Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches

Author(s): Jae Yeon Hwang, Tae Lim Kook, Sydney M. Paulus and Juw Won Park*

Volume 19, Issue 1, 2024

Published on: 03 October, 2023

Page: [3 - 13] Pages: 11

DOI: 10.2174/1574893618666230505101059

Price: $65

Abstract

Over the past two decades, studies have discovered a special form of alternative splicing (AS) that produces a circular form of RNA. This stands in contrast to normal AS, which produces a linear form of RNA. Although these circRNAs have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of these studies has been on the regulatory role of circRNAs with the assumption that circRNAs are non-coding. As non-coding RNAs, they may regulate mRNA transcription, tumor initiation, and translation by sponging miRNAs and RNA-binding proteins (RBPs). In addition to these regulatory roles of circRNAs, however, recent studies have provided strong evidence for their translation. The translation of circRNAs is expected to have an important role in promoting cancer cell growth and activating molecular pathways related to cancer development. In some cases, the translation of circRNAs is shown to be efficiently driven by an internal ribosome entry site (IRES). The development of a computational tool for identifying and characterizing the translation of circRNAs using high-throughput sequencing and IRES increases identifiable proteins translated from circRNAs. In turn, it has a substantial impact on helping researchers understand the functional role of proteins derived from circRNAs. New web resources for aggregating, cataloging, and visualizing translational information of circRNAs derived from previous studies have been developed. In this paper, general concepts of circRNA, circRNA biogenesis, translation of circRNA, and existing circRNA tools and databases are summarized to provide new insight into circRNA studies.

[1]
Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci 1976; 73(11): 3852-6.
[http://dx.doi.org/10.1073/pnas.73.11.3852] [PMID: 1069269]
[2]
Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979; 280(5720): 339-40.
[http://dx.doi.org/10.1038/280339a0] [PMID: 460409]
[3]
(a) Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons. Cell 1991; 64(3): 607-13.
[http://dx.doi.org/10.1016/0092-8674(91)90244-S];
(b) Westholm JO, Miura P, Olson O, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014; 9(5): 1966-80.
[http://dx.doi.org/10.1016/j.celrep.2014.10.062]
[4]
Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena. Cell 1981; 23(2): 467-76.
[http://dx.doi.org/10.1016/0092-8674(81)90142-2] [PMID: 6162571]
[5]
(a) Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles Nucleic Acids Res 1996; 24(6): 1015-9.
[http://dx.doi.org/10.1093/nar/24.6.1015];
(b) Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J 1993; 7(1): 155-60.
[http://dx.doi.org/10.1096/fasebj.7.1.7678559];
(c) Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J 1992; 11(3): 1095-8.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05148.x]
[6]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[7]
Li Z, Huang C, Bao C, et al. Erratum: Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2017; 24(2): 194.
[http://dx.doi.org/10.1038/nsmb0217-194a] [PMID: 28170000]
[8]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[9]
Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon circularization. J Mol Biol 2015; 427(15): 2414-7.
[http://dx.doi.org/10.1016/j.jmb.2015.02.018] [PMID: 25728652]
[10]
Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22(3): 256-64.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[11]
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015; 160(6): 1125-34.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[12]
(a) Suzuki H, Zuo Y, Wang J, Zhang M Q, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 2006; 34(8): e63.
[http://dx.doi.org/10.1093/nar/gkl151 ];
(b) Gardner EJ, Nizami ZF, Talbot CC, Gall JG. Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev 2012; 26(22): 2550-9.
[http://dx.doi.org/10.1101/gad.202184.112]
[13]
Lu Z, Filonov GS, Noto JJ, et al. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 2015; 21(9): 1554-65.
[http://dx.doi.org/10.1261/rna.052944.115] [PMID: 26194134]
[14]
Tang TH, Rozhdestvensky TS, d’Orval BC, et al. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 2002; 30(4): 921-30.
[http://dx.doi.org/10.1093/nar/30.4.921] [PMID: 11842103]
[15]
Vo JN, Cieslik M, Zhang Y, et al. The landscape of circular RNA in cancer. Cell 2019; 176(4): 869-881.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.021] [PMID: 30735636]
[16]
Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016; 166(4): 1055-6.
[http://dx.doi.org/10.1016/j.cell.2016.07.035] [PMID: 27518567]
[17]
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015; 58(5): 870-85.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[18]
(a) Tang W, Ji M, He G, et al. Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. Onco Targets Ther 2017; 10: 2045-56.
[http://dx.doi.org/10.2147/OTT.S131597 ];
(b) Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis. Toxicol Sci 2018; 166(2): 465-78.
[http://dx.doi.org/10.1093/toxsci/kfy221]
[19]
Koopman P, Münsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 1990; 348(6300): 450-2.
[http://dx.doi.org/10.1038/348450a0] [PMID: 2247150]
[20]
Ma J, Du WW, Zeng K, et al. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol Ther 2021; 29(9): 2754-68.
[http://dx.doi.org/10.1016/j.ymthe.2021.08.002] [PMID: 34365033]
[21]
Wu N, Yuan Z, Du KY, et al. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ 2019; 26(12): 2758-73.
[http://dx.doi.org/10.1038/s41418-019-0337-2] [PMID: 31092884]
[22]
Gao X, Xia X, Li F, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nat Cell Biol 2021; 23(3): 278-91.
[http://dx.doi.org/10.1038/s41556-021-00639-4] [PMID: 33664496]
[23]
Chen CK, Cheng R, Demeter J, et al. Structured elements drive extensive circular RNA translation. Mol Cell 2021; 81(20): 4300-4318.e13.
[http://dx.doi.org/10.1016/j.molcel.2021.07.042] [PMID: 34437836]
[24]
Vidal AF. Read-through circular RNAs reveal the plasticity of RNA processing mechanisms in human cells. RNA Biol 2020; 17(12): 1823-6.
[http://dx.doi.org/10.1080/15476286.2020.1805233] [PMID: 32783578]
[25]
Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature 1986; 323(6088): 558-60.
[http://dx.doi.org/10.1038/323558a0] [PMID: 2429192]
[26]
Abe N, Hiroshima M, Maruyama H, et al. Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed 2013; 52(27): 7004-8.
[http://dx.doi.org/10.1002/anie.201302044] [PMID: 23716491]
[27]
AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci 2014; 111(40): 14542-7.
[http://dx.doi.org/10.1073/pnas.1402814111] [PMID: 25253891]
[28]
Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep 2015; 5(1): 16435.
[http://dx.doi.org/10.1038/srep16435] [PMID: 26553571]
[29]
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell 2017; 66(1): 9-21.e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021] [PMID: 28344080]
[30]
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66(1): 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[31]
Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11(2): 113-27.
[http://dx.doi.org/10.1038/nrm2838] [PMID: 20094052]
[32]
Chen C, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268(5209): 415-7.
[http://dx.doi.org/10.1126/science.7536344] [PMID: 7536344]
[33]
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[34]
Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 2018; 9(1): 2629.
[http://dx.doi.org/10.1038/s41467-018-05096-6] [PMID: 29980667]
[35]
Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2015; 21(2): 172-9.
[http://dx.doi.org/10.1261/rna.048272.114] [PMID: 25449546]
[36]
Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol 2019; 11(10): 911-9.
[http://dx.doi.org/10.1093/jmcb/mjz091] [PMID: 31504667]
[37]
Nevins TA, Harder ZM, Korneluk RG, Holčík M. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 2003; 278(6): 3572-9.
[http://dx.doi.org/10.1074/jbc.M206781200] [PMID: 12458215]
[38]
Pyronnet S, Dostie J, Sonenberg N. Suppression of cap-dependent translation in mitosis. Genes Dev 2001; 15(16): 2083-93.
[http://dx.doi.org/10.1101/gad.889201] [PMID: 11511540]
[39]
Walters B, Thompson SR. Cap-independent translational control of carcinogenesis. Front Oncol 2016; 6: 128.
[http://dx.doi.org/10.3389/fonc.2016.00128] [PMID: 27252909]
[40]
Zhao J, Li Y, Wang C, et al. IRESbase: A comprehensive database of experimentally validated internal ribosome entry sites. Genom Proteom Bioinformat 2020; 18(2): 129-39.
[http://dx.doi.org/10.1016/j.gpb.2020.03.001] [PMID: 32512182]
[41]
Borman AM, Le Mercier P, Girard M, Kean KM. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 1997; 25(5): 925-32.
[http://dx.doi.org/10.1093/nar/25.5.925] [PMID: 9023100]
[42]
Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161(6): 1388-99.
[http://dx.doi.org/10.1016/j.cell.2015.05.014] [PMID: 26046440]
[43]
Wang X, Ma R, Zhang X, et al. Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Mol Cancer 2021; 20(1): 121.
[http://dx.doi.org/10.1186/s12943-021-01415-6] [PMID: 34560891]
[44]
Zhao J, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019; 10(1): 2300.
[http://dx.doi.org/10.1038/s41467-019-10246-5] [PMID: 31127091]
[45]
Li XF, Lytton J. A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem 1999; 274(12): 8153-60.
[http://dx.doi.org/10.1074/jbc.274.12.8153] [PMID: 10075718]
[46]
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32(5): 453-61.
[http://dx.doi.org/10.1038/nbt.2890] [PMID: 24811520]
[47]
Li S, Li X, Xue W, et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat Methods 2021; 18(1): 51-9.
[http://dx.doi.org/10.1038/s41592-020-01011-4] [PMID: 33288960]
[48]
Li J, Ma M, Yang X, et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer 2020; 19(1): 142.
[http://dx.doi.org/10.1186/s12943-020-01259-6] [PMID: 32917240]
[49]
Yang R, Lee EE, Kim J, et al. Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathog 2021; 17(5): e1009582.
[http://dx.doi.org/10.1371/journal.ppat.1009582] [PMID: 33999949]
[50]
Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018; 9(1): 4475.
[http://dx.doi.org/10.1038/s41467-018-06862-2] [PMID: 30367041]
[51]
Zheng X, Chen L, Zhou Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer 2019; 18(1): 47.
[http://dx.doi.org/10.1186/s12943-019-1010-6] [PMID: 30925892]
[52]
Zhang Y, Jiang J, Zhang J, et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer 2021; 20(1): 101.
[http://dx.doi.org/10.1186/s12943-021-01390-y] [PMID: 34384442]
[53]
Zhang M, Huang N, Yang X, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 2018; 37(13): 1805-14.
[http://dx.doi.org/10.1038/s41388-017-0019-9] [PMID: 29343848]
[54]
Jiang T, Xia Y, Lv J, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer 2021; 20(1): 66.
[http://dx.doi.org/10.1186/s12943-021-01358-y] [PMID: 33836754]
[55]
Xia X, Li X, Li F, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer 2019; 18(1): 131.
[http://dx.doi.org/10.1186/s12943-019-1056-5] [PMID: 31470874]
[56]
Mo D, Li X, Raabe CA, Rozhdestvensky TS, Skryabin BV, Brosius J. Circular RNA encoded amyloid beta peptides—a novel putative player in Alzheimer’s disease. Cells 2020; 9(10): 2196.
[http://dx.doi.org/10.3390/cells9102196] [PMID: 33003364]
[57]
Pan Z, Cai J, Lin J, et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer 2020; 19(1): 71.
[http://dx.doi.org/10.1186/s12943-020-01179-5] [PMID: 32241279]
[58]
Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 2018; 110(3): 304-15.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[59]
Wu X, Xiao S, Zhang M, et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol 2021; 22(1): 33.
[http://dx.doi.org/10.1186/s13059-020-02250-6] [PMID: 33446260]
[60]
Du WW, Xu J, Yang W, et al. A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ Res 2021; 129(5): 568-82.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.318364] [PMID: 34261347]
[61]
Liang WC, Wong CW, Liang PP, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol 2019; 20(1): 84.
[http://dx.doi.org/10.1186/s13059-019-1685-4] [PMID: 31027518]
[62]
Peng Y, Xu Y, Zhang X, et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer 2021; 20(1): 158.
[http://dx.doi.org/10.1186/s12943-021-01457-w] [PMID: 34863211]
[63]
Liang Z, Liu H, Xiong L, et al. A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer 2021; 20(1): 103.
[http://dx.doi.org/10.1186/s12943-021-01404-9] [PMID: 34412652]
[64]
Li Y, Chen B, Zhao J, et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci 2021; 8(13): 2001701.
[http://dx.doi.org/10.1002/advs.202001701] [PMID: 34258149]
[65]
Liu Y, Li Z, Zhang M, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro-oncol 2021; 23(5): 743-56.
[http://dx.doi.org/10.1093/neuonc/noaa279] [PMID: 33325513]
[66]
Gu C, Wang W, Tang X, et al. CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Mol Cancer 2021; 20(1): 84.
[http://dx.doi.org/10.1186/s12943-021-01380-0] [PMID: 34090465]
[67]
Kong S, Tao M, Shen X, Ju S. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett 2020; 483: 59-65.
[http://dx.doi.org/10.1016/j.canlet.2020.04.006] [PMID: 32360179]
[68]
Begum S, Yiu A, Stebbing J, Castellano L. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene 2018; 37(30): 4055-7.
[http://dx.doi.org/10.1038/s41388-018-0230-3] [PMID: 29706655]
[69]
Yin H, Shen X, Zhao J, et al. Circular RNA CircFAM188B encodes a protein that regulates proliferation and differentiation of chicken skeletal muscle satellite cells. Front Cell Dev Biol 2020; 8: 522588.
[http://dx.doi.org/10.3389/fcell.2020.522588] [PMID: 33240871]
[70]
Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 2021; 22(2): 1706-28.
[http://dx.doi.org/10.1093/bib/bbaa001] [PMID: 32103237]
[71]
Meng X, Chen Q, Zhang P, Chen M. CircPro: An integrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics 2017; 33(20): 3314-6.
[http://dx.doi.org/10.1093/bioinformatics/btx446] [PMID: 29028266]
[72]
Sun P, Li G. CircCode: A powerful tool for identifying circRNA coding ability. Front Genet 2019; 10: 981.
[http://dx.doi.org/10.3389/fgene.2019.00981] [PMID: 31649739]
[73]
Zhong S, Feng J. CircPrimer 2.0: A software for annotating circRNAs and predicting translation potential of circRNAs. BMC Bioinformat 2022; 23(1): 215.
[http://dx.doi.org/10.1186/s12859-022-04705-y] [PMID: 35668371]
[74]
Sun P, Wang H, Li G. Rcirc: An R package for circRNA analyses and visualization. Front Genet 2020; 11: 548.
[http://dx.doi.org/10.3389/fgene.2020.00548] [PMID: 32582287]
[75]
Pan X, Xiong K, Anthon C, et al. WebCircRNA: Classifying the circular RNA potential of coding and noncoding RNA. Genes 2018; 9(11): 536.
[http://dx.doi.org/10.3390/genes9110536] [PMID: 30404245]
[76]
Cao Z, Li G. MStoCIRC: A powerful tool for downstream analysis of MS/MS data to predict translatable circRNAs. Front Mol Biosci 2022; 9: 791797.
[http://dx.doi.org/10.3389/fmolb.2022.791797] [PMID: 36072432]
[77]
Chen X, Han P, Zhou T, Guo X, Song X, Li Y. circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 2016; 6(1): 34985.
[http://dx.doi.org/10.1038/srep34985] [PMID: 27725737]
[78]
Gao Y, Wang J, Zhao F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 2015; 16(1): 4.
[http://dx.doi.org/10.1186/s13059-014-0571-3] [PMID: 25583365]
[79]
Pan X, Xiong K. PredcircRNA: Computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol Biosyst 2015; 11(8): 2219-26.
[http://dx.doi.org/10.1039/C5MB00214A] [PMID: 26028480]
[80]
Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011; 29(1): 24-6.
[http://dx.doi.org/10.1038/nbt.1754] [PMID: 21221095]
[81]
Ito EA, Katahira I, Vicente FFR, Pereira LFP, Lopes FM. BASi-NET—BiologicAl Sequences NETwork: A case study on coding and non-coding RNAs identification. Nucleic Acids Res 2018; 46(16): e96.
[http://dx.doi.org/10.1093/nar/gky462] [PMID: 29873784]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy