Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases

Author(s): Fatemeh Forouzanfar, Ali Mohammad Pourbagher-Shahri, Farzaneh Vafaee, Thozhukat Sathyapalan and Amirhossein Sahebkar*

Volume 31, Issue 34, 2024

Published on: 22 June, 2023

Page: [5550 - 5566] Pages: 17

DOI: 10.2174/0929867330666230504121523

Price: $65

Abstract

Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.

[1]
Kumar, A; Fontana, IC; Nordberg, A Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem., 2023, 164(3), 309-324.
[http://dx.doi.org/10.1111/jnc.15565]
[2]
Parpura, V.; Heneka, M.T.; Montana, V.; Oliet, S.H.R.; Schousboe, A.; Haydon, P.G.; Stout, R.F., Jr; Spray, D.C.; Reichenbach, A.; Pannicke, T.; Pekny, M.; Pekna, M.; Zorec, R.; Verkhratsky, A. Glial cells in (patho)physiology. J. Neurochem., 2012, 121(1), 4-27.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07664.x] [PMID: 22251135]
[3]
Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[4]
Eng, L.F.; Vanderhaeghen, J.J.; Bignami, A.; Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Res., 1971, 28(2), 351-354.
[http://dx.doi.org/10.1016/0006-8993(71)90668-8] [PMID: 5113526]
[5]
Guo, Y.; Liu, Y.; Xu, L.; Wu, S.; Yang, C.; Wu, D.; Wu, H.; Li, C. Astrocytic pathology in the immune-mediated motor neuron injury. Amyotroph. Lateral Scler., 2007, 8(4), 230-234.
[http://dx.doi.org/10.1080/17482960701278612] [PMID: 17653921]
[6]
Zhang, L.; Zhang, W.P.; Chen, K.D.; Qian, X.D.; Fang, S.H.; Wei, E.Q. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci., 2007, 80(6), 530-537.
[http://dx.doi.org/10.1016/j.lfs.2006.09.039] [PMID: 17074364]
[7]
Serrano-Pozo, A.; Mielke, M.L.; Gómez-Isla, T.; Betensky, R.A.; Growdon, J.H.; Frosch, M.P.; Hyman, B.T. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol., 2011, 179(3), 1373-1384.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.047] [PMID: 21777559]
[8]
Verkhratsky, A.; Zorec, R.; Parpura, V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol., 2017, 27(5), 629-644.
[http://dx.doi.org/10.1111/bpa.12537] [PMID: 28805002]
[9]
Verkhratsky, A.; Rodríguez, J.J.; Parpura, V. Astroglia in neurological diseases. Future Neurol., 2013, 8(2), 149-158.
[http://dx.doi.org/10.2217/fnl.12.90] [PMID: 23658503]
[10]
Moulson, A.J.; Squair, J.W.; Franklin, R.J.M.; Tetzlaff, W.; Assinck, P. Diversity oflology: Heterogeneity or plasticity? Future Neurol., 2021, 15, 703810.
[11]
Robel, S.; Berninger, B.; Götz, M. The stem cell potential of glia: Lessons from reactive gliosis. Nat. Rev. Neurosci., 2011, 12(2), 88-104.
[http://dx.doi.org/10.1038/nrn2978] [PMID: 21248788]
[12]
Verkhratsky, A.; Sofroniew, M.V.; Messing, A.; deLanerolle, N.C.; Rempe, D.; Rodríguez, J.J.; Nedergaard, M. Neurological diseases as primary gliopathies: A reassessment of neurocentrism. ASN Neuro, 2012, 4(3), AN20120010.
[http://dx.doi.org/10.1042/AN20120010] [PMID: 22339481]
[13]
Yang, Z-Y.; Jin, W.L.; Xu, Y.; Jin, M.Z. Microglia in neurodegenerative diseases. Neural Regen. Res., 2021, 16(2), 270-280.
[http://dx.doi.org/10.4103/1673-5374.290881] [PMID: 32859774]
[14]
Verkhratsky, A.; Rodríguez, J.J.; Steardo, L. Astrogliopathology. Neuroscientist, 2014, 20(6), 576-588.
[http://dx.doi.org/10.1177/1073858413510208] [PMID: 24301046]
[15]
Colangelo, A.M.; Alberghina, L.; Papa, M. Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci. Lett., 2014, 565, 59-64.
[http://dx.doi.org/10.1016/j.neulet.2014.01.014] [PMID: 24457173]
[16]
Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647.
[http://dx.doi.org/10.1016/j.tins.2009.08.002] [PMID: 19782411]
[17]
Phatnani, H.; Maniatis, T. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol., 2015, 7(6), a020628.
[http://dx.doi.org/10.1101/cshperspect.a020628] [PMID: 25877220]
[18]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int., 2019, 2019, 8748253.
[http://dx.doi.org/10.1155/2019/8748253]
[19]
Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric., 2000, 80(12), 1744-1756.
[http://dx.doi.org/10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W]
[20]
Fazeli, E.; Ghalibaf, M.H.E.; Forouzanfar, F. Neuroprotective potency of safranal against neurological disorders. Curr. Mol. Med., 2023.
[PMID: 36397621]
[21]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[22]
Forouzanfar, F.; Barreto, G.; Majeed, M.; Sahebkar, A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors, 2019, 45(5), 631-640.
[http://dx.doi.org/10.1002/biof.1522] [PMID: 31136038]
[23]
Forouzanfar, F; Majeed, M; Jamialahmadi, T; Sahebkar, A. Curcumin: A review of its effects on epilepsy. Adv. Exp. Med. Biol., 2021, 1291, 363-373.
[http://dx.doi.org/10.1007/978-3-030-56153-6_21]
[24]
Forouzanfar, F.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Telomerase: A target for therapeutic effects of curcumin in cancer. Adv. Exp. Med. Biol., 2021, 135-143.
[25]
Mantzorou, M.; Pavlidou, E.; Vasios, G.; Tsagalioti, E.; Giaginis, C. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother. Res., 2018, 32(6), 957-975.
[http://dx.doi.org/10.1002/ptr.6037] [PMID: 29468820]
[26]
Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem., 2013, 21(2), 204-222.
[http://dx.doi.org/10.2174/092986732102131206115810] [PMID: 23590716]
[27]
Mhillaj, E.; Tarozzi, A.; Pruccoli, L.; Cuomo, V.; Trabace, L.; Mancuso, C. Curcumin and heme oxygenase: Neuroprotection and beyond. Int. J. Mol. Sci., 2019, 20(10), 2419.
[http://dx.doi.org/10.3390/ijms20102419] [PMID: 31100781]
[28]
Yang, M.; Akbar, U.; Mohan, C. Curcumin in autoimmune and rheumatic diseases. Nutrients, 2019, 11(5), 1004.
[http://dx.doi.org/10.3390/nu11051004] [PMID: 31052496]
[29]
Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2017, 115, 133-148.
[http://dx.doi.org/10.1016/j.phrs.2016.11.017] [PMID: 27888157]
[30]
Mokhtari-Zaer, A., Marefati, N., Atkin, S. L., Butler, A. E., & Sahebkar, A. (2018). The protective role of curcumin in myocardial ischemia-reperfusion injury. J. Cellular Physiol., 2018, 234(1), 214-222.
[http://dx.doi.org/10.1002/jcp.268481]
[31]
Mohajeri, M., & Sahebkar, A. (2018). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol.,2018, 122, 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005]
[32]
Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458.
[http://dx.doi.org/10.1002/ptr.7350] [PMID: 34904764]
[33]
Khayatan, D.; Razavi, S.M.; Arab, Z.N.; Niknejad, A.H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A.H.; Barreto, G.E.; Sahebkar, A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother., 2022, 154, 113621.
[http://dx.doi.org/10.1016/j.biopha.2022.113621] [PMID: 36055110]
[34]
Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878.
[http://dx.doi.org/10.1002/ptr.6991] [PMID: 33464676]
[35]
Bachmeier, BA-O; Melchart, D Therapeutic effects of curcumin—from traditional past to present and future clinical applications. Int. J. Mol. Sci., 2019, 20(15), 3757.
[http://dx.doi.org/10.3390/ijms20153757]
[36]
Zeng, Y.; Luo, Y.; Wang, L.; Zhang, K.; Peng, J.; Fan, G. Therapeutic effect of curcumin on metabolic diseases: Evidence from clinical studies. Int. J. Mol. Sci., 2023, 24(4), 3323.
[http://dx.doi.org/10.3390/ijms24043323] [PMID: 36834734]
[37]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. Adv. Exp. Med. Biol., 2007, 595, 105-25.
[38]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[39]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[40]
Sahebkar, A.; Cicero, A.F.G.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res., 2016, 107, 234-242.
[http://dx.doi.org/10.1016/j.phrs.2016.03.026] [PMID: 27025786]
[41]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[42]
Matsushita, Y.; Ueda, H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport, 2009, 20(1), 63-68.
[http://dx.doi.org/10.1097/WNR.0b013e328314decb] [PMID: 19033880]
[43]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res., 2018, 136, 181-193.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[44]
De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob. Agents Chemother., 2009, 53(4), 1592-1597.
[http://dx.doi.org/10.1128/AAC.01242-08] [PMID: 19204190]
[45]
Park, J.; Conteas, C.N. Anti-carcinogenic properties of curcumin on colorectal cancer. World J. Gastrointest. Oncol., 2010, 2(4), 169-176.
[http://dx.doi.org/10.4251/wjgo.v2.i4.169] [PMID: 21160593]
[46]
Momtazi, A A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr. Pharma. Desi.,2016, 22(28), 4386-4397.
[http://dx.doi.org/10.2174/1381612822666160527113501]
[47]
Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology, 2018, 26(2), 349-360.
[http://dx.doi.org/10.1007/s10787-017-0402-8] [PMID: 29027056]
[48]
Tripanichkul, W.; Jaroensuppaperch, E. Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model. Int. J. Neurosci., 2012, 122(5), 263-270.
[http://dx.doi.org/10.3109/00207454.2011.648760] [PMID: 22176529]
[49]
Sanchez, A.; Tripathy, D.; Grammas, P. RANTES release contributes to the protective action of PACAP38 against sodium nitroprusside in cortical neurons. Neuropeptides, 2009, 43(4), 315-320.
[http://dx.doi.org/10.1016/j.npep.2009.05.002] [PMID: 19497618]
[50]
Lin, M.S.; Hung, K.S.; Chiu, W.T.; Sun, Y.Y.; Tsai, S.H.; Lin, J.W.; Lee, Y.H. Curcumin enhances neuronal survival in N-methyl-d-aspartic acid toxicity by inducing RANTES expression in astrocytes via PI-3K and MAPK signaling pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(4), 931-938.
[http://dx.doi.org/10.1016/j.pnpbp.2010.12.022] [PMID: 21199667]
[51]
Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442.
[http://dx.doi.org/10.3233/JAD-170093] [PMID: 29036814]
[52]
Yu, S.; Wang, X.; He, X.; Wang, Y.; Gao, S.; Ren, L.; Shi, Y. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones, 2016, 21(4), 697-705.
[http://dx.doi.org/10.1007/s12192-016-0695-3] [PMID: 27164829]
[53]
Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779.
[http://dx.doi.org/10.2174/1871527317666180720162029] [PMID: 30033879]
[54]
Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438.
[http://dx.doi.org/10.1007/s13311-018-0606-7] [PMID: 29352425]
[55]
Baum, L.; Lam, C.W.K.; Cheung, S.K.K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.K.; Goggins, W.B.; Zee, B.C.Y.; Cheng, K.F.; Fong, C.Y.S.; Wong, A.; Mok, H.; Chow, M.S.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.L.; Chan, M.H.; Szeto, S.; Chan, I.H.S.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[56]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[57]
Yuan, C-X.; Yang, X-M.; Ye, Q.; Yuan, X-L.; Zhang, H-Z. Zishenpingchan granules for the treatment of Parkinson’s disease: A randomized, double-blind, placebo-controlled clinical trial. Neural Regen. Res., 2018, 13(7), 1269-1275.
[http://dx.doi.org/10.4103/1673-5374.235075] [PMID: 30028337]
[58]
Mohseni, M.; Sahebkar, A.; Askari, G.; Johnston, T.P.; Alikiaii, B.; Bagherniya, M. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytother. Res., 2021, 35(12), 6862-6882.
[http://dx.doi.org/10.1002/ptr.7273] [PMID: 34528307]
[59]
Forouzanfar, F.; Hosseinzadeh, H. Protective role of Nigella sativa and thymoquinone in oxidative stress: A review. Nuts and seeds in health and disease prevention. Academic Press, 2020, 127-146.
[http://dx.doi.org/10.1016/B978-0-12-818553-7.00011-5]
[60]
Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev., 2020, 39(2), 115-122.
[http://dx.doi.org/10.1080/15569543.2018.1514637]
[61]
Ahmad, A.; Raish, M.; Alkharfy, K.M.; Alsarra, I.A.; Khan, A.; Ahad, A.; Jan, B.L.; Shakeel, F. Solubility, solubility parameters and solution thermodynamics of thymoquinone in different mono solvents. J. Mol. Liq., 2018, 272, 912-918.
[http://dx.doi.org/10.1016/j.molliq.2018.10.104]
[62]
Gali-Muhtasib, H.; Roessner, A.; Schneider-Stock, R. Thymoquinone: A promising anti-cancer drug from natural sources. Int. J. Biochem. Cell Biol., 2006, 38(8), 1249-1253.
[http://dx.doi.org/10.1016/j.biocel.2005.10.009] [PMID: 16314136]
[63]
Atta, M.; Almadaly, E.; El-Far, A.; Saleh, R.; Assar, D.; Al Jaouni, S.; Mousa, S. Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int. J. Mol. Sci., 2017, 18(5), 919.
[http://dx.doi.org/10.3390/ijms18050919] [PMID: 28448463]
[64]
Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol., 2015, 28(1), 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023] [PMID: 26117430]
[65]
Goel, S.; Mishra, P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl. Microbiol. Biotechnol., 2018, 102(4), 1955-1967.
[http://dx.doi.org/10.1007/s00253-018-8736-8] [PMID: 29356869]
[66]
Dariani, S.; Baluchnejadmojarad, T.; Roghani, M. Thymoquinone attenuates astrogliosis, neurodegeneration, mossy fiber sprouting, and oxidative stress in a model of temporal lobe epilepsy. J. Mol. Neurosci., 2013, 51(3), 679-686.
[http://dx.doi.org/10.1007/s12031-013-0043-3] [PMID: 23794216]
[67]
Amoah, S.; Sandjo, L.; Kratz, J.; Biavatti, M. Rosmarinic acid-pharmaceutical and clinical aspects. Planta Med., 2016, 82(5), 388-406.
[http://dx.doi.org/10.1055/s-0035-1568274] [PMID: 26845712]
[68]
Nicolai, M.; Pereira, P.; Vitor, R.F.; Reis, C.P.; Roberto, A.; Rijo, P. Antioxidant activity and rosmarinic acid content of ultrasound-assisted ethanolic extracts of medicinal plants. Measurement, 2016, 89, 328-332.
[http://dx.doi.org/10.1016/j.measurement.2016.04.033]
[69]
Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.M.; Serra, A.T.; Pinto, R.; Freitas, M.; Fernandes, E.; Silva-Lima, B.; Mota-Filipe, H.; Sepodes, B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol., 2015, 116(5), 398-413.
[http://dx.doi.org/10.1111/bcpt.12335] [PMID: 25287116]
[70]
Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl. Microbiol. Biotechnol., 2018, 102(18), 7775-7793.
[http://dx.doi.org/10.1007/s00253-018-9223-y] [PMID: 30022261]
[71]
Kantar Gok, D.; Hidisoglu, E.; Ocak, G.A.; Er, H.; Acun, A.D.; Yargıcoglu, P. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochem. Int., 2018, 118, 1-13.
[http://dx.doi.org/10.1016/j.neuint.2018.04.008] [PMID: 29655652]
[72]
Noguchi-Shinohara, M.; Ono, K.; Hamaguchi, T.; Nagai, T.; Kobayashi, S.; Komatsu, J.; Samuraki-Yokohama, M.; Iwasa, K.; Yokoyama, K.; Nakamura, H.; Yamada, M. Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimer’s disease progression. Sci. Rep., 2020, 10(1), 18627.
[http://dx.doi.org/10.1038/s41598-020-73729-2] [PMID: 33122694]
[73]
Mahboubi, M. Melissa officinalis and rosmarinic acid in management of memory functions and Alzheimer disease. Asian Pac. J. Trop. Biomed., 2019, 9(2), 47.
[74]
Ahmad, S.; Elsherbiny, N.M.; Haque, R.; Khan, M.B.; Ishrat, T.; Shah, Z.A.; Khan, M.M.; Ali, M.; Jamal, A.; Katare, D.P.; Liou, G.I.; Bhatia, K. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology, 2014, 45, 100-110.
[http://dx.doi.org/10.1016/j.neuro.2014.10.002] [PMID: 25316624]
[75]
Martinchik, A.N. Nutritional value of sesame seeds. Vopr. Pitan., 2011, 80(3), 41-43.
[PMID: 21842753]
[76]
Monteiro, É.; Chibli, L.; Yamamoto, C.; Pereira, M.; Vilela, F.; Rodarte, M.; de Oliveira Pinto, M.; da Penha Henriques do Amaral, M.; Silvério, M.; de Matos Araújo, A.; da Luz André de Araújo, A.; Del-Vechio-Vieira, G.; de Sousa, O. Antinociceptive and anti-inflammatory activities of the sesame oil and sesamin. Nutrients, 2014, 6(5), 1931-1944.
[http://dx.doi.org/10.3390/nu6051931] [PMID: 24824289]
[77]
Zhang, M.; Lee, H.J.; Park, K.H.; Park, H.J.; Choi, H.S.; Lim, S.C.; Lee, M.K. Modulatory effects of sesamin on dopamine biosynthesis and l-DOPA-induced cytotoxicity in PC12 cells. Neuropharmacology, 2012, 62(7), 2219-2226.
[http://dx.doi.org/10.1016/j.neuropharm.2012.01.012] [PMID: 22293035]
[78]
Hou, R.C.W.; Wu, C.C.; Yang, C.H.; Jeng, K.C.G. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia. Neurosci. Lett., 2004, 367(1), 10-13.
[http://dx.doi.org/10.1016/j.neulet.2004.05.073] [PMID: 15308287]
[79]
Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother., 2017, 88, 754-761.
[http://dx.doi.org/10.1016/j.biopha.2017.01.123] [PMID: 28157651]
[80]
Goh, YX; Jalil, J; Lam, KW; Husain, K; Premakumar, CM Genistein: A review on its anti-inflammatory properties. Front Pharmacol., 2022, 13, 820969.
[http://dx.doi.org/10.3389/fphar.2022.820969]
[81]
Ji, G.; Yang, Q.; Hao, J.; Guo, L.; Chen, X.; Hu, J.; Leng, L.; Jiang, Z. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int. Immunopharmacol., 2011, 11(6), 762-768.
[http://dx.doi.org/10.1016/j.intimp.2011.01.036] [PMID: 21320636]
[82]
Bagheri, M.; Joghataei, M.T.; Mohseni, S.; Roghani, M. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 95(3), 270-276.
[http://dx.doi.org/10.1016/j.nlm.2010.12.001] [PMID: 21144907]
[83]
Bagheri, M.; Roghani, M.; Joghataei, M.T.; Mohseni, S. Genistein inhibits aggregation of exogenous amyloid-beta1-40 and alleviates astrogliosis in the hippocampus of rats. Brain Res., 2012, 1429, 145-154.
[http://dx.doi.org/10.1016/j.brainres.2011.10.020] [PMID: 22079317]
[84]
Bagheri, M.; Rezakhani, A.; Nyström, S.; Turkina, M.V.; Roghani, M.; Hammarström, P.; Mohseni, S. Amyloid beta(1-40)-induced astrogliosis and the effect of genistein treatment in rat: A three-dimensional confocal morphometric and proteomic study. PLoS One, 2013, 8(10), e76526.
[http://dx.doi.org/10.1371/journal.pone.0076526] [PMID: 24130779]
[85]
Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; LLoret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144.
[http://dx.doi.org/10.1016/j.brainres.2009.11.044] [PMID: 19948157]
[86]
Mirahmadi, S.M.S.; Shahmohammadi, A.; Rousta, A.M.; Azadi, M.R.; Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Roghani, M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine, 2018, 104, 151-159.
[http://dx.doi.org/10.1016/j.cyto.2017.10.008] [PMID: 29102164]
[87]
Bagheri, M.; Rezakhani, A.; Nyström, S.; Turkina, M.V.; Roghani, M.; Hammarström, P.; Mohseni, S. Genistein inhibits Aβ1-40-induced astrogliosis: A three-dimensional confocal morphometric analysis. 2012.
[88]
Zhao, Z.; Fu, J.; Li, S.; Li, Z. Neuroprotective effects of genistein in a sod1-g93a transgenic mouse model of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol., 2019, 14(4), 688-696.
[http://dx.doi.org/10.1007/s11481-019-09866-x] [PMID: 31321663]
[89]
Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J.A.; Muñoz, J.E.; Satorres, E.; Meléndez, J.C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M.P.; Santabárbara-Gómez, J.M.; Jové, M.; Pamplona, R.; Tarazona-Santabalbina, F.J.; Borrás, C. Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimers Res. Ther., 2022, 14(1), 164.
[http://dx.doi.org/10.1186/s13195-022-01097-2] [PMID: 36329553]
[90]
Fan, S.; Zhang, Z.; Zheng, Y.; Lu, J.; Wu, D.; Shan, Q.; Hu, B.; Wang, Y. Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation. Int. Immunopharmacol., 2009, 9(1), 91-96.
[http://dx.doi.org/10.1016/j.intimp.2008.10.008] [PMID: 19000936]
[91]
Panat, N.A.; Maurya, D.K.; Ghaskadbi, S.S.; Sandur, S.K. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem., 2016, 194, 32-45.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.078] [PMID: 26471524]
[92]
Zhang, Z.F.; Zhang, Y.; Fan, S.H.; Zhuang, J.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin protects against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD+-depletion. J. Hazard. Mater., 2015, 283, 98-109.
[http://dx.doi.org/10.1016/j.jhazmat.2014.09.012] [PMID: 25262482]
[93]
Baluchnejadmojarad, T.; Jamali-Raeufy, N.; Zabihnejad, S.; Rabiee, N.; Roghani, M. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson’s disease: Possible involvement of PI3K/ERβ signaling. Eur. J. Pharmacol., 2017, 801, 72-78.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.002] [PMID: 28284752]
[94]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[95]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[96]
Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; Zaheer, A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors, 2021, 47(2), 190-197.
[http://dx.doi.org/10.1002/biof.1687] [PMID: 33098588]
[97]
Luo, Y.; Shang, P.; Li, D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol., 2017, 8, 692.
[http://dx.doi.org/10.3389/fphar.2017.00692] [PMID: 29056912]
[98]
Patil, S.P.; Jain, P.D.; Sancheti, J.S.; Ghumatkar, P.J.; Tambe, R.; Sathaye, S. RETRACTED: Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology, 2014, 86, 192-202.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.012] [PMID: 25087727]
[99]
Siracusa, R; Paterniti, I; Impellizzeri, D; Cordaro, M; Crupi, R; Navarra, M The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol. Disord. Drug Targets, 2015, 14(10), 1350-65.
[http://dx.doi.org/10.2174/1871527314666150821102823]
[100]
Paterniti, I; Cordaro, M; Campolo, M; Siracusa, R; Cornelius, C; Navarra, M Neuroprotection by association of palmitoylethanolamide with luteolin in experimental Alzheimer's disease models: The control of neuroinflammation. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1530-41.
[http://dx.doi.org/10.2174/1871527313666140806124322]
[101]
Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med., 2020, 14(5), 564-582.
[http://dx.doi.org/10.1007/s11684-019-0724-6] [PMID: 32335802]
[102]
Sondhi, S.; Singh, N.; Goyal, K.; Jindal, S. A laconic review on extraction, biological activities of herbal formulations of berberine: A traditional drug. J. Drug Deliv. Ther., 2020, 10(5), 345-357.
[http://dx.doi.org/10.22270/jddt.v10i5.4300]
[103]
Ye, M.; Fu, S.; Pi, R.; He, F. Neuropharmacological and pharmacokinetic properties of berberine: A review of recent research. J. Pharm. Pharmacol., 2010, 61(7), 831-837.
[http://dx.doi.org/10.1211/jpp.61.07.0001] [PMID: 19589224]
[104]
Zhu, F.; Qian, C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci., 2006, 7(1), 78.
[http://dx.doi.org/10.1186/1471-2202-7-78] [PMID: 17137520]
[105]
Durairajan, S.S.K.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.016] [PMID: 22459600]
[106]
Sadraie, S.; Kiasalari, Z.; Razavian, M.; Azimi, S.; Sedighnejad, L.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: Insights into underlying molecular mechanisms. Metab. Brain Dis., 2019, 34(1), 245-255.
[http://dx.doi.org/10.1007/s11011-018-0349-5] [PMID: 30456649]
[107]
Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomed. Pharmacother., 2017, 93, 1285-1291.
[http://dx.doi.org/10.1016/j.biopha.2017.07.068] [PMID: 28747003]
[108]
Huang, Y.; Tsang, S.Y.; Yao, X.; Chen, Z.Y. Biological properties of baicalein in cardiovascular system. Curr. Drug Targets Cardiovasc. Haematol. Disord., 2005, 5(2), 177-184.
[http://dx.doi.org/10.2174/1568006043586206] [PMID: 15853750]
[109]
Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68-80.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.004] [PMID: 28288320]
[110]
Chen, M.; Lai, L.; Li, X.; Zhang, X.; He, X.; Liu, W.; Li, R.; Ke, X.; Fu, C.; Huang, Z.; Duan, C. Baicalein attenuates neurological deficits and preserves blood-brain barrier integrity in a rat model of intracerebral hemorrhage. Neurochem. Res., 2016, 41(11), 3095-3102.
[http://dx.doi.org/10.1007/s11064-016-2032-8] [PMID: 27518088]
[111]
Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139.
[http://dx.doi.org/10.1002/jnr.23307] [PMID: 24166733]
[112]
Mu, X.; He, G.; Cheng, Y.; Li, X.; Xu, B.; Du, G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav., 2009, 92(4), 642-648.
[http://dx.doi.org/10.1016/j.pbb.2009.03.008] [PMID: 19327378]
[113]
Cheng, Y.; He, G.; Mu, X.; Zhang, T.; Li, X.; Hu, J.; Xu, B.; Du, G. Neuroprotective effect of baicalein against MPTP neurotoxicity: Behavioral, biochemical and immunohistochemical profile. Neurosci. Lett., 2008, 441(1), 16-20.
[http://dx.doi.org/10.1016/j.neulet.2008.05.116] [PMID: 18586394]
[114]
Islam, MS; Quispe, C; Hossain, R; Islam, MT; Al-Harrasi, A; Al-Rawahi, A Neuropharmacological effects of quercetin: A literature-based review. Front Pharmacol., 2021, 12, 665031.
[http://dx.doi.org/10.3389/fphar.2021.665031]
[115]
Davis, J.M.; Murphy, E.A.; Carmichael, M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep., 2009, 8(4), 206-213.
[http://dx.doi.org/10.1249/JSR.0b013e3181ae8959] [PMID: 19584608]
[116]
Aguirre, L.; Arias, N.; Teresa Macarulla, M.; Gracia, A.; Portillo, M.P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J., 2011, 4(1)
[117]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[118]
Moreno, L.C.G.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm., 2017, 517(1-2), 50-57.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.061] [PMID: 27915007]
[119]
Sandhir, R.; Mehrotra, A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(3), 421-430.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.018] [PMID: 23220257]
[120]
Lu, Y.; Liu, Q.; Yu, Q. Quercetin enrich diet during the early-middle not middle-late stage of Alzheimer’s disease ameliorates cognitive dysfunction. Am. J. Transl. Res., 2018, 10(4), 1237-1246.
[PMID: 29736217]
[121]
Martinez, R.M.; Pinho-Ribeiro, F.A.; Steffen, V.S.; Caviglione, C.V.; Vignoli, J.A.; Barbosa, D.S.; Baracat, M.M.; Georgetti, S.R.; Verri, W.A., Jr; Casagrande, R. Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J. Nat. Prod., 2015, 78(7), 1647-1655.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00198] [PMID: 26154512]
[122]
Al-Rejaie, S.S.; Aleisa, A.M.; Abuohashish, H.M.; Parmar, M.Y.; Ola, M.S.; Al-Hosaini, A.A.; Ahmed, M.M. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol. Res., 2015, 37(10), 924-933.
[http://dx.doi.org/10.1179/1743132815Y.0000000079] [PMID: 26187552]
[123]
Krishnakumar, N.; Sulfikkarali, N.; RajendraPrasad, N.; Karthikeyan, S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomedicine & Preventive Nutrition, 2011, 1(4), 223-231.
[http://dx.doi.org/10.1016/j.bionut.2011.09.003]
[124]
Wang, G.Q.; Zhang, B.; He, X.M.; Li, D.D.; Shi, J.S.; Zhang, F. Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacol. Res., 2019, 139, 452-459.
[http://dx.doi.org/10.1016/j.phrs.2018.11.043] [PMID: 30527894]
[125]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[126]
Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J., 2015, 14, 59-63.
[PMID: 26535031]
[127]
Guardia, T.; Rotelli, A.E.; Juarez, A.O.; Pelzer, L.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco, 2001, 56(9), 683-687.
[http://dx.doi.org/10.1016/S0014-827X(01)01111-9] [PMID: 11680812]
[128]
Singh, M.; Govindarajan, R.; Rawat, A.K.S.; Khare, P.B. Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. Am. Fern J., 2008, 98(2), 98-103.
[http://dx.doi.org/10.1640/0002-8444(2008)98[98:AFRFPV]2.0.CO;2]
[129]
Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E. Rutin and selenium Co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox. Res., 2020, 37(1), 77-92.
[PMID: 31332714]
[130]
Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35.
[http://dx.doi.org/10.1038/s41698-017-0038-6] [PMID: 28989978]
[131]
Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1114-1123.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005]
[132]
Miguel, C.A.; Noya-Riobó, M.V.; Mazzone, G.L.; Villar, M.J.; Coronel, M.F. Antioxidant, anti-inflammatory and neuroprotective actions of resveratrol after experimental nervous system insults. Special focus on the molecular mechanisms involved. Neurochem. Int., 2021, 150, 105188.
[http://dx.doi.org/10.1016/j.neuint.2021.105188] [PMID: 34536545]
[133]
Wu, S.X.; Xiong, R.G.; Huang, S.Y.; Zhou, D.D.; Saimaiti, A.; Zhao, C.N.; Shang, A.; Zhang, Y.J.; Gan, R.Y.; Li, H.B. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Crit. Rev. Food Sci. Nutr., 2022, 2022, 1-19.
[http://dx.doi.org/10.1080/10408398.2022.2101428] [PMID: 35852215]
[134]
Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835.
[http://dx.doi.org/10.1111/nure.12081] [PMID: 24111838]
[135]
Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors — Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.008] [PMID: 25885871]
[136]
Tang, PC; Ng, YF; Ho, S; Gyda, M; Chan, SW Resveratrol and cardiovascular health - Promising therapeutic or hopeless illusion? Pharmacol. Res., 2014, 90, 88-115.
[137]
Sun, X.Y.; Dong, Q.X.; Zhu, J.; Sun, X.; Zhang, L.F.; Qiu, M.; Yu, X.L.; Liu, R.T. Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res., 2019, 16(8), 710-722.
[http://dx.doi.org/10.2174/1567205016666190801153751] [PMID: 31368873]
[138]
Zhang, F; Wang, Y-Y; Liu, H; Lu, Y-F; Wu, Q; Liu, J Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial BDNF and GDNF release. Evid Based Complement Alternat Med., 2012, 2012, 937605.
[http://dx.doi.org/10.1155/2012/937605]
[139]
Arús, B.A.; Souza, D.G.; Bellaver, B.; Souza, D.O.; Gonçalves, C.A.; Quincozes-Santos, A.; Bobermin, L.D. Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Mol. Cell. Biochem., 2017, 428(1-2), 67-77.
[http://dx.doi.org/10.1007/s11010-016-2917-5] [PMID: 28070834]
[140]
Bellaver, B.; Souza, D.G.; Bobermin, L.D.; Souza, D.O.; Gonçalves, C.A.; Quincozes-Santos, A. Resveratrol protects hippocampal astrocytes against LPS-induced neurotoxicity through HO-1, p38 and ERK pathways. Neurochem. Res., 2015, 40(8), 1600-1608.
[http://dx.doi.org/10.1007/s11064-015-1636-8] [PMID: 26088684]
[141]
Frozza, R.L.; Bernardi, A.; Hoppe, J.B.; Meneghetti, A.B.; Matté, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Salbego, C. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol. Neurobiol., 2013, 47(3), 1066-1080.
[http://dx.doi.org/10.1007/s12035-013-8401-2] [PMID: 23315270]
[142]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[143]
Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[144]
Simone, D.A.; Baumann, T.K.; LaMotte, R.H. Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain, 1989, 38(1), 99-107.
[http://dx.doi.org/10.1016/0304-3959(89)90079-1] [PMID: 2780068]
[145]
Kim, C.S.; Kawada, T.; Kim, B.S.; Han, I.S.; Choe, S.Y.; Kurata, T.; Yu, R. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell. Signal., 2003, 15(3), 299-306.
[http://dx.doi.org/10.1016/S0898-6568(02)00086-4] [PMID: 12531428]
[146]
Galano, A.; Martínez, A. Capsaicin, a tasty free radical scavenger: Mechanism of action and kinetics. J. Phys. Chem. B, 2012, 116(3), 1200-1208.
[http://dx.doi.org/10.1021/jp211172f] [PMID: 22188587]
[147]
Kang, J.H.; Kim, C.S.; Han, I.S.; Kawada, T.; Yu, R. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett., 2007, 581(23), 4389-4396.
[http://dx.doi.org/10.1016/j.febslet.2007.07.082] [PMID: 17719033]
[148]
Chung, Y.C.; Baek, J.Y.; Kim, S.R.; Ko, H.W.; Bok, E.; Shin, W.H.; Won, S.Y.; Jin, B.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease. Exp. Mol. Med., 2017, 49(3), e298.
[http://dx.doi.org/10.1038/emm.2016.159] [PMID: 28255166]
[149]
Garcia-Garcia, E.; Andrieux, K.; Gil, S.; Couvreur, P. Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm., 2005, 298(2), 274-292.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.031] [PMID: 15896933]
[150]
Oller-Salvia, B.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem. Soc. Rev., 2016, 45(17), 4690-4707.
[http://dx.doi.org/10.1039/C6CS00076B] [PMID: 27188322]
[151]
Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193.
[http://dx.doi.org/10.2174/1381612822666151221150733] [PMID: 26685681]
[152]
Teleanu, D.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, R. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[153]
Chakraborty, J.; Singh, R.; Dutta, D.; Naskar, A.; Rajamma, U.; Mohanakumar, K.P. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s Disease. CNS Neurosci. Ther., 2014, 20(1), 10-19.
[http://dx.doi.org/10.1111/cns.12189] [PMID: 24188794]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy