 2200-2208.
[http://dx.doi.org/10.1080/00397911.2010.501471]
[117]
Hajipour, A.R.; Ghayeb, Y.; Sheikhan, N.; Ruoho, A.E. Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot threecomponent synthesis of pyrimidinone derivatives via Biginelli-type reaction under solvent-free conditions. Synth. Commun., 2011, 41(15), 2226-2233.
[http://dx.doi.org/10.1080/00397911.2010.501474]
[118]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. A facile approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones using a microwave promoted Biginelli protocol in ionic liquid. J. Chem. Sci., 2012, 124(4), 921-926.
[http://dx.doi.org/10.1007/s12039-012-0278-5]
[119]
Hajipour, A.R.; Seddighi, M. Pyridinium-based Brønsted acidic ionic liquid as a highly efficient catalyst for one-pot synthesis of dihydropyrimidinones. Synth. Commun., 2012, 42(2), 227-235.
[http://dx.doi.org/10.1080/00397911.2010.523488]
[120]
Basiri, A.; Murugaiyah, V.; Osman, H.; Kumar, R.S.; Kia, Y.; Awang, K.B.; Ali, M.A. An expedient, ionic liquid mediated multi-component synthesis of novel piperidone grafted cholinesterase enzymes inhibitors and their molecular modeling study. Eur. J. Med. Chem., 2013, 67, 221-229.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.054] [PMID: 23871902]
[121]
Singh, P.P. Ambika; Chauhan, S.M.S. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones derivatives of acid sensitive aldehydes catalyzed by lanthanum nitrate in ionic liquids. J. Mat. Nano. Sci., 2016, 3(1), 14-16.
[122]
Singh, P.; Kumari, K.; Dubey, M.; Vishvakarma, V.K.; Mehrotra, G.K.; Pandey, N.D.; Chandra, R. Ionic liquid catalyzed synthesis of 7-phenyl-1,4,6,7-tetrahydro-thiazolo[5,4-d]pyrimidine-2,5-diones. C. R. Chim., 2012, 15(6), 504-510.
[http://dx.doi.org/10.1016/j.crci.2012.04.002]
[123]
Suresh, L.; Onkara, P.; Kumar, P.S.V.; Pydisetty, Y.; Chandramouli, G.V.P. Ionic liquid-promoted multicomponent synthesis of fused tetrazolo[1,5-a]pyrimidines as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(16), 4007-4014.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.086] [PMID: 27406797]
[124]
Sudhan, S.P.N.; Ahmed, R.N.; Kiyani, H.; Mansoor, S.S. Ionic liquid 1-butyl-3-methylimidazolium bromide: A green reaction media for the efficient synthesis of 3-methyl-1,4-diphenyl-1,4,5,7-tetrahydro-pyrazolo[3,4- d]pyrimidine-6-ones/thiones using phthalimide- N -sulfonic acid as catalyst. J. Saudi Chem. Soc., 2018, 22(3), 269-278.
[http://dx.doi.org/10.1016/j.jscs.2016.07.001]
[125]
Mamaghani, M.; Shirini, F.; Bassereh, E.; Hossein Nia, R. 1,2-Dimethyl- N -butanesulfonic acid imidazolium hydrogen sulfate as efficient ionic liquid catalyst in the synthesis of indeno fused pyrido[2,3- d]pyrimidines. J. Saudi Chem. Soc., 2016, 20(5), 570-576.
[http://dx.doi.org/10.1016/j.jscs.2014.12.003]
[126]
Nia, R.H.; Mamaghani, M.; Tabatabaeian, K.; Shirini, F.; Rassa, M. A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using Brønsted-acidic ionic liquid as catalyst. Acta Chim. Slov., 2013, 60(4), 889-895.
[PMID: 24362994]
[127]
Shirini, F.; Langarudi, M.S.N.; Daneshvar, N.; Jamasbi, N.; Irankhah-Khanghah, M. Preparation and characterization of [H2-DABCO][ClO4]2 as a new member of DABCO-based ionic liquids for the synthesis of pyrimido[4,5-b]-quinoline and pyrimido[4,5-d]pyrimidine derivatives. J. Mol. Struct., 2018, 1161, 366-382.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.069]
[128]
Jolodar, O.G.; Shirini, F.; Seddighi, M. Efficient synthesis of pyrano[2,3- d]pyrimidinone and pyrido[2,3- d]pyrimidine derivatives in presence of novel basic ionic liquid catalyst. Chin. J. Catal., 2017, 38(7), 1245-1251.
[http://dx.doi.org/10.1016/S1872-2067(17)62827-4]
[129]
Shahnavaz, Z.; Khaligh, N.G.; Zaharani, L.; Johan, M.R.; Hamizi, N.A. The structure elucidation of new ionic liquid and its application for the synthesis of a series of novel triazolo[1,5-a]pyrimidine scaffolds. J. Mol. Struct., 2020, 1219, 128592.
[http://dx.doi.org/10.1016/j.molstruc.2020.128592]
[130]
Chavan, S.S.; Degani, M.S. Ionic liquid mediated one-pot synthesis of 6-aminouracils. Green Chem., 2012, 14(2), 296-299.
[http://dx.doi.org/10.1039/C1GC15940B]
[131]
Zakeri, M.; Nasef, M.M.; Abouzari-Lotf, E. Eco-safe and expeditious approaches for synthesis of quinazoline and pyrimidine-2-amine derivatives using ionic liquids aided with ultrasound or microwave irradiation. J. Mol. Liq., 2014, 199, 267-274.
[http://dx.doi.org/10.1016/j.molliq.2014.09.018]
[132]
Sharma, N.; Kumar Sharma, U.; Kumar, R. Richa; Kumar Sinha, A. Green and recyclable glycine nitrate (GlyNO3) ionic liquid triggered multicomponent Biginelli reaction for the efficient synthesis of dihydropyrimidinones. RSC Advances, 2012, 2(28), 10648-10651.
[http://dx.doi.org/10.1039/c2ra22037g]
[133]
Karthikeyan, P.; Kumar, S.S.; Arunrao, A.S.; Narayan, M.P.; Bhagat, P.R. A novel amino acid functionalized ionic liquid promoted one-pot solvent-free synthesis of 3,4-dihydropyrimidin-2-(1H)-thiones. Res. Chem. Intermed., 2013, 39(3), 1335-1342.
[http://dx.doi.org/10.1007/s11164-012-0689-4]
[134]
Sadjadi, S.; Koohestani, F. Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidinones. J. Mol. Liq., 2020, 319, 114393.
[http://dx.doi.org/10.1016/j.molliq.2020.114393]
[135]
Azizi, N.; Edrisi, M. Preparation of choline sulfate ionic liquid supported on porous graphitic carbon nitride nanosheets by simple surface modification for enhanced catalytic properties. J. Mol. Liq., 2020, 300, 112263.
[http://dx.doi.org/10.1016/j.molliq.2019.112263]
[136]
Ramezanzadeh, F.; Mamaghani, M.; Fallah-Bagher, S.H.; Sheykhan, M. Synthesis and application of imidazolium-based ionic liquid supported on hydroxyapatite encapsulated γ-Fe2O3 nanocatalyst in preparation of pyrido[2,3-d]pyrimidines. Polycycl. Aromat. Compd., 2021, 41(9), 1925-1943.
[http://dx.doi.org/10.1080/10406638.2019.1705360]
[137]
Bakhshali-Dehkordi, R.; Ghasemzadeh, M.A.; Safaei-Ghomi, J. Green synthesis and immobilization of TiO2 NPs using ILs-based on imidazole and investigation of its catalytic activity for the efficient synthesis of pyrimido[4,5-d]pyrimidines. J. Mol. Struct., 2020, 1206, 127698.
[http://dx.doi.org/10.1016/j.molstruc.2020.127698]
[138]
Bakhshali-Dehkordi, R.; Ghasemzadeh, M.A. Fe3O4@TiO2@ILs-ZIF-8 nanocomposite: A robust catalyst for the synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines. J. Mol. Struct., 2021, 1236, 130298.
[http://dx.doi.org/10.1016/j.molstruc.2021.130298]
[139]
Kang, L.Q.; Jin, D.Y.; Cai, Y.Q. Silica-supported ionic liquid Si-[SbSipim][PF6]: An efficient catalyst for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones. Synth. Commun., 2013, 43(14), 1896-1901.
[http://dx.doi.org/10.1080/00397911.2012.678462]
[140]
Li, C.; Lu, X.; Yang, Y.; Yang, S.; Zhang, L. Ionic liquid promoted synthesis of heterocycle-fused pyrimidine-2,4(1H,3H)-diones utilising CO2. Tetrahedron Lett., 2018, 59(25), 2463-2466.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.043]
[141]
Mazloumi, M.; Shirini, F. Synthesis of quinolines, quinazolines and spiro-quinazolines using nanoporous TiO2 containing an ionic liquid bridge as an efficient and reusable catalyst. Polycycl. Aromat. Compd., 2022, 42(5), 2087-2106.
[http://dx.doi.org/10.1080/10406638.2020.1827271]
[142]
Phatake, V.V.; Gokhale, T.A.; Bhanage, B.M. [TBDH][HFIP] ionic liquid catalyzed synthesis of quinazoline-2,4(1H,3H)-diones in the presence of ambient temperature and pressure. J. Mol. Liq., 2022, 345, 117008.
[http://dx.doi.org/10.1016/j.molliq.2021.117008]
[143]
Singh, R.R.; Singh, T.P.; Devi, T.L.; Devi, T.J.; Singh, O.M. Synthesis of 2,4-disubstituted quinazolines promoted by deep eutectic solvent. Curr. Res Green Sustain. Chemis., 2021, 4, 100130.
[http://dx.doi.org/10.1016/j.crgsc.2021.100130]
[144]
Sadeghzadeh, S.M. Ionic liquid immobilized onto fibrous nano-silica: A highly active and reusable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones. Catal. Commun., 2015, 72, 91-96.
[http://dx.doi.org/10.1016/j.catcom.2015.09.016]
[145]
Nale, D.B.; Saigaonkar, S.D.; Bhanage, B.M. An efficient synthesis of quinazoline-2,4(1H,3H)-dione from CO2 and 2-aminobenzonitrile using [Hmim]OH/SiO2 as a base functionalized supported ionic liquid phase catalyst. J. CO2 Utilization 2014, 8, 67-73.
[146]
Weng, S.; Dong, J.; Ma, J.; Bai, J.; Liu, F.; Liu, M. Biocompatible anions-derived ionic liquids a sustainable media for CO2 conversion into quinazoline-2,4(1H,3H)-diones under additive-free conditions. J. CO2 Utilization, 2022, 56, 101841.
[147]
Solgi, S.; Ghorbani-Vaghei, R.; Alavinia, S.; Izadkhah, V. Preparation and application of highly efficient and reusable nanomagnetic catalyst supported with sulfonated-hexamethylenetetramine for synthesis of 2,3-dihydroquinazolin-4(1H)-ones.Polycyclic Aromatic Compounds; Corrected Proof, 2020, pp. 1-10. In Press
[148]
Dutta, A.K.; Gogoi, P.; Borah, R. Triphenylsulfophosphonium chlorometallates as efficient heterogeneous catalysts for the three-component synthesis of 2,3-dihydro-1,2,3-trisubstituted-1H-naphth[1,2-e][1,3]oxazines. Polyhedron, 2017, 123, 184-191.
[http://dx.doi.org/10.1016/j.poly.2016.11.038]
[149]
Mohebat, R.; Yazdani-Elah-Abadi, A. Caffeine catalyzed green synthesis of novel benzo[ a][1,3]oxazino[6,5- c]phenazines via a one-pot multi-component sequential protocol in a basic ionic liquid. Chin. Chem. Lett., 2017, 28(6), 1340-1344.
[http://dx.doi.org/10.1016/j.cclet.2017.01.024]
[150]
Waseem, M.A. Shireen; Srivastava, A.; Srivastava, A.; Rahila; Siddiqui, I.R. [bmIm]OH: an efficient basic catalyst for the synthesis of 4H-benzo[d][1,3-]oxazin-4-one derivatives in solvent-free conditions. Tetrahedron Lett., 2014, 55(44), 6072-6076.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.055]
[151]
Soleimani, E.; Khodaei, M.M.; Koshvandi, A.T.K. Three-component, one-pot synthesis of benzo[b][1,4]oxazines in ionic liquid 1-butyl-3-methylimidazolium bromide. Synth. Commun., 2012, 42(9), 1367-1371.
[http://dx.doi.org/10.1080/00397911.2010.540056]
[152]
Dong, F.; Li-fang, Y.; Jin-ming, Y. Synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-one catalyzed by pyridinium-based ionic liquid. Res. Chem. Intermed., 2013, 39(6), 2505-2512.
[http://dx.doi.org/10.1007/s11164-012-0776-6]
[153]
Jarikote, D.V.; Siddiqui, S.A.; Rajagopal, R.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted synthesis of 1,5-benzodiazepine derivatives under ambient conditions. Tet. Lett, 2003, 44, 1835-1838.
[154]
Arya, K.; Prabhakar, B. Ionic liquid confined zeolite system: An approach towards water mediated room temperature synthesis of spiro[pyrazolo[3,4-e]benzothiazepines Green Chem., 2013, 15(10), 2885-2894.
[http://dx.doi.org/10.1039/c3gc40553b]
[155]
Kurane, R.; Jadhav, J.; Khanapure, S.; Salunkhe, R.; Rashinkar, G. Synergistic catalysis by an aerogel supported ionic liquid phase (ASILP) in the synthesis of 1,5-benzodiazepines. Green Chem., 2013, 15(7), 1849-1856.
[http://dx.doi.org/10.1039/c3gc40592c]
[156]
Nejadshafiee, V.; Naeimi, H. Molecular ionic liquid supported on mesoporous silica nanoparticles-imprinted iron metal: A recyclable heterogeneous catalyst for one-pot, three-component synthesis of a library of benzodiazepines. Curr. Org. Synth., 2019, 16(1), 136-144.
[http://dx.doi.org/10.2174/1570179415666181031123504] [PMID: 31965927]
[157]
Naeimi, H.; Foroughi, H. Efficient, environmentally benign, one-pot procedure for the synthesis of 1,5-benzodiazepine derivatives using N-methyl-2-pyrrolidonium hydrogen sulphate as an ionic liquid catalyst under solvent-free conditions. Chin. J. Catal., 2015, 36(5), 734-741.
[http://dx.doi.org/10.1016/S1872-2067(14)60304-1]
[158]
Jadhav, A.H.; Chinnappan, A.; Patil, R.H.; Kostjuk, S.V.; Kim, H. Short oligo ethylene glycolic tailor-made ionic liquids as highly efficient and reusable catalyst for one-pot synthesis of 1,5-benzodiazepine derivatives under solvent free condition. Chem. Eng. J., 2014, 240, 228-234.
[http://dx.doi.org/10.1016/j.cej.2013.11.046]
[159]
Gavaskar, D.; Suresh Babu, A.R.; Raghunathan, R.; Dharani, M.; Balasubramanian, S. An expedient sequential one-pot four component synthesis of novel steroidal spiro-pyrrolidine heterocycles in ionic liquid. Steroids, 2016, 109, 1-6.
[http://dx.doi.org/10.1016/j.steroids.2016.02.010] [PMID: 26930574]
[160]
Elyasi, Z.; Ghomi, J.S.; Najafi, G.R. Ultrasound-Engineered fabrication of immobilized molybdenum complex on Cross-Linked poly (Ionic Liquid) as a new acidic catalyst for the regioselective synthesis of pharmaceutical polysubstituted spiro compounds. Ultrason. Sonochem., 2021, 75, 105614.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105614] [PMID: 34111724]
[161]
Gavaskar, D.; Suresh Babu, A.R.; Raghunathan, R.; Dharani, M.; Balasubramanian, S. Ionic liquid accelerated multicomponent sequential assembly of ferrocene grafted spiro-heterocycles. J. Organomet. Chem., 2014, 768(1), 128-135.
[http://dx.doi.org/10.1016/j.jorganchem.2014.06.015]
[162]
Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Dege, N. A facile ionic liquid-accelerated, four-component cascade reaction protocol for the regioselective synthesis of biologically interesting ferrocene engrafted spiropyrrolidine hybrid heterocycles. J. King Saud Univ. Sci., 2020, 32(4), 2500-2504.
[http://dx.doi.org/10.1016/j.jksus.2020.04.007]
[163]
Shinde, V.B.; Mhaldar, P.M.; Chhowala, T.N.; Mirzaei, M.; Ghotekar, S.K.; Rashinkar, G.S.; Pore, D.M. An efficient Brønsted acid ionic liquid catalyzed synthesis of novel spiro1,2,4-triazolidine-5-thiones and their photoluminescence study. J. Mol. Struct., 2022, 1249, 131528.
[http://dx.doi.org/10.1016/j.molstruc.2021.131528]
[164]
Feng, B.B.; Jin, R.Z.; Zhang, M.M.; Wang, X.S. Green synthesis of spiro[indoline‐3,4′‐pyrazolo[3,4‐b][1,6] naphthyridine]‐2,5′-(1′H)‐diones catalyzed by TsOH in ionic liquids. J. Het. Chem., 2016, 53(5), 1578-1583.
[http://dx.doi.org/10.1002/jhet.2466]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy