Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

The Implication of Fragment-centric Mapping Strategy to Explore the First Selective Inhibitor Against Target Protein

Author(s): Jia-Hui Zhao, Shao-Long Zhang, Xia Zhou, Xian-Mei Meng, Ting Wang* and Xie-Huang Sheng*

Volume 21, Issue 11, 2024

Published on: 07 July, 2023

Page: [2093 - 2101] Pages: 9

DOI: 10.2174/1570180820666230505124327

Price: $65

Abstract

Introduction: Identification of the first selective inhibitor, also called “hit molecules, " is crucial for developing drugs against a protein target. However, the crystal structures of protein-ligand complexes are usually not resolved in time due to the process's time-consuming and costly nature. However, it does not prevent scientists from understanding the binding modes’ urgent advantages and drawbacks of protein-ligand interaction to guide the optimization of hit molecules.

Methods: Here, we have developed a pocket-centric computational strategy to facilitate a comprehensive understanding of the hit molecules against the protein target.

Results: The results show that the pocket-centered mapping method not only allows for accurate prediction of the native docking pose and in-depth analysis of the binding mode but also has the potential of rapidly identifying partially unoccupied, unutilized, but targetable pockets to afford optimized hit molecules. We tested the strategy on the first selective inhibitor, epigallocatechin gallate (EGCG), against human arylacetamide deacetylase (AADAC). Molecular dynamics simulation and MM/PBSA binding energy calculation are used to verify the efficacy of the strategy.

Conclusion: The results show that the pocket-centered mapping method not only allows for accurate prediction of the native docking pose and in-depth analysis of the binding mode but also has the potential of rapidly identifying partially unoccupied, unutilized, but targetable pockets to afford optimized hit molecules.

[1]
Zhu, T.; Cao, S.; Su, P.C.; Patel, R.; Shah, D.; Chokshi, H.B.; Szukala, R.; Johnson, M.E.; Hevener, K.E. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J. Med. Chem., 2013, 56(17), 6560-6572.
[http://dx.doi.org/10.1021/jm301916b] [PMID: 23688234]
[2]
Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Pharmacol., 2011, 162(6), 1239-1249.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[3]
Goodnow, R.A., Jr Hit and lead identification: Integrated technology-based approaches. Drug Discov. Today. Technol., 2006, 3(4), 367-375.
[http://dx.doi.org/10.1016/j.ddtec.2006.12.009]
[4]
Gashaw, I.; Ellinghaus, P.; Sommer, A.; Asadullah, K. What makes a good drug target? Drug Discov. Today, 2012, 17(Suppl.), S24-S30.
[http://dx.doi.org/10.1016/j.drudis.2011.12.008] [PMID: 22155646]
[5]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[6]
Pei, J.; Yin, N.; Ma, X.; Lai, L. Systems biology brings new dimensions for structure-based drug design. J. Am. Chem. Soc., 2014, 136(33), 11556-11565.
[http://dx.doi.org/10.1021/ja504810z] [PMID: 25061983]
[7]
Andrusier, N.; Mashiach, E.; Nussinov, R.; Wolfson, H.J. Principles of flexible protein-protein docking. Proteins, 2008, 73(2), 271-289.
[http://dx.doi.org/10.1002/prot.22170] [PMID: 18655061]
[8]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[9]
Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156.
[http://dx.doi.org/10.1002/jcc.23905] [PMID: 25914306]
[10]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[11]
Cryan, S.; Sivadas, N.; Garciacontreras, L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv. Drug Deliv. Rev., 2007, 59(11), 1133-1151.
[http://dx.doi.org/10.1016/j.addr.2007.08.023] [PMID: 17900750]
[12]
Fukami, T.; Kariya, M.; Kurokawa, T.; Iida, A.; Nakajima, M. Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases. Eur. J. Pharm. Sci., 2015, 78, 47-53.
[http://dx.doi.org/10.1016/j.ejps.2015.07.006] [PMID: 26164127]
[13]
Shimizu, M.; Fukami, T.; Ito, Y.; Kurokawa, T.; Kariya, M.; Nakajima, M.; Yokoi, T. Indiplon is hydrolyzed by arylacetamide deacetylase in human liver. Drug Metab. Dispos., 2014, 42(4), 751-758.
[http://dx.doi.org/10.1124/dmd.113.056184] [PMID: 24464802]
[14]
Jiang, J.; Chen, X.; Zhong, D. Arylacetamide Deacetylase Is Involved in Vicagrel Bioactivation in Humans. Front. Pharmacol., 2017, 8, 846.
[http://dx.doi.org/10.3389/fphar.2017.00846] [PMID: 29209217]
[15]
Watanabe, A.; Fukami, T.; Nakajima, M.; Takamiya, M.; Aoki, Y.; Yokoi, T. Human arylacetamide deacetylase is a principal enzyme in flutamide hydrolysis. Drug Metab. Dispos., 2009, 37(7), 1513-1520.
[http://dx.doi.org/10.1124/dmd.109.026567] [PMID: 19339378]
[16]
Kobayashi, Y.; Fukami, T.; Higuchi, R.; Nakajima, M.; Yokoi, T. Metabolic activation by human arylacetamide deacetylase, CYP2E1, and CYP1A2 causes phenacetin-induced methemoglobinemia. Biochem. Pharmacol., 2012, 84(9), 1196-1206.
[http://dx.doi.org/10.1016/j.bcp.2012.08.015] [PMID: 22940574]
[17]
Fukami, T.; Iida, A.; Konishi, K.; Nakajima, M. Human arylacetamide deacetylase hydrolyzes ketoconazole to trigger hepatocellular toxicity. Biochem. Pharmacol., 2016, 116, 153-161.
[http://dx.doi.org/10.1016/j.bcp.2016.07.007] [PMID: 27422753]
[18]
Shimizu, M.; Fukami, T.; Nakajima, M.; Yokoi, T. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab. Dispos., 2014, 42(7), 1103-1109.
[http://dx.doi.org/10.1124/dmd.114.056994] [PMID: 24751575]
[19]
Watanabe, A.; Fukami, T.; Takahashi, S.; Kobayashi, Y.; Nakagawa, N.; Nakajima, M.; Yokoi, T. Arylacetamide deacetylase is a determinant enzyme for the difference in hydrolase activities of phenacetin and acetaminophen. Drug Metab. Dispos., 2010, 38(9), 1532-1537.
[http://dx.doi.org/10.1124/dmd.110.033720] [PMID: 20542992]
[20]
Yasuda, K.; Watanabe, K.; Fukami, T.; Nakashima, S.; Ikushiro, S.; Nakajima, M.; Sakaki, T. Epicatechin gallate and epigallocatechin gallate are potent inhibitors of human arylacetamide deacetylase. Drug Metab. Pharmacokinet., 2021, 39, 100397.
[http://dx.doi.org/10.1016/j.dmpk.2021.100397] [PMID: 34171773]
[21]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[22]
Laskowski, R.; Rullmann, J.A.C.; MacArthur, M.; Kaptein, R.; Thornton, J. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR, 1996, 8(4), 477-486.
[http://dx.doi.org/10.1007/BF00228148] [PMID: 9008363]
[23]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. Procheck: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[24]
Bencharit, S.; Edwards, C.C.; Morton, C.L.; Howard-Williams, E.L.; Kuhn, P.; Potter, P.M.; Redinbo, M.R. Multisite promiscuity in the processing of endogenous substrates by human carboxylesterase 1. J. Mol. Biol., 2006, 363(1), 201-214.
[http://dx.doi.org/10.1016/j.jmb.2006.08.025] [PMID: 16962139]
[25]
Cheng, A.C.; Coleman, R.G.; Smyth, K.T.; Cao, Q.; Soulard, P.; Caffrey, D.R.; Salzberg, A.C.; Huang, E.S. Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol., 2007, 25(1), 71-75.
[http://dx.doi.org/10.1038/nbt1273] [PMID: 17211405]
[26]
Boström, J.; Norrby, P.O.; Liljefors, T. Conformational energy penalties of protein-bound ligands. J. Comput. Aided Mol. Des., 1998, 12(4), 383-396.
[http://dx.doi.org/10.1023/A:1008007507641] [PMID: 9777496]
[27]
Hou, X.; Rooklin, D.; Yang, D.; Liang, X.; Li, K.; Lu, J.; Wang, C.; Xiao, P.; Zhang, Y.; Sun, J.; Fang, H. Computational Strategy for Bound State Structure Prediction in Structure-Based Virtual Screening: A Case Study of Protein Tyrosine Phosphatase Receptor Type O Inhibitors. J. Chem. Inf. Model., 2018, 58(11), 2331-2342.
[http://dx.doi.org/10.1021/acs.jcim.8b00548] [PMID: 30299094]
[28]
Torner, J.M.; Yang, Y.; Rooklin, D.; Zhang, Y.; Arora, P.S. Identification of secondary binding sites on protein surfaces for rational elaboration of synthetic protein mimics. ACS Chem. Biol., 2021, 16(7), 1179-1183.
[http://dx.doi.org/10.1021/acschembio.1c00418] [PMID: 34228913]
[29]
Rooklin, D.; Modell, A.E.; Li, H.; Berdan, V.; Arora, P.S.; Zhang, Y. Targeting Unoccupied Surfaces on Protein-Protein Interfaces. J. Am. Chem. Soc., 2017, 139(44), 15560-15563.
[http://dx.doi.org/10.1021/jacs.7b05960] [PMID: 28759230]
[30]
Hou, X.; Sun, J.; Ge, L.; Liang, X.; Li, K.; Zhang, Y.; Fang, H. Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets. Eur. J. Med. Chem., 2020, 190, 112131.
[http://dx.doi.org/10.1016/j.ejmech.2020.112131] [PMID: 32078861]
[31]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[32]
Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res., 2004, 32(Web Server), W665-W667.
[http://dx.doi.org/10.1093/nar/gkh381] [PMID: 15215472]
[33]
Frisch, M.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B. Gaussian 09, revision B. 01; Gaussian, Inc.: Wallingford, CT, 2010.
[34]
Case, D.A.a. AMBER 20, University of California, San Francisco. 2020. Available From: http://ambermd.org/
[35]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[36]
Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem., 1993, 97(40), 10269-10280.
[http://dx.doi.org/10.1021/j100142a004]
[37]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[38]
Roe, D.R.; Cheatham, T.E., III PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[39]
Shao, J.; Tanner, S.W.; Thompson, N.; Cheatham, T.E. Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J. Chem. Theory Comput., 2007, 3(6), 2312-2334.
[http://dx.doi.org/10.1021/ct700119m] [PMID: 26636222]
[40]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[41]
Gohlke, H.; Kiel, C.; Case, D.A. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J. Mol. Biol., 2003, 330(4), 891-913.
[http://dx.doi.org/10.1016/S0022-2836(03)00610-7] [PMID: 12850155]
[42]
Xu, B.; Shen, H.; Zhu, X.; Li, G. Fast and accurate computation schemes for evaluating vibrational entropy of proteins. J. Comput. Chem., 2011, 32(15), 3188-3193.
[http://dx.doi.org/10.1002/jcc.21900] [PMID: 21953554]
[43]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[44]
Rooklin, D.; Wang, C.; Katigbak, J.; Arora, P.S.; Zhang, Y. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces. J. Chem. Inf. Model., 2015, 55(8), 1585-1599.
[http://dx.doi.org/10.1021/acs.jcim.5b00103] [PMID: 26225450]
[45]
Katigbak, J.; Li, H.; Rooklin, D.; Zhang, Y. AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters. J. Chem. Inf. Model., 2020, 60(3), 1494-1508.
[http://dx.doi.org/10.1021/acs.jcim.9b00652] [PMID: 31995373]

© 2025 Bentham Science Publishers | Privacy Policy