Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Improving Oral Bioavailability of Herbal Drugs: A Focused Review of Self-Emulsifying Drug Delivery System for Colon Cancer

Author(s): Khushboo Bhardwaj, Arun Sharma, Rajan Kumar, Varnit Tyagi and Rajesh Kumar*

Volume 21, Issue 3, 2024

Published on: 30 May, 2023

Page: [389 - 402] Pages: 14

DOI: 10.2174/1567201820666230505113108

Price: $65

Abstract

One of the most frequent malignancies in the world is colon cancer. Both men and women are affected in the same way. The colon, which makes up the last part of the digestive system and is where water and minerals from food waste are absorbed, is vulnerable to cancer. The most suitable technique of drug administration is oral administration. Aqueous solubility is low in more than 40% of novel chemical entities, resulting in poor oral drug administration. In the formulation of oral medications, low inconsistent bioavailability is a major challenge. Increasing medication bioavailability is one of the most difficult aspects of pharmacological development. Self-nano-emulsifying drug delivery systems (SNEDDS) have been a potential platform for biopharmaceutical classification system class II and IV drugs for oral delivery. Enhanced bioavailability and solubility, control of toxicity, pharmacological effects, improved stability, improved tissue macrophage dispersion, prolonged delivery, and resistance to physical and chemical degradation are just a few benefits of SNEDDS for herbal drugs. To increase activity and address problems associated with herbal drugs, nanosized modern drug delivery technologies are expected to have a promising future. Improved patient compliance, fewer problems with liquid SNEDDS filled in capsules, and enhanced stability SNEDDS are all benefits of converting liquid SNEDDS to solid oral dosage forms or solid SNEDDS. SNEDDS differs from previous solubility augmentation methods due to its biodegradable components, simplicity of large-scale production, and range of drug-targeting possibilities.

[1]
Kipp, J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1-2), 109-122.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.019] [PMID: 15454302]
[2]
Lukyanov, A.N.; Torchilin, V.P. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev., 2004, 56(9), 1273-1289.
[http://dx.doi.org/10.1016/j.addr.2003.12.004] [PMID: 15109769]
[3]
Benet, L.Z. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J. Pharm. Sci., 2013, 102(1), 34-42.
[http://dx.doi.org/10.1002/jps.23359] [PMID: 23147500]
[4]
Patel, A. Benign vs. malignant tumors. JAMA Oncol., 2020, 6(9), 1488.
[http://dx.doi.org/10.1001/jamaoncol.2020.2592] [PMID: 32729930]
[5]
DeSantis, C.; Naishadham, D.; Jemal, A. Cancer statistics for African Americans, 2013. CA Cancer J. Clin., 2013, 63(3), 151-166.
[http://dx.doi.org/10.3322/caac.21173] [PMID: 23386565]
[6]
Hani, U.; Honnavalli, Y.K.; Begum, M.Y.; Yasmin, S.; Osmani, R.A.M.; Ansari, M.Y. Colorectal cancer: A comprehensive review based on the novel drug delivery systems approach and its management. J. Drug Deliv. Sci. Technol., 2021, 63, 102532.
[http://dx.doi.org/10.1016/j.jddst.2021.102532]
[7]
Wong, K.E.; Ngai, S.C.; Chan, K.G.; Lee, L.H.; Goh, B.H.; Chuah, L.H. Curcumin nanoformulations for colorectal cancer: A review. Front. Pharmacol., 2019, 10, 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[8]
Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(12), 713-732.
[http://dx.doi.org/10.1038/s41575-019-0189-8] [PMID: 31455888]
[9]
Murphy, N.; Moreno, V.; Hughes, D.J.; Vodicka, L.; Vodicka, P.; Aglago, E.K.; Gunter, M.J.; Jenab, M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med., 2019, 69, 2-9.
[http://dx.doi.org/10.1016/j.mam.2019.06.005] [PMID: 31233770]
[10]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[11]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[12]
Schmoll, H.J.; Van Cutsem, E.; Stein, A.; Valentini, V.; Glimelius, B.; Haustermans, K.; Nordlinger, B.; van de Velde, C.J.; Balmana, J.; Regula, J.; Nagtegaal, I.D.; Beets-Tan, R.G.; Arnold, D.; Ciardiello, F.; Hoff, P.; Kerr, D.; Köhne, C.H.; Labianca, R.; Price, T.; Scheithauer, W.; Sobrero, A.; Tabernero, J.; Aderka, D.; Barroso, S.; Bodoky, G.; Douillard, J.Y.; El Ghazaly, H.; Gallardo, J.; Garin, A.; Glynne-Jones, R.; Jordan, K.; Meshcheryakov, A.; Papamichail, D.; Pfeiffer, P.; Souglakos, I.; Turhal, S.; Cervantes, A. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann. Oncol., 2012, 23(10), 2479-2516.
[http://dx.doi.org/10.1093/annonc/mds236] [PMID: 23012255]
[13]
Xu, R.; Zhou, B.; Fung, P.C.; Li, X. Recent advances in the treatment of colon cancer. Histol. Histopathol., 2006, 21(8), 867-872.
[PMID: 16691539]
[14]
Holaday, J.W.; Berkowitz, B.A. Antiangiogenic drugs: Insights into drug development from endostatin, avastin and thalidomide. Mol. Interv., 2009, 9(4), 157-166.
[http://dx.doi.org/10.1124/mi.9.4.2] [PMID: 19720747]
[15]
Kooti, W.; Daraei, N. A review of the antioxidant activity of celery (Apium graveolens L). J. Evid. Based Complementary Altern. Med., 2017, 22(4), 1029-1034.
[http://dx.doi.org/10.1177/2156587217717415] [PMID: 28701046]
[16]
Marzouni, H.Z.; Daraei, N.; Sharafi-Ahvazi, N.; Kalani, N.; Kooti, W. The effects of aqueous extract of celery leaves (Apium graveolens) on fertility in female rats. World J. Pharm. Pharm. Sci., 2016, 5(5), 1710-1714.
[17]
Sharma, R.; Jain, S. Cancer tretment: An overview of herbal medicines. World J. Pharm. Pharm. Sci., 2014, 3(8), 222-230.
[18]
Markowitz, S.D.; Dawson, D.M.; Willis, J.; Willson, J.K.V. Focus on colon cancer. Cancer Cell, 2002, 1(3), 233-236.
[http://dx.doi.org/10.1016/S1535-6108(02)00053-3] [PMID: 12086859]
[19]
Financial Toxicity and Cancer Treatment (PDQ®). PDQ cancer information summaries. 2016.
[20]
Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; Ciardiello, F.; D’Hoore, A.; Diaz-Rubio, E.; Douillard, J.Y.; Ducreux, M.; Falcone, A.; Grothey, A.; Gruenberger, T.; Haustermans, K.; Heinemann, V.; Hoff, P.; Köhne, C.H.; Labianca, R.; Laurent-Puig, P.; Ma, B.; Maughan, T.; Muro, K.; Normanno, N.; Österlund, P.; Oyen, W.J.G.; Papamichael, D.; Pentheroudakis, G.; Pfeiffer, P.; Price, T.J.; Punt, C.; Ricke, J.; Roth, A.; Salazar, R.; Scheithauer, W.; Schmoll, H.J.; Tabernero, J.; Taïeb, J.; Tejpar, S.; Wasan, H.; Yoshino, T.; Zaanan, A.; Arnold, D. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol., 2016, 27(8), 1386-1422.
[http://dx.doi.org/10.1093/annonc/mdw235] [PMID: 27380959]
[21]
Roberto-Belmont, M-S. Resilience and Health-related Quality of Life in Adult Patients Receiving Chemotherapy.Thesis University of Lima: Peru, 2018.
[http://dx.doi.org/10.26439/ulima.tesis/5848]
[22]
Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; Peluso, I.; Ghorat, F.; Bishayee, A.; Kooti, W. Medicinal plants in the prevention and treatment of colon cancer. Oxid. Med. Cell. Longev., 2019, 2019, 1-51.
[http://dx.doi.org/10.1155/2019/2075614] [PMID: 32377288]
[23]
Institute, N.C. Drugs Approved for Colon and Rectal Cancer. April 26, 2022 ed.; National Cancer Institute, 2022.
[24]
Labianca, R.; Beretta, G.D.; Kildani, B.; Milesi, L.; Merlin, F.; Mosconi, S.; Pessi, M.A.; Prochilo, T.; Quadri, A.; Gatta, G.; de Braud, F.; Wils, J. Colon cancer. Crit. Rev. Oncol. Hematol., 2010, 74(2), 106-133.
[http://dx.doi.org/10.1016/j.critrevonc.2010.01.010] [PMID: 20138539]
[25]
Bokey, E.L.; Moore, J.W.E.; Chapuis, P.H.; Newland, R.C. Morbidity and mortality following laparoscopic-assisted right hemicolectomy for cancer. Dis. Colon Rectum, 1996, 39(10)(Suppl.), S24-S28.
[http://dx.doi.org/10.1007/BF02053802] [PMID: 8831543]
[26]
Yadav, S.; van Vlerken, L.E.; Little, S.R.; Amiji, M.M. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother. Pharmacol., 2009, 63(4), 711-722.
[http://dx.doi.org/10.1007/s00280-008-0790-y] [PMID: 18618115]
[27]
Naeem, M.; Awan, U.A.; Subhan, F.; Cao, J.; Hlaing, S.P.; Lee, J.; Im, E.; Jung, Y.; Yoo, J.W. Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch. Pharm. Res., 2020, 43(1), 153-169.
[http://dx.doi.org/10.1007/s12272-020-01219-0] [PMID: 31989477]
[28]
Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol., 2012, 3(3), 153-173.
[PMID: 22943008]
[29]
He, M.; Zhao, Z.; Yin, L.; Tang, C.; Yin, C. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int. J. Pharm., 2009, 373(1-2), 165-173.
[http://dx.doi.org/10.1016/j.ijpharm.2009.02.012] [PMID: 19429302]
[30]
Yin, S.Y.; Wei, W.C.; Jian, F.Y.; Yang, N.S. Therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/302426] [PMID: 23956768]
[31]
Ding, W.; Wang, F.; Zhang, J.; Guo, Y.; Ju, S.; Wang, H. A novel local anti-colorectal cancer drug delivery system: negative lipidoid nanoparticles with a passive target via a size-dependent pattern. Nanotechnology, 2013, 24(37), 375101.
[http://dx.doi.org/10.1088/0957-4484/24/37/375101] [PMID: 23965897]
[32]
Traverso, G.; Shuber, A.; Olsson, L.; Levin, B.; Johnson, C.; Hamilton, S.R.; Boynton, K.; Kinzler, K.W.; Vogelstein, B. Detection of proximal colorectal cancers through analysis of faecal DNA. Lancet, 2002, 359(9304), 403-404.
[http://dx.doi.org/10.1016/S0140-6736(02)07591-8] [PMID: 11844514]
[33]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[34]
Morakul, B. Self-nanoemulsifying drug delivery systems (SNEDDS): An advancement technology for oral drug delivery. Pharmaceutical Sciences Asia, 2020, 47(3), 205-220.
[http://dx.doi.org/10.29090/psa.2020.03.019.0121]
[35]
Neslihan Gursoy, R.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 2004, 58(3), 173-182.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[36]
Rani, S.; Rana, R.; Saraogi, G.K.; Kumar, V.; Gupta, U. Self-emulsifying oral lipid drug delivery systems: Advances and challenges. AAPS PharmSciTech, 2019, 20(3), 129.
[http://dx.doi.org/10.1208/s12249-019-1335-x] [PMID: 30815765]
[37]
Makadia, H.A.; Bhatt, A.Y.; Parmar, R.B.; Paun, J.S.; Tank, H. Self-nano emulsifying drug delivery system (SNEDDS): Future aspects. Asian J. Pharm. Res, 2013, 3(1), 21-24.
[38]
Syukri, Y.; Martien, R.; Lukitaningsih, E.; Nugroho, A.E. Novel self-nano emulsifying drug delivery system (snedds) of andrographolide isolated from andrographis paniculata nees: Characterization, in-vitro and in-vivo assessment. J. Drug Deliv. Sci. Technol., 2018, 47, 514-520.
[http://dx.doi.org/10.1016/j.jddst.2018.06.014]
[39]
Singh, B.; Khurana, L.; Bandyopadhyay, S.; Kapil, R.; Katare, O.O.P. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential. Drug Deliv., 2011, 18(8), 599-612.
[http://dx.doi.org/10.3109/10717544.2011.604686] [PMID: 22008038]
[40]
Gohulkumar, M.; Gurushankar, K.; Rajendra Prasad, N.; Krishnakumar, N. Enhanced cytotoxicity and apoptosis-induced anticancer effect of silibinin-loaded nanoparticles in oral carcinoma (KB) cells. Mater. Sci. Eng. C, 2014, 41, 274-282.
[http://dx.doi.org/10.1016/j.msec.2014.04.056] [PMID: 24907761]
[41]
Savale, S.K. A review-self nanoemulsifying drug delivery system (SNEDDS). Inter. J. Res. Pharm. Nano Sci., 2015, 4(6), 385-397.
[42]
Haritha, S.P.B.; Koteswara Rao, P.; Chakravarthi, V. A Brief introduction to methods of preparation, applications and characterization of nanoemulsion drug delivery systems. Indian J. Res. Pharm.Biotechnol., 2002, 1(1), 25-28.
[43]
Patel, P.; Patel, M.; Patel, K.; Patel, N. A review on self-micro emulsifying drug delivery systems. Advance Res. Pharm. Biol., 2014, 4, 590-598.
[44]
Jain, K.; Kumar, R.S.; Sood, S.; Gowthamarajan, K. Enhanced oral bioavailability of atorvastatin via oil-in-water nanoemulsion using aqueous titration method. J. Pharm. Sci. Res., 2013, 5(1), 18.
[45]
Amrutkar, C.; Salunkhe, K.; Chaudhari, S. Study on self nano emulsifying drug delivery system of poorly water soluble drug rosuvastatin calcium. World J. Pharm. Res., 2014, 3(4), 2137-2151.
[46]
Mohd Izham, M.N.; Hussin, Y.; Aziz, M.N.M.; Yeap, S.K.; Rahman, H.S.; Masarudin, M.J.; Mohamad, N.E.; Abdullah, R.; Alitheen, N.B. Preparation and characterization of self nano-emulsifying drug delivery system loaded with citraland its antiproliferative effect on colorectal cells in-vitro. Nanomaterials, 2019, 9(7), 1028.
[http://dx.doi.org/10.3390/nano9071028] [PMID: 31323842]
[47]
Zhang, N.; Zhang, F.; Xu, S.; Yun, K.; Wu, W.; Pan, W. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J. Drug Deliv. Sci. Technol., 2020, 58, 101783.
[http://dx.doi.org/10.1016/j.jddst.2020.101783]
[48]
Yoo, J.H.; Shanmugam, S.; Thapa, P.; Lee, E.S.; Balakrishnan, P.; Baskaran, R.; Yoon, S.K.; Choi, H.G.; Yong, C.S.; Yoo, B.K.; Han, K. Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch. Pharm. Res., 2010, 33(3), 417-426.
[http://dx.doi.org/10.1007/s12272-010-0311-5] [PMID: 20361307]
[49]
Panigrahi, K.C.; Jena, J.; Jena, G.K.; Patra, C.N.; Rao, M.E.B. QBD-based systematic development of Bosentan SNEDDS: Formulation, characterization and pharmacokinetic assessment. J. Drug Deliv. Sci. Technol., 2018, 47, 31-42.
[http://dx.doi.org/10.1016/j.jddst.2018.06.021]
[50]
Shah, M.K.; Madan, P.; Lin, S. Elucidation of intestinal absorption mechanism of carvedilol-loaded solid lipid nanoparticles using Caco-2 cell line as an in-vitro model. Pharm. Dev. Technol., 2015, 20(7), 877-885.
[http://dx.doi.org/10.3109/10837450.2014.938857] [PMID: 25069593]
[51]
Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev. Ind. Pharm., 2017, 43(5), 847-861.
[http://dx.doi.org/10.1080/03639045.2016.1239732] [PMID: 27648633]
[52]
Yadav, P.; Rastogi, V.; Verma, A. Application of Box–Behnken design and desirability function in the development and optimization of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe. Fut. J. Pharm. Sci., 2020, 6(1), 7.
[http://dx.doi.org/10.1186/s43094-020-00023-3]
[53]
Ujilestari, T.; Martien, R.; Ariyadi, B.; Dono, N.D.; Zuprizal, D.Z. Self-nanoemulsifying drug delivery system (SNEDDS) of Amomum compactum essential oil: Design, formulation, and characterization. J. Appl. Pharm. Sci., 2018, 8(6), 14-21.
[54]
Sanka, K.; Suda, D.; Bakshi, V. Optimization of solid-self nanoemulsifying drug delivery system for solubility and release profile of clonazepam using simplex lattice design. J. Drug Deliv. Sci. Technol., 2016, 33, 114-124.
[http://dx.doi.org/10.1016/j.jddst.2016.04.003]
[55]
Desai, P.; Thumma, N.J.; Wagh, P.R.; Zhan, S.; Ann, D.; Wang, J.; Prabhu, S. Cancer chemoprevention using nanotechnology-based approaches. Front. Pharmacol., 2020, 11, 323.
[http://dx.doi.org/10.3389/fphar.2020.00323] [PMID: 32317961]
[56]
Carvalho, M.R.; Carvalho, C.R.; Maia, F.R.; Caballero, D.; Kundu, S.C.; Reis, R.L.; Oliveira, J.M. Peptide‐modified dendrimer nanoparticles for targeted therapy of colorectal cancer. Adv. Ther., 2019, 2(11), 1900132.
[http://dx.doi.org/10.1002/adtp.201900132]
[57]
Briolay, T.; Petithomme, T.; Fouet, M.; Nguyen-Pham, N.; Blanquart, C.; Boisgerault, N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol. Cancer, 2021, 20(1), 55.
[http://dx.doi.org/10.1186/s12943-021-01346-2] [PMID: 33761944]
[58]
Brar, B.; Ranjan, K.; Palria, A.; Kumar, R.; Ghosh, M.; Sihag, S.; Minakshi, P. Nanotechnology in colorectal cancer for precision diagnosis and therapy. Front. Nanotechnol., 2021, 3, 699266.
[http://dx.doi.org/10.3389/fnano.2021.699266]
[59]
Linton, S.S.; Sherwood, S.G.; Drews, K.C.; Kester, M. Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 208-222.
[http://dx.doi.org/10.1002/wnan.1358] [PMID: 26153136]
[60]
Mekjaruskul, C.; Yang, Y.T.; Leed, M.G.D.; Sadgrove, M.P.; Jay, M.; Sripanidkulchai, B. Novel formulation strategies for enhancing oral delivery of methoxyflavones in Kaempferia parviflora by SMEDDS or complexation with 2-hydroxypropyl-β-cyclodextrin. Int. J. Pharm., 2013, 445(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.052] [PMID: 23376503]
[61]
Song, T.; Sun, R. Pharmacodynamics study of zedoary turmeric oil chitosan microspheres administered via arterial embolization. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1958-1963.
[http://dx.doi.org/10.3109/21691401.2015.1115411] [PMID: 26631570]
[62]
Shehna, S.; Sreelekshmi, S.; Remani, P.R.; Padmaja, G.; Lakshmi, S. Anti-cancer, anti-bacterial and anti-oxidant properties of an active fraction isolated from Curcuma zedoaria rhizomes. Phytomedicine Plus, 2022, 2(1), 100195.
[http://dx.doi.org/10.1016/j.phyplu.2021.100195]
[63]
Tung, N.T.; Tran, C.S.; Nguyen, H.A.; Nguyen, T.D.; Chi, S.C.; Pham, D.V.; Bui, Q.D.; Ho, X.H. Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin. Int. J. Pharm., 2019, 555, 63-76.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.036] [PMID: 30448315]
[64]
Tran, T.H.; Guo, Y.; Song, D.; Bruno, R.S.; Lu, X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J. Pharm. Sci., 2014, 103(3), 840-852.
[http://dx.doi.org/10.1002/jps.23858] [PMID: 24464737]
[65]
Ganta, S.; Devalapally, H.; Amiji, M. Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. J. Pharm. Sci., 2010, 99(11), 4630-4641.
[http://dx.doi.org/10.1002/jps.22157] [PMID: 20845461]
[66]
Khan, M.A.; Nazzal, S. . Eutectic-based self-nanoemulsified drug delivery system US8158162B2, 2009.
[67]
Quan, Q.; Kim, D.W.; Marasini, N.; Kim, D.H.; Kim, J.K.; Kim, J.O.; Yong, C.S.; Choi, H.G. Physicochemical characterization and in vivo evaluation of solid self-nanoemulsifying drug delivery system for oral administration of docetaxel. J. Microencapsul., 2013, 30(4), 307-314.
[http://dx.doi.org/10.3109/02652048.2012.726280] [PMID: 23101936]
[68]
Kanwal, T.; Saifullah, S.; Rehman, J.; Kawish, M.; Razzak, A.; Maharjan, R.; Imran, M.; Ali, I.; Roome, T.; Simjee, S.U.; Shah, M.R. Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability. J. Mol. Liq., 2021, 324, 114774.
[http://dx.doi.org/10.1016/j.molliq.2020.114774]
[69]
Talib, W.H.; Alsalahat, I.; Daoud, S.; Abutayeh, R.F.; Mahmod, A.I. Plant-derived natural products in cancer research: extraction, mechanism of action, and drug formulation. Molecules, 2020, 25(22), 5319.
[http://dx.doi.org/10.3390/molecules25225319] [PMID: 33202681]
[70]
Bhagwat, D.A.; Swami, P.A.; Nadaf, S.J.; Choudhari, P.B.; Kumbar, V.M.; More, H.N.; Killedar, S.G.; Kawtikwar, P.S. Capsaicin loaded solid SNEDDS for enhanced bioavailability and anticancer activity: in-vitro, in-silico, and in-vivo characterization. J. Pharm. Sci., 2021, 110(1), 280-291.
[http://dx.doi.org/10.1016/j.xphs.2020.10.020] [PMID: 33069713]
[71]
Yin, H.F.; Yin, C.M.; Ouyang, T.; Sun, S.D.; Chen, W.G.; Yang, X.L.; He, X.; Zhang, C.F. Self-nanoemulsifying drug delivery system of genkwanin: A novel approach for anti-colitis-associated colorectal cancer. Drug Des. Devel. Ther., 2021, 15, 557-576.
[http://dx.doi.org/10.2147/DDDT.S292417] [PMID: 33603345]
[72]
Hanmantrao, M.; Chaterjee, S.; Kumar, R.; Vishwas, S.; Harish, V.; Porwal, O.; Alrouji, M.; Alomeir, O.; Alhajlah, S.; Gulati, M.; Gupta, G.; Dua, K.; Singh, S.K. Development of guar gum-pectin-based colon targeted solid self-nanoemulsifying drug delivery system of xanthohumol. Pharmaceutics, 2022, 14(11), 2384.
[http://dx.doi.org/10.3390/pharmaceutics14112384] [PMID: 36365203]
[73]
Galatage, S.T.; Trivedi, R.; Bhagwat, D.A. Oral self-emulsifying nanoemulsion systems for enhancing dissolution, bioavailability and anticancer effects of camptothecin. J. Drug Deliv. Sci. Technol., 2022, 78, 103929.
[http://dx.doi.org/10.1016/j.jddst.2022.103929]
[74]
Liu, R.R.; Wang, Z. Self-emulsifying systems containing anticancermedicament. 2001. US6316497B1,
[75]
Tarate, B.; Chavan, R.; Bansal, A. Oral solid self-emulsifying formulations: A patent review. Recent Pat. Drug Deliv. Formul., 2014, 8(2), 126-143.
[http://dx.doi.org/10.2174/1872211308666140313145836] [PMID: 24628371]
[76]
Abelaira, S.; Becher, M.P.; Gel, J.F.; Villagra, M.F.; de Vidal, M.N.C. Self-emulsifying formulation of tipranavir for oral administration. US20100152244A1, 2010.
[77]
Wasan, K.M.; Wasan, E.K. Stabilized formulation for oral administration of therapeutic agents and related methods. US8673866B2, 2014.
[78]
Gumkowski, M.J.; Franco, L.; Murdande, S.B.; Perlman, M.E. Selfemulsifying formulations of cholesteryl ester transfer protein inhibitors. US6962931B2, 2005.
[79]
Kohli, K.; Chopra, S.; Arora, S.; Khar, R.K.; Pillai, K.K. Self emulsifying drug delivery system for a curcuminoid based composition. US8835509B2, 2014.
[80]
Mulye, N. Self-emulsifying compositions for drugs poorly soluble in water US6436430B1, 2002.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy