Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

The Role of Light on the Microalgae Biotechnology: Fundamentals, Technological Approaches, and Sustainability Issues

Author(s): Rafaela Basso Sartori, Mariany Costa Deprá, Rosangela Rodrigues Dias, Mariane Bittencourt Fagundes, Leila Queiroz Zepka and Eduardo Jacob-Lopes*

Volume 18, Issue 1, 2024

Published on: 16 May, 2023

Page: [22 - 51] Pages: 30

DOI: 10.2174/1872208317666230504104051

Price: $65

conference banner
Abstract

Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.

Graphical Abstract

[1]
Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology 2021; 10(10): 1060.
[http://dx.doi.org/10.3390/biology10101060] [PMID: 34681157]
[2]
Baslam M, Mitsui T, Hodges M, et al. Photosynthesis in a changing global climate: Scaling up and scaling down in crops. Front Plant Sci 2020; 11: 882.
[http://dx.doi.org/10.3389/fpls.2020.00882] [PMID: 32733499]
[3]
Diaz-MacAdoo D, Mata MT, Riquelme C. Influence of irradiance and wavelength on the antioxidant activity and carotenoids accumulation in Muriellopsis sp. isolated from the antofagasta coastal desert. Molecules 2022; 27(8): 2412.
[http://dx.doi.org/10.3390/molecules27082412] [PMID: 35458610]
[4]
Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. A holistic approach to study photosynthetic acclimation responses of plants to fluctuating light. Front Plant Sci 2021; 12: 668512.
[http://dx.doi.org/10.3389/fpls.2021.668512] [PMID: 33936157]
[5]
Benedetti M, Vecchi V, Barera S, Dall’Osto L. Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microb Cell Fact 2018; 17(1): 173.
[http://dx.doi.org/10.1186/s12934-018-1019-3] [PMID: 30414618]
[6]
Kumar V, Sharma N, Jaiswal KK, et al. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem 2021; 104: 83-91.
[http://dx.doi.org/10.1016/j.procbio.2021.03.006]
[7]
Song Q, Van Rie J, Den Boer B, et al. Diurnal and seasonal variations of photosynthetic energy conversion efficiency of field grown wheat. Front Plant Sci 2022; 13: 817654.
[http://dx.doi.org/10.3389/fpls.2022.817654] [PMID: 35283909]
[8]
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: Principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45(5): 791-813.
[http://dx.doi.org/10.1007/s00449-022-02711-1] [PMID: 35303143]
[9]
Dias RR, Lasta P, Vendruscolo RG, Wagner R, Zepka LQ, Jacob-Lopes E. Mapping the performance of photobioreactors for microalgae cultivation. Part II: Equatorial and tropical climate zone. J Chem Technol Biotechnol 2021; 96(3): 613-21.
[http://dx.doi.org/10.1002/jctb.6574]
[10]
Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Light management technologies for increasing algal photobioreactor efficiency. Algal Res 2019; 39: 101433.
[http://dx.doi.org/10.1016/j.algal.2019.101433]
[11]
Maroneze MM, Siqueira SF, Vendruscolo RG, et al. The role of photoperiods on photobioreactors – A potential strategy to reduce costs. Bioresour Technol 2016; 219: 493-9.
[http://dx.doi.org/10.1016/j.biortech.2016.08.003] [PMID: 27521786]
[12]
Maroneze MM, Deprá MC, Zepka LQ, Jacob-Lopes E. Artificial lighting strategies in photobioreactors for bioenergy production by Scenedesmus obliquus CPCC05. SN Applied Sci 2019; 1(12): 1695.
[http://dx.doi.org/10.1007/s42452-019-1761-0]
[13]
Singh V, Mishra V. A review on the current application of light-emitting diodes for microalgae cultivation and its fiscal analysis. Crit Rev Biotechnol 2022; 42: 1-15.
[http://dx.doi.org/10.1080/07388551.2022.2057274] [PMID: 35658771]
[14]
Yadav G, Dubey BK, Sen R. A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J Clean Prod 2020; 258: 120703.
[http://dx.doi.org/10.1016/j.jclepro.2020.120703]
[15]
Deprá MC, Severo IA, Dias RR, Zepka LQ, Jacob-Lopes E. Photobioreactor design for microalgae culture.In: Microalgae. Academic Press Massachusetts, US 2021; pp. 35-61.
[http://dx.doi.org/10.1016/B978-0-12-821218-9.00002-5]
[16]
Perrino JE, Ruez JDJ. Eastern Oyster (Crassostrea virginica) filtration efficiency of chlorophyll-a under dynamic conditions in the hudson-raritan estuary at pier 40, New York city. In: Photosynthesis in Algae Larkum AWD, Douglas SE, Raven JA (eds) Kluwer Academic Publishers: Amsterdam, The Netherlands. 2003.
[http://dx.doi.org/10.1007/978-94-007-1038-2]
[17]
Ali MF, Jayakody DNK, Li Y. Recent trends in underwater visible light communication (UVLC) systems. IEEE Access 2022; 10: 22169-5.
[http://dx.doi.org/10.1109/ACCESS.2022.3150093]
[18]
Rexroth S, Nowaczyk MN. Cyanobacterial Photosynthesis: The Light Reactions Modern Topics in the Phototrophic Prokaryotes. Springer,Heidelberg, Germany 2007; pp. 163-91.
[19]
Battchikova N, Aro EM. Proteomics in revealing the composition, acclimation and biogenesis of thylakoid membranes. In: Flores E, Herrero A, Eds. The Cell Biology of Cyanobacteria. Caister Academic Press: Massachusetts, US 2014; pp. 89-120. ISBN: 978-1-908230-38-6
[20]
Raven J. Photosynthesis in watercolours. Nature 2007; 448(7152): 418.
[http://dx.doi.org/10.1038/448418a] [PMID: 17653178]
[21]
Legrand J, Artu A, Pruvost J. A review on photobioreactor design and modelling for microalgae production. React Chem Eng 2021; 6(7): 1134-51.
[http://dx.doi.org/10.1039/D0RE00450B]
[22]
Bassham JA, Benson AA, Calvin M. The path of carbon in photosynthesis. J Biol Chem 1950; 185(2): 781-7.
[http://dx.doi.org/10.1016/S0021-9258(18)56368-7] [PMID: 14774424]
[23]
Kok B, Forbush B, McGloin M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol 1970; 11(6): 457-75.
[http://dx.doi.org/10.1111/j.1751-1097.1970.tb06017.x] [PMID: 5456273]
[24]
Ono T, Noguchi T, Inoue Y, Kusunoki M, Matsushita T, Oyanagi H. X-ray detection of the period-four cycling of the manganese cluster in photosynthetic water oxidizing enzyme. Science 1992; 258(5086): 1335-7.
[http://dx.doi.org/10.1126/science.258.5086.1335] [PMID: 17778358]
[25]
Avramov AV, Zhang M, Burnap RL. An amino residue that guides the correct photoassembly of the water-oxidation complex but is not required for high affinity Mn2+ binding. BioRxiv 2021; 2021; 470031.
[http://dx.doi.org/10.1101/2021.11.29.470031]
[26]
Najafpour MM, Heidari S, Balaghi SE, et al. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. Biochim Biophys Acta Bioenerg 2017; 1858(2): 156-74.
[http://dx.doi.org/10.1016/j.bbabio.2016.11.007] [PMID: 27838231]
[27]
Liu Z, Chang W. Structure of the light-harvesting complex II. In:Photosynthetic protein complexes: A structural approach Fromme P (ed). Wiley Onl. Lib 2008; pp. 217-42.
[http://dx.doi.org/10.1002/9783527623464.ch10]
[28]
Kern J, Renger G, Photosystem II, Photosystem II. Structure and mechanism of the water: Plastoquinone oxidoreductase. Photosynth Res 2007; 94(2-3): 183-202.
[http://dx.doi.org/10.1007/s11120-007-9201-1] [PMID: 17634752]
[29]
Goldschmidt-Clermont M, Bassi R. Sharing light between two photosystems: Mechanism of state transitions. Curr Opin Plant Biol 2015; 25: 71-8.
[http://dx.doi.org/10.1016/j.pbi.2015.04.009] [PMID: 26002067]
[30]
Masojıdek J, Koblızek M, Torzillo G. Photosynthesis in microalgae. In: Handbook of microalgal culture Richmond A (ed) Biotech App Phys. Blackwell: Hoboken New Jersey 2004; pp. 20-39.
[http://dx.doi.org/10.1002/9780470995280]
[31]
Li J, Hamaoka N, Makino F, et al. Kurisu, G. Structure of cyanobacterial photosystem I complexed with cytochrome and ferredoxin at 1.97 Å resolution. BioRxiv 2022; 2022; 482405.
[http://dx.doi.org/10.1101/2022.03.01.482405]
[32]
Masojídek J, Ranglová K, Lakatos GE, Silva Benavides AM, Torzillo G. Variables governing photosynthesis and growth in microalgae mass cultures. Processes 2021; 9(5): 820.
[http://dx.doi.org/10.3390/pr9050820]
[33]
Enami I, Okumura A, Nagao R, Suzuki T, Iwai M, Shen JR. Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 2008; 98(1-3): 349-63.
[http://dx.doi.org/10.1007/s11120-008-9343-9] [PMID: 18716894]
[34]
Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011; 473(7345): 55-60.
[http://dx.doi.org/10.1038/nature09913] [PMID: 21499260]
[35]
Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R. Govindjee, Scholes GD. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev 2017; 117(2): 249-93.
[http://dx.doi.org/10.1021/acs.chemrev.6b00002] [PMID: 27428615]
[36]
Kirst H, García-Cerdán JG, Zurbriggen A, Melis A. Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene. Plant Physiol 2012; 158(2): 930-45.
[http://dx.doi.org/10.1104/pp.111.189910] [PMID: 22114096]
[37]
Negi S, Perrine Z, Friedland N, et al. Light regulation of light‐harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae †. Plant J 2020; 103(2): 584-603.
[http://dx.doi.org/10.1111/tpj.14751] [PMID: 32180283]
[38]
Martin-Avila E, Lim YL, Birch R, et al. Modifying plant photosynthesis and growth via simultaneous chloroplast transformation of rubisco large and small subunits. Plant Cell 2020; 32(9): 2898-916.
[http://dx.doi.org/10.1105/tpc.20.00288] [PMID: 32647068]
[39]
Ramanna L, Rawat I, Bux F. Light enhancement strategies improve microalgal biomass productivity. Renew Sust Energy Rev 2017; 80: 765-73.
[http://dx.doi.org/10.1016/j.rser.2017.05.202]
[40]
Torzillo G. Photosynthesis basic principles to optimize growth of microalgae cultures outdoors. Rev. Latin. Amb. Algal 2021; 12(2): 30-4.
[41]
Sartori RB, Siqueira SF, Maroneze MM, et al. Microalgal secondary metabolites: Effect of climatic variables, seasons, and photocycles on the biogeneration of volatile organic compounds (VOCs). J Appl Phycol 2021; 33(3): 1457-72.
[http://dx.doi.org/10.1007/s10811-021-02391-6]
[42]
Wang C, Dong W, Li A, Atinafu DG, Wang G, Lu Y. The reinforced photothermal effect of conjugated dye/graphene oxide-based phase change materials: Fluorescence resonance energy transfer and applications in solar-thermal energy storage. Chem Eng J 2022; 42: 130605.
[http://dx.doi.org/10.1016/j.cej.2021.130605]
[43]
Damergi E, Qin P, Sharma S, Nazeeruddin MK, Ludwig C. Enhancing algae biomass production by using dye-sensitized solar cells as filters. ACS Sust Chem Eng 2021; 9(43): 14353-64.
[http://dx.doi.org/10.1021/acssuschemeng.1c03780]
[44]
Ooms MD, Dinh CT, Sargent EH, Sinton D. Photon management for augmented photosynthesis. Nat Commun 2016; 7(1): 12699.
[http://dx.doi.org/10.1038/ncomms12699] [PMID: 27581187]
[45]
Nwoba EG, Parlevliet DA, Laird DW, et al. Energy efficiency analysis of outdoor standalone photovoltaic-powered photobioreactors coproducing lipid-rich algal biomass and electricity. Appl Energy 2020; 275: 115403.
[http://dx.doi.org/10.1016/j.apenergy.2020.115403]
[46]
Assunção J, Malcata FX. Enclosed “non-conventional” photobioreactors for microalga production: A review. Algal Res 2020; 52: 102107.
[http://dx.doi.org/10.1016/j.algal.2020.102107]
[47]
Sero ET, Siziba N, Bunhu T, Shoko R, Jonathan E. Biophotonics for improving algal photobioreactor performance: A review. Int J Energy Res 2020; 44(7): 5071-92.
[http://dx.doi.org/10.1002/er.5059]
[48]
Esen V. Sağlam Ş Oral B. Light sources of solar simulators for photovoltaic devices: A review. Renew Sustain Energy Rev 2017; 77: 1240-50.
[http://dx.doi.org/10.1016/j.rser.2017.03.062]
[49]
Lv B, Liu Z, Chen Y, et al. Effect of different colored LED lighting on the growth and pigment content of Isochrysis zhanjiangensis under laboratory conditions. J Mar Sci Eng 2022; 10(11): 1752.
[http://dx.doi.org/10.3390/jmse10111752]
[50]
Porto B, Silva TFCV, Gonçalves AL, Esteves AF, et al. Tubular photobioreactors illuminated with LEDs to boost microalgal biomass production. Chem Eng J 2022; 435(1): 134747.
[http://dx.doi.org/10.1016/j.cej.2022.134747]
[51]
González-Camejo J, Viruela A, Ruano MV, Barat R, Seco A, Ferrer J. Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment. Algal Res 2019; 40: 101511.
[http://dx.doi.org/10.1016/j.algal.2019.101511]
[52]
Kim S, Moon M, Kwak M, Lee B, Chang YK. Statistical optimization of light intensity and CO2 concentration for lipid production derived from attached cultivation of green microalga Ettlia sp. Sci Rep 2018; 8(1): 15390.
[http://dx.doi.org/10.1038/s41598-018-33793-1] [PMID: 30337595]
[53]
Hu X, Zhou J, Liu B. Effect of algal species and light intensity on the performance of an air-lift-type microbial carbon capture cell with an algae-assisted cathode. RSC Advances 2016; 6(30): 25094-100.
[http://dx.doi.org/10.1039/C5RA26299B]
[54]
Chiarini A, Quadrio M. The light/dark cycle of microalgae in a thin-layer photobioreactor. J Appl Phycol 2021; 33(1): 183-95.
[http://dx.doi.org/10.1007/s10811-020-02310-1]
[55]
Levasseur W, Pozzobon V, Perré P. Green microalgae in intermittent light: A meta-analysis assisted by machine learning. J Appl Phycol 2022; 34(1): 135-58.
[http://dx.doi.org/10.1007/s10811-021-02603-z]
[56]
Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process 2009; 48(1): 306-10.
[http://dx.doi.org/10.1016/j.cep.2008.04.007]
[57]
Nedbal L, Lazár D. Photosynthesis dynamics and regulation sensed in the frequency domain. Plant Physiol 2021; 187(2): 646-61.
[http://dx.doi.org/10.1093/plphys/kiab317] [PMID: 34608969]
[58]
Sartori RB, Vendruscolo RG, Ribeiro SR, et al. The role of photo-cycles in the modulation of growth and biochemical profile of microalgae: Part I—food interest compounds. Life 2022; 12(3): 462.
[http://dx.doi.org/10.3390/life12030462] [PMID: 35330213]
[59]
Morales M, Aflalo C, Bernard O. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenergy 2021; 150: 106108.
[http://dx.doi.org/10.1016/j.biombioe.2021.106108]
[60]
Schulze PSC, Guerra R, Pereira H, Schüler LM, Varela JCS. Flashing LEDs for microalgal production. Trends Biotechnol 2017; 35(11): 1088-101.
[http://dx.doi.org/10.1016/j.tibtech.2017.07.011] [PMID: 28865804]
[61]
Liao Q, Li L, Chen R, Zhu X. A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Bioresour Technol 2014; 161: 186-91.
[http://dx.doi.org/10.1016/j.biortech.2014.02.119] [PMID: 24704839]
[62]
Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D. Flashing light in microalgae biotechnology. Bioresour Technol 2016; 203: 357-63.
[http://dx.doi.org/10.1016/j.biortech.2015.12.057] [PMID: 26747205]
[63]
Chowdury KH, Nahar N, Deb UK. The growth factors involved in microalgae cultivation for biofuel production: A review. Comput Water Energy Environ Eng 2020; 9(4): 185-215.
[http://dx.doi.org/10.4236/cweee.2020.94012]
[64]
Acién FFG, Fernández SJM, Sánchez PJA, Molina GE, Chisti Y. Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: Assessment of design and performance. Chem Eng Sci 2001; 56(8): 2721-32.
[http://dx.doi.org/10.1016/S0009-2509(00)00521-2]
[65]
Carvalho AP, Silva SO, Baptista JM, Malcata FX. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl Microbiol Biotechnol 2011; 89(5): 1275-88.
[http://dx.doi.org/10.1007/s00253-010-3047-8] [PMID: 21181149]
[66]
Egbo MN, Okoani A. Photobioreactors for microalgae cultivation-An Overview. Int J Sci Eng Res 2018; 9: 11.
[67]
Deprá MC, Mérida LGR, de Menezes CR, Zepka LQ, Jacob-Lopes E. A new hybrid photobioreactor design for microalgae culture. Chem Eng Res Des 2019; 144: 1-10.
[http://dx.doi.org/10.1016/j.cherd.2019.01.023]
[68]
Vasumathi KK, Premalatha M, Subramanian P. Parameters influencing the design of photobioreactor for the growth of microalgae. Ren Sust Energy Ver 2012; 16(7): 5443-50.
[http://dx.doi.org/10.1016/j.rser.2012.06.013]
[69]
Patwardhan SB, Pandit S, Ghosh D, et al. A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biom. Conv. Bioref 2022.
[http://dx.doi.org/10.1007/s13399-022-02783-9]
[70]
Severo IA, Deprá MC, Zepka LQ, Jacob-Lopes E. Carbon dioxide capture and use by microalgae in photobioreactors. Bioen Carb Capt Storage 2019; 8: 151-71.
[http://dx.doi.org/10.1016/B978-0-12-816229-3.00008-9]
[71]
Tan JS, Lee SY, Chew KW, et al. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 2020; 11(1): 116-29.
[http://dx.doi.org/10.1080/21655979.2020.1711626] [PMID: 31909681]
[72]
Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007; 25(3): 294-306.
[http://dx.doi.org/10.1016/j.biotechadv.2007.02.001] [PMID: 17350212]
[73]
Sirohi R, Kumar PA, Ranganathan P, et al. Design and applications of photobioreactors- A review. Bioresour Technol 2022; 349: 126858.
[http://dx.doi.org/10.1016/j.biortech.2022.126858] [PMID: 35183729]
[74]
Acién G, Grima ME, Torzillo G. Photobioreactors for the production of microalgae. In: Microalgae-based Prokop A, et al (eds),. Biofuels Biop. Springer: Switzerland 2017; pp. 1-44.
[http://dx.doi.org/10.1016/B978-0-08-101023-5.00001-7]
[75]
Merchuk JC. Photobioreactor design. In: Handbook of microalgae-based processes and products: Fundamentals and advances Borowitzka MA (ed), . Energy,Food, Feed, Fertilizer, and Bioactive Compounds.Elsevier: Amsterdam, The Netherlands, 2020; pp. 101-26.
[http://dx.doi.org/10.1016/B978-0-12-818536-0.00005-1]
[76]
Pfaffinger CE, Severin TS, Apel AC, Göbel J, Sauter J, Weuster-Botz D. Light-dependent growth kinetics enable scale-up of well-mixed phototrophic bioprocesses in different types of photobioreactors. J Biotechnol 2019; 297: 41-8.
[http://dx.doi.org/10.1016/j.jbiotec.2019.03.003] [PMID: 30898687]
[77]
Prussi M, Buffi M, Casini D, et al. Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass Bioenergy 2014; 67(67): 390-400.
[http://dx.doi.org/10.1016/j.biombioe.2014.05.024]
[78]
Ugwu CU, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresour Technol 2008; 99(10): 4021-8.
[http://dx.doi.org/10.1016/j.biortech.2007.01.046] [PMID: 17379512]
[79]
Apel AC, Pfaffinger CE, Basedahl N, et al. Open thin-layer cascade reactors for saline microalgae production evaluated in a physically simulated Mediterranean summer climate. Algal Res 2017; 25: 381-90.
[http://dx.doi.org/10.1016/j.algal.2017.06.004]
[80]
Kováts P, Thévenin D, Zähringer K. Characterizing fluid dynamics in a bubble column aimed for the determination of reactive mass transfer. Heat Mass Transf 2018; 54(2): 453-61.
[http://dx.doi.org/10.1007/s00231-017-2142-0]
[81]
Hernández-Melchor DJ, Cañizares-Villanueva RO, Terán-Toledo JR. López- Pérez PA, Cristiani-Urbina E. Hydrodynamic and mass transfer characterization of flat-panel airlift photobioreactors for the cultivation of a photosynthetic microbial consortium. Biochem Eng J 2017; 128: 141-8.
[http://dx.doi.org/10.1016/j.bej.2017.09.014]
[82]
Belohlav V, Zakova T, Jirout T, Kratky L. Effect of hydrodynamics on the formation and removal of microalgal biofilm in photobioreactors. Biosyst Eng 2020; 200: 315-27.
[http://dx.doi.org/10.1016/j.biosystemseng.2020.10.014]
[83]
Touloupakis E, Faraloni C, Carlozzi P. An outline of photosynthetic microorganism growth inside closed photobioreactor designs. Bioresour Technol Rep 2022; 18: 101066.
[http://dx.doi.org/10.1016/j.biteb.2022.101066]
[84]
Posten C. Design and performance parameters of photobioreactors. TATuP-Zeitsc Technik TATuP -Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis 2012; 21(1): 38-45.
[http://dx.doi.org/10.14512/tatup.21.1.38]
[85]
Mérida RLG, Zepka LQ, Jacob-Lopes E. Current production of microalgae at industrial scale Microalgae as a source of bioenergy: Products, process and economics. Rec Adv Renew Energ 2017; pp. 278-92.
[http://dx.doi.org/10.2174/9781681085227117010013]
[86]
Jacob-Lopes E, Zepka LQ, Merida LGR, Maroneze MM, Neves C. Bioprocess of conversion of carbon dioxide from industrial emissions, bioproducts, their uses and hybrid photobioreactor Patent WO 041028, 2014.
[87]
Ramlee A, Rasdi AW, Effendy B, Jusoh M. Microalgae and the factors involved in successful propagation for mass production. J Sust Sci Manag 2021; 16(3): 21-42.
[http://dx.doi.org/10.46754/jssm.2021.04.003]
[88]
Huang Q, Jiang F, Wang L, Yang C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 2017; 3(3): 318-29.
[http://dx.doi.org/10.1016/J.ENG.2017.03.020]
[89]
Laifa R, Morchain J, Barna L, Guiraud P. A numerical framework to predict the performances of a tubular photobioreactor from operating and sunlight conditions. Algal Res 2021; 60: 102550.
[http://dx.doi.org/10.1016/j.algal.2021.102550]
[90]
Grima EM, Camacho FG, Pérez JAS, Sevilla JMF, Fernández FGA, Gómez AC. A mathematical model of microalgal growth in light-limited chemostat culture. J Chem Technol Biotechnol 1994; 61(2): 167-73.
[http://dx.doi.org/10.1002/jctb.280610212]
[91]
Huesemann M, Crowe B, Waller P, et al. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Res 2016; 13: 195-206.
[http://dx.doi.org/10.1016/j.algal.2015.11.008]
[92]
Grima E, Fernández JM, Sánchez JÁ, García F. A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J Biotechnol 1996; 45(1): 59-69.
[http://dx.doi.org/10.1016/0168-1656(95)00144-1]
[93]
Acién FFG, Fernández SJM, Molina GE. Photobioreactors for the production of microalgae. Rev Environ Sci Biotechnol 2013; 12(2): 131-51.
[http://dx.doi.org/10.1007/s11157-012-9307-6]
[94]
Cornet JF, Dussap CG, Gros JB. Conversion of radiant light energy in photobioreactors. AIChE J 1994; 40(6): 1055-66.
[http://dx.doi.org/10.1002/aic.690400616]
[95]
Cornet JF, Dussap CG, Gros JB, Binois C, Lasseur C. A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chem Eng Sci 1995; 50(9): 1489-500.
[http://dx.doi.org/10.1016/0009-2509(95)00022-W]
[96]
Cornet JF, Dussap CG, Gros JB. Kinetics and energetics of photosynthetic micro-organisms in photobioreactors. Adv Biochem Eng Biotechnol 1998; 59: 153-224.
[http://dx.doi.org/10.1007/BFb0102299]
[97]
Gao X, Kong B, Vigil RD. Simulation of algal photobioreactors: Recent developments and challenges. Biotechnol Lett 2018; 40(9-10): 1311-27.
[http://dx.doi.org/10.1007/s10529-018-2595-3] [PMID: 30051265]
[98]
Ranganathan P, Pandey AK, Sirohi R, Tuan Hoang A, Kim SH. Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: Design and applications. Bioresour Technol 2022; 350: 126920.
[http://dx.doi.org/10.1016/j.biortech.2022.126920] [PMID: 35240273]
[99]
Luzi G, McHardy C. Modeling and simulation of photobioreactors with computational fluid dynamics—A comprehensive review. Energies 2022; 15(11): 3966.
[http://dx.doi.org/10.3390/en15113966]
[100]
Ye Q, Cheng J, Guo W, Xu J, Li H, Zhou J. Numerical simulation on promoting light/dark cycle frequency to improve microalgae growth in photobioreactor with serial lantern-shaped draft tube. Bioresour Technol 2018; 266: 89-96.
[http://dx.doi.org/10.1016/j.biortech.2018.06.055] [PMID: 29957295]
[101]
Wang L, Wang Q, Zhao R, Tao Y, Ying K, Mao X. Novel flat-plate photobioreactor with inclined baffles and internal structure optimization to improve light regime performance. ACS Sust Chem Eng 2021; 9(4): 1550-8.
[http://dx.doi.org/10.1021/acssuschemeng.0c06109]
[102]
Díaz JP, Inostroza C, Acién FFG. Fibonacci-type tubular photobioreactor for the production of microalgae. Proc Biochem 2019; 86: 1-8.
[http://dx.doi.org/10.1016/j.procbio.2019.08.008]
[103]
Capson-Tojo G, Batstone DJ, Grassino M, Hülsen T. Light attenuation in enriched purple phototrophic bacteria cultures: Implications for modelling and reactor design. Water Res 2022; 219: 118572.
[http://dx.doi.org/10.1016/j.watres.2022.118572] [PMID: 35569276]
[104]
Severo IA, dos Santos AM, Deprá MC, Barin JS, Jacob-Lopes E. Microalgae photobioreactors integrated into combustion processes: A patent-based analysis to map technological trends. Algal Res 2021; 60: 102529.
[http://dx.doi.org/10.1016/j.algal.2021.102529]
[105]
Festus AF, Rufus AI, Janet TO. Janet, TO Sustainability reporting: Imperative for turnover growth. Asian. Asian J Econom Business Account 2020; 16(1): 8-18.
[http://dx.doi.org/10.9734/ajeba/2020/v16i130227]
[106]
Deprá MC, Severo IA, dos Santos AM, Zepka LQ, Jacob-Lopes E. Environmental impacts on commercial microalgae-based products: Sustainability metrics and indicators. Algal Res 2020; 51: 102056.
[http://dx.doi.org/10.1016/j.algal.2020.102056]
[107]
Blanken W, Cuaresma M, Wijffels RH, Janssen M. Cultivation of microalgae on artificial light comes at a cost. Algal Res 2013; 2(4): 333-40.
[http://dx.doi.org/10.1016/j.algal.2013.09.004]
[108]
Lane TW. Barriers to microalgal mass cultivation. Curr Opin Biotechnol 2022; 73: 323-8.
[http://dx.doi.org/10.1016/j.copbio.2021.09.013] [PMID: 34710649]
[109]
Loke Show P. Global market and economic analysis of microalgae technology: Status and perspectives. Bioresour Technol 2022; 357: 127329.
[http://dx.doi.org/10.1016/j.biortech.2022.127329]
[110]
Dias RR, Deprá MC, Severo IA, Zepka LQ, Jacob-Lopes E. Smart override of the energy matrix in commercial microalgae facilities: A transition path to a low-carbon bioeconomy. Sustain Energy Technol Assess 2022; 52: 102073.
[http://dx.doi.org/10.1016/j.seta.2022.102073]
[111]
Schade S, Meier T. Distinct microalgae species for food—part 1: A methodological (top-down) approach for the life cycle assessment of microalgae cultivation in tubular photobioreactors. J Appl Phycol 2020; 32(5): 2977-95.
[http://dx.doi.org/10.1007/s10811-020-02177-2]
[112]
Albatayneh A, Juaidi A, Abdallah R, Manzano-Agugliaro F. Influence of the Advancement in the LED lighting technologies on the optimum windows-to-wall ratio of Jordanians residential buildings. Energies 2021; 14(17): 5446.
[http://dx.doi.org/10.3390/en14175446]
[113]
Global Petrol Prices. Electricity prices. Available from: https://www.globalpetrolprices.com/electricity_prices
[114]
Khor PY, Vearing RM, Charlton KE. The effectiveness of nutrition interventions in improving frailty and its associated constructs related to malnutrition and functional decline among community‐dwelling older adults: A systematic review. J Hum Nutr Diet 2022; 35(3): 566-82.
[http://dx.doi.org/10.1111/jhn.12943] [PMID: 34494314]
[115]
Barahoui N, Chidami S, Chaouki J, Fernandez AFG. Internally illuminated photo bioreactor with light pipe for photo-reactive microorganism culture Patent WO 184791A1,, 2022.
[116]
Talebzadeh N, O’brien P. Radiant energy spectrum converter Patent WO 006682A1, 2022.
[117]
Vasylyev S, Grove E. Method of making illumination systems employing thin and flexible waveguides with enhanced light coupling Patent US 011402562B2., 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy