Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis and Cytotoxic Studies of Novel 4-anilinoquinazoline Derivatives of Potential Agents for Non-small-cell Lung Cancer

Author(s): Deepak K. Dwivedi*, Ram Kishore Agrawal, Sanyog Jain and Kaushik Kuche

Volume 21, Issue 10, 2024

Published on: 06 June, 2023

Page: [1801 - 1818] Pages: 18

DOI: 10.2174/1570180820666230505123802

Price: $65

Abstract

Background: The pre-existing EGFR (Epidermal Growth Factor Receptors) inhibitors (Gefitinib, Afatinib and osimertinib) show significant resistance after one year of EGFR therapy in NSCLC (Non-small cell lung cancer) patients. With the aim of overcoming the resistance problem associated with a current therapeutic regimen, there is an imperative need for the development of novel 4- anilinoquinazoline derivatives that are specifically designed for resistance cases of NSCLC patients.

Objective: We designed and synthesized eighteen 4-anilinoquinazolines derivatives as a novel scaffold and evaluated their anti-cancer potential against different NSCLC cell lines.

Methods: Molecular docking study of designed compounds were performed on Glide v5.8 (Schrodinger, LLC, New York, NY). Synthesis of 4-anilinoquinazoline derivatives were performed, based on the docking score and was characterized by various spectroscopic methods. Further, in vitro anti-cancer activity was performed using MTT assay on different cancer cell lines.

Results: Molecular docking analysis [EGFRT790M mutant (4I22)] indicated that most of these analogs (6g, 6j, 6l, 6m and 6o) were found to be higher docking scores than gefitinib. Furthermore, spectral analysis revealed that the designed compounds were synthesized successfully. The compounds 6a, 6d, 6g, 6i, 6j and 6m were identified as the potent inhibitors against (A431, H1975, A549) cell lines as compared to reference standard gefitinib. Excitingly, compound 6j (with IC50 values of 4.88 ± 0.13, 4.38 ± 0.08 & 11.97 ± 0.14 μM) was identified as the most potent inhibitor for (A431, H1975, A549) cell lines.

Conclusion: The study suggested that the six derivatives showed significant therapeutic potential against different NSCLC cell lines as compared to reference standard gefitinib.

[1]
Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers, 2015, 1(1), 15009.
[http://dx.doi.org/10.1038/nrdp.2015.9] [PMID: 27188576]
[2]
Tsiambas, E.; Lefas, A.Y.; Georgiannos, S.N.; Ragos, V.; Fotiades, P.P.; Grapsa, D.; Stamatelopoulos, A.; Kavantzas, N.; Patsouris, E.; Syrigos, K. EGFR gene deregulation mechanisms in lung adenocarcinoma: A molecular review. Pathol. Res. Pract., 2016, 212(8), 672-677.
[http://dx.doi.org/10.1016/j.prp.2016.06.005] [PMID: 27461822]
[3]
Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med., 2008, 358(11), 1160-1174.
[http://dx.doi.org/10.1056/NEJMra0707704] [PMID: 18337605]
[4]
Luo, H.; Yang, S.; Cai, Y.; Peng, Z.; Liu, T. Synthesis and biological evaluation of novel 6-chloro-quinazolin derivatives as potential antitumor agents. Eur. J. Med. Chem., 2014, 84, 746-752.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.053] [PMID: 25064351]
[5]
Karnakar, K.; Shankar, J.; Murthy, S.N.; Ramesh, K.; Nageswar, Y.V.D. An efficient protocol for the synthesis of 2-phenylquinazolines catalyzed by Ceric Ammonium Nitrate (CAN). Synlett, 2011, 42(37), 1089-1096.
[6]
Al-suwaidan, I.A.; Alanazi, A.M.; Abdel-aziz, A.A.; Mohamed, M.A.; El-azab, A.S. Design, synthesis and biological evaluation of 2-mercapto-3-phenethylquinazoline bearing anilide fragments as potential antitumor agents: Molecular docking study. Bioorg. Med. Chem. Lett., 2013, 23(13), 3935-3941.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.056]
[7]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[8]
Rusnak, D.W.; Lackey, K.; Affleck, K.; Wood, E.R.; Alligood, K.J.; Rhodes, N.; Keith, B.R.; Murray, D.M.; Knight, W.B.; Mullin, R.J.; Gilmer, T.M. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther., 2001, 1(2), 85-94.
[PMID: 12467226]
[9]
Engelman, J.A.; Zejnullahu, K.; Gale, C.M.; Lifshits, E.; Gonzales, A.J.; Shimamura, T.; Zhao, F.; Vincent, P.W.; Naumov, G.N.; Bradner, J.E.; Althaus, I.W.; Gandhi, L.; Shapiro, G.I.; Nelson, J.M.; Heymach, J.V.; Meyerson, M.; Wong, K.K.; Jänne, P.A. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res., 2007, 67(24), 11924-11932.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1885] [PMID: 18089823]
[10]
Gonzales, A.J.; Hook, K.E.; Althaus, I.W.; Ellis, P.A.; Trachet, E.; Delaney, A.M.; Harvey, P.J.; Ellis, T.A.; Amato, D.M.; Nelson, J.M.; Fry, D.W.; Zhu, T.; Loi, C.M.; Fakhoury, S.A.; Schlosser, K.M.; Sexton, K.E.; Winters, R.T.; Reed, J.E.; Bridges, A.J.; Lettiere, D.J.; Baker, D.A.; Yang, J.; Lee, H.T.; Tecle, H.; Vincent, P.W. Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol. Cancer Ther., 2008, 7(7), 1880-1889.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2232] [PMID: 18606718]
[11]
Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L.R.; Padera, R.F.; Shapiro, G.I.; Baum, A.; Himmelsbach, F.; Rettig, W.J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K-K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 2008, 27(34), 4702-4711.
[http://dx.doi.org/10.1038/onc.2008.109] [PMID: 18408761]
[12]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[13]
Walter, A.O.; Sjin, R.T.T.; Haringsma, H.J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.; Petter, R.C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A.D.; Harding, T.C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov., 2013, 3(12), 1404-1415.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314] [PMID: 24065731]
[14]
Keating, G.M.; Santoro, A. Sorafenib: A review of its use in advanced hepatocellular carcinoma. Drugs, 2009, 69(2), 223-240.
[http://dx.doi.org/10.2165/00003495-200969020-00006] [PMID: 19228077]
[15]
Jänne, P.A.; Yang, J.C.H.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; Haggstrom, D.; Felip, E.; Kim, J.H.; Frewer, P.; Cantarini, M.; Brown, K.H.; Dickinson, P.A.; Ghiorghiu, S.; Ranson, M. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(18), 1689-1699.
[http://dx.doi.org/10.1056/NEJMoa1411817] [PMID: 25923549]
[16]
Zhang, J.; Gold, K.A.; Kim, E. Sorafenib in non-small cell lung cancer. Expert Opin. Investig. Drugs, 2012, 21(9), 1417-1426.
[http://dx.doi.org/10.1517/13543784.2012.699039] [PMID: 22725255]
[17]
Pécuchet, N.; Lebbe, C.; Mir, O.; Billemont, B.; Blanchet, B.; Franck, N.; Viguier, M.; Coriat, R.; Tod, M.; Avril, M-F.; Goldwasser, F. Sorafenib in advanced melanoma: A critical role for pharmacokinetics? Br. J. Cancer, 2012, 107(3), 455-461.
[http://dx.doi.org/10.1038/bjc.2012.287] [PMID: 22767146]
[18]
van Hoppe, S.; Jamalpoor, A.; Rood, J.J.M.; Wagenaar, E.; Sparidans, R.W.; Beijnen, J.H. Brain accumulation of osimertinib and its active metabolite AZ5104 is restricted by ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Pharmacol. Res., 2019, 146, 104297.
[http://dx.doi.org/10.1016/j.phrs.2019.104297]
[19]
Lima, L.M.; Barreiro, E.J. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem., 2005, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540]
[20]
Yun, C.; Boggon, T.J.; Li, Y.; Woo, M.S.; Greulich, H.; Meyerson, M. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: Mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell, 2007, (3), 217-227.
[21]
Allmeyer, S.U.T.R.; Obrusin, E.L.M.D. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl. Acad. Sci., 1998, 95(20), 12022-12027.
[22]
Kraege, S.; Stefan, K.; Juvale, K.; Ross, T.; Willmes, T.; Wiese, M. The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of Breast Cancer Resistance Protein (Bcrp/Abcg2). Eur. J. Med. Chem., 2016, 117, 212-229.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.067]
[23]
El-Ansary, A.K.; Kamal, A.M.; Al-Ghorafi, M.A. Synthesis and evaluation of 4-anilinoquinazoline bioisosteres as potential anti-breast cancer agents. Eur. J. Med. Chem., 2014, 86, 202-210.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.056] [PMID: 25151582]
[24]
Yu, H.; Li, Y.; Ge, Y.; Song, Z.; Wang, C.; Huang, S.; Jin, Y.; Han, X.; Zhen, Y.; Liu, K.; Zhou, Y.; Ma, X. Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines. Eur. J. Med. Chem., 2016, 110, 195-203.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.045] [PMID: 26829280]
[25]
Juvale, K.; Gallus, J.; Wiese, M. Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Bioorganic Med. Chem., 2013, 21(24), 7858-7873.
[http://dx.doi.org/10.1016/j.bmc.2013.10.007]
[26]
Zheng, Y.G.; Su, J.; Gao, C.Y.; Jiang, P.; An, L.; Xue, Y.S.; Gao, J.; Liu, Y. Design, synthesis, and biological evaluation of novel 4-anilinoquinazoline derivatives bearing amino acid moiety as potential EGFR kinase inhibitors. Eur. J. Med. Chem., 2017, 130, 393-405.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.061] [PMID: 28279846]
[27]
Kumar, Y.; Kuche, K.; Swami, R.; Katiyar, S.S.; Chaudhari, D.; Katare, P.B. Exploring the potential of novel pH sensitive lipoplexes for tumor targeted gene delivery with reduced toxicity. Int. J. Pharm., 2020, 573, 118889.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118889] [PMID: 31765778]
[28]
Swami, R.; Kumar, Y.; Chaudhari, D.; Katiyar, S.S.; Kuche, K.; Katare, P.B. pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. Mater. Sci. Eng. C. Mater. Biol. Appl., 2021, 120, 111664.
[http://dx.doi.org/10.1016/j.msec.2020.111664] [PMID: 33545830]
[29]
Rossi, K.A.; Weigelt, C.A.; Nayeem, A.; Krystek, S.R., Jr Loopholes and missing links in protein modeling. Protein Sci., 2007, 16(9), 1999-2012.
[http://dx.doi.org/10.1110/ps.072887807] [PMID: 17660258]
[30]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T. Glide: A new approach for rapid, accurate docking and scoring. 1.method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[31]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein - ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.

© 2025 Bentham Science Publishers | Privacy Policy