Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Characterization of Novel 4-aryl-4H-chromene Derivatives using Borax and Evaluation of their Anticancer Effects

Author(s): Hadi Adibi, Leila Hosseinzadeh*, Mahya Amirafshari and Fereshteh Jalilian*

Volume 23, Issue 14, 2023

Published on: 19 May, 2023

Page: [1634 - 1643] Pages: 10

DOI: 10.2174/1871520623666230504101651

Price: $65

conference banner
Abstract

Background/Introduction: 4-aryl-4H-chromenes have attracted attention as potential anticancer agents.

Objective: In an effort to discover effective compounds, we designed a new series of these chromenes with methoxy substitution at 2, 3, 4, 5, and 6 positions.

Methods: The synthesized compounds were tested for anticancer properties against two human cancer cell lines (MCF- 7 and PC3) as well as a normal cell line. Furthermore, induction of apoptosis was explored through various methods, such as flow cytometry analysis, morphological changes, activation of caspase 3, ROS, and MMP.

Results: The MTT assay showed that the 5g derivative, with methoxy groups at ortho and meta positions, exhibited the highest potency (IC50 = 40 μM) against the PC3 cell line. Our findings revealed that compound 5g induced apoptosis in the PC3 cell line, which was demonstrated by activation of caspase 3, an increase in ROS levels, and early apoptosis percentage.

Conclusion: These results suggest that compound 5g holds promise as a potential therapeutic approach to cancer treatment.

Graphical Abstract

[1]
El-Agrody, A.M.; Fouda, A.M.; Khattab, E.S.A.E.H. Halogenated 2-amino-4H-benzo[h]chromene derivatives as antitumor agents and the relationship between lipophilicity and antitumor activity. Med. Chem. Res., 2017, 26(4), 691-700.
[http://dx.doi.org/10.1007/s00044-016-1773-x]
[2]
Eid, E.M.; Hassaneen, H.M.E.; Abdelhamid, I.A.; Elwahy, A.H.M. Facile one pot, three component synthesis of novel bis(heterocycles) incorporating thieno[2,3 b]thiophenes via Michael addition reaction. J. Heterocycl. Chem., 2020, 57(5), 2243-2255.
[http://dx.doi.org/10.1002/jhet.3945]
[3]
Ghavidel, H.; Mirza, B.; Soleimani-Amiri, S. A novel, efficient, and recoverable basic Fe3O4 @C nano-catalyst for green synthesis of 4 H -chromenes in water via one-pot three component reactions. Polycycl. Aromat. Compd., 2021, 41(3), 604-625.
[http://dx.doi.org/10.1080/10406638.2019.1607413]
[4]
Molla, A.; Hossain, E.; Hussain, S. Multicomponent domino reactions: Borax catalyzed synthesis of highly functionalised pyran-annulated heterocycles. RSC Advances, 2013, 3(44), 21517-21523.
[http://dx.doi.org/10.1039/c3ra43514h]
[5]
Omar, R.S.; Ragheb, M.A.; Elwahy, A.H.; Abdelhamid, I.A. Facile onepot, three-component synthesis of novel fused 4H-pyrans incorporating 2-phenoxy-N-phenylacetamide core as novel hybrid molecules via Michael addition reaction. Arkivoc, 2021, 183-198.
[http://dx.doi.org/10.24820/ark.5550190.p011.690]
[6]
Rezayati, S.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A. Design of a schiff base complex of copper coated on epoxy-modified core-shell mnps as an environmentally friendly and novel catalyst for the one-pot synthesis of various chromene-annulated heterocycles. ACS Omega, 2021, 6(39), 25608-25622.
[http://dx.doi.org/10.1021/acsomega.1c03672] [PMID: 34632217]
[7]
Matloubi Moghaddam, F.; Eslami, M.; Hoda, G. Cysteic acid grafted to magnetic graphene oxide as a promising recoverable solid acid catalyst for the synthesis of diverse 4H-chromene. Sci. Rep., 2020, 10(1), 20968.
[http://dx.doi.org/10.1038/s41598-020-77872-8] [PMID: 33262479]
[8]
Shanthia, G; Perumal, PT; Rao, U; Sehgal, PK Synthesis and antioxidant activity of indolyl chromenes., 2009.
[9]
Panda, D.; Singh, J.P.; Wilson, L. Suppression of microtubule dynamics by LY290181. A potential mechanism for its antiproliferative action. J. Biol. Chem., 1997, 272(12), 7681-7687.
[http://dx.doi.org/10.1074/jbc.272.12.7681] [PMID: 9065425]
[10]
Rueping, M.; Sugiono, E.; Merino, E. Asymmetric organocatalysis: An efficient enantioselective access to benzopyranes and chromenes. Chemistry, 2008, 14(21), 6329-6332.
[http://dx.doi.org/10.1002/chem.200800836] [PMID: 18576457]
[11]
Patil, S.A.; Patil, R.; Pfeffer, L.M.; Miller, D.D. Chromenes: Potential new chemotherapeutic agents for cancer. Future Med. Chem., 2013, 5(14), 1647-1660.
[http://dx.doi.org/10.4155/fmc.13.126] [PMID: 24047270]
[12]
Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28(6), 517-520.
[http://dx.doi.org/10.1016/0223-5234(93)90020-F]
[13]
Raj, T.; Bhatia, R.K. kapur, A.; Sharma, M.; Saxena, A.K.; Ishar, M.P.S. Cytotoxic activity of 3-(5-phenyl-3 H -[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4 H -chromene-3-carbothioic acid N -phenylamides. Eur. J. Med. Chem., 2010, 45(2), 790-794.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.001] [PMID: 19939522]
[14]
Swelam, S.; El-Salam, A.; Zaki, M. Synthesis of some pyrazolo[3,4-d]pyrimidines and their fused triazole and tetrazole derivatives. J. Serb. Chem. Soc., 1999, 64(11), 655-662.
[http://dx.doi.org/10.2298/JSC9911655S]
[15]
Thomas, N.; Zachariah, S.M. In silico drug design and analysis of 4-Phenyl-4H-chromene derivatives as anticancer and antiinflammatory agents. Int. J. Pharm. Sci. Rev. Res., 2013, 22, 50-54.
[16]
Smith, C.W.; Bailey, J.M.; Billingham, M.E.J.; Chandrasekhar, S.; Dell, C.P.; Harvey, A.K.; Hicks, C.A.; Kingston, A.E.; Wishart, G.N. The anti-rheumatic potential of a series of 2,4-di-substituted-4H-naphtho[1,2-b]pyran-3-carbonitriles. Bioorg. Med. Chem. Lett., 1995, 5(23), 2783-2788.
[http://dx.doi.org/10.1016/0960-894X(95)00487-E]
[17]
Ghorbani-Vaghei, R.; Toghraei-Semiromi, Z.; Karimi-Nami, R. One-pot synthesis of 4H-Chromene and Dihydropyrano [3, 2-c] chromene derivatives in hydroalcoholic media. J. Braz. Chem., 2011, 22, 905-909.
[18]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano [3, 2-c] quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[19]
Kheirollahi, A.; Pordeli, M.; Safavi, M.; Mashkouri, S.; Naimi-Jamal, M.R.; Ardestani, S.K. Cytotoxic and apoptotic effects of synthetic benzochromene derivatives on human cancer cell lines. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(12), 1199-1208.
[http://dx.doi.org/10.1007/s00210-014-1038-5] [PMID: 25261336]
[20]
Khan, A.T.; Lal, M.; Ali, S.; Khan, M.M. One-pot three-component reaction for the synthesis of pyran annulated heterocyclic compounds using DMAP as a catalyst. Tetrahedron Lett., 2011, 52(41), 5327-5332.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.019]
[21]
Shaabani, A.; Samadi, S.; Badri, Z.; Rahmati, A. Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems. Catal. Lett., 2005, 104(1-2), 39-43.
[http://dx.doi.org/10.1007/s10562-005-7433-2]
[22]
Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52(16), 1878-1881.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.031]
[23]
Khurana, J.M.; Kumar, S. Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett., 2009, 50(28), 4125-4127.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.125]
[24]
Mirza-Aghayan, M.; Nazmdeh, S.; Boukherroub, R.; Rahimifard, M.; Tarlani, A.A.; Abolghasemi-Malakshah, M. Convenient and efficient one-pot method for the synthesis of 2-amino-tetrahydro-4 H-chromenes and 2-amino-4 H-benzo [h]-chromenes using catalytic amount of amino-functionalized MCM-41 in aqueous media. Synth. Commun., 2013, 43(11), 1499-1507.
[http://dx.doi.org/10.1080/00397911.2011.643438]
[25]
Wang, X.S.; Shi, D.Q.; Tu, S.J.; Yao, C.S. A convenient synthesis of 5-Oxo-5, 6, 7, 8-tetrahydro-4 H-benzo-[b]-pyran derivatives catalyzed by KF-Alumina. Synth. Commun., 2003, 33(1), 119-126.
[http://dx.doi.org/10.1081/SCC-120015567]
[26]
Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B.S.; Yadav, J.S. Cerium (III) chloride-catalyzed one-pot synthesis of tetrahydrobenzo [b] pyrans. Synth. Commun., 2009, 39(3), 433-442.
[http://dx.doi.org/10.1080/00397910802378399]
[27]
He, L.; Szopinski, D.; Wu, Y.; Luinstra, G.A.; Theato, P. Toward self-healing hydrogels using one-pot thiol-ene click and borax-diol chemistry. ACS Macro Lett., 2015, 4(7), 673-678.
[http://dx.doi.org/10.1021/acsmacrolett.5b00336] [PMID: 35596485]
[28]
Hussain, S.; Bharadwaj, S.K.; Chaudhuri, M.K.; Kalita, H. Borax as an Efficient Metal Free Catalyst for Hetero Michael Reactions in an Aqueous Medium; Wiley Online Library, 2007.
[29]
Amiri-Zirtol, L.; Amrollahi, M.A. Borax: an environmentally clean catalyst for the synthesize of pyrano [2, 3-c] pyrazoles and xanthene-1, 8-diones in H2O. Polycycl. Aromat. Compd., 2022, 42(8), 5696-5707.
[http://dx.doi.org/10.1080/10406638.2021.1954039]
[30]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group. J. Med. Chem., 2004, 47(25), 6299-6310.
[http://dx.doi.org/10.1021/jm049640t] [PMID: 15566300]
[31]
Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan-Grundy, C.; Denis, R.; Barriault, N.; Vaillancourt, L.; Charron, S.; Dodd, J.; Attardo, G.; Labrecque, D.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg. Med. Chem. Lett., 2005, 15(21), 4745-4751.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.066] [PMID: 16143530]
[32]
Amr, A.G.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488.
[http://dx.doi.org/10.1016/j.bmc.2006.04.045] [PMID: 16713269]
[33]
Kemnitzer, W.; Jiang, S.; Wang, Y.; Kasibhatla, S.; Crogan-Grundy, C.; Bubenik, M.; Labrecque, D.; Denis, R.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based HTS assay. Part 5: Modifications of the 2- and 3-positions. Bioorg. Med. Chem. Lett., 2008, 18(2), 603-607.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.078] [PMID: 18077161]
[34]
Adibi, H.; Hosseinzadeh, L.; Farhadi, S.; Ahmadi, F. Synthesis and cytotoxic evaluation of 6-amino-4-aryl-3-methyl-2, 4-dihydropyrano [2, 3-C] pyrazole-carbonitrile derivatives using borax with potential anticancer effects. J. Rep. Pharm. Sci., 2013, 2(2), 27-35.
[35]
Arjomandi, O.K.; Almasi, S.; Hosseinzadeh, L.; Kavoosi, M.; Adibi, H. Preparation, characterization and in vitro biological evaluation of novel curcumin derivatives as cytotoxic and apoptosis-inducing agents. Anticancer. Agents Med. Chem., 2021, 21(10), 1309-1322.
[http://dx.doi.org/10.2174/1871520620666201002111205] [PMID: 33006540]
[36]
Hosseinzadeh, L.; Soheili, S.; Ghiasvand, N.; Ahmadi, F. shokoohinia, Y. Fatty acid mixtures from nigella sativa protects pc12 cells from oxidative stress and apoptosis induced by doxorubicin. Ulum-i Daruyi, 2018, 24(1), 15-22.
[http://dx.doi.org/10.15171/PS.2018.04]
[37]
Hosseinzadeh, L.; Amin, N.; Adibi, H.; Beyhaghi, E.; Hayati, S. In vitro cytotoxicity and apoptosis inducing evaluation of novel halogenated isatin derivatives. Anticancer. Agents Med. Chem., 2022, 22(13), 2439-2447.
[http://dx.doi.org/10.2174/1871520622666220119091642] [PMID: 35043767]
[38]
Jalilian, F.; Moieni-Arya, M.; Hosseinzadeh, L.; Shokoohinia, Y. Oxypeucedanin and isoimperatorin extracted from Prangos ferulacea (L.) Lindl protect PC12 pheochromocytoma cells from oxidative stress and apoptosis induced by doxorubicin. Res. Pharm. Sci., 2021, 17(1), 12-21.
[PMID: 34909040]
[39]
Mourya, M.; Basak, A.K. Advances in chemistry of 2-amino-3-cyano-4-aryl 4h-chromenes via dehydrogenation reaction. J Sci Res., 2019, 63, 205-217.
[40]
Wang, H.J.; Zhou, Y.Y.; Liu, X.L.; Zhang, W.H.; Chen, S.; Liu, X.W.; Zhou, Y. Regioselective synthesis and evaluation of 2-amino 3-cyano chromene-chrysin hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2020, 30(9)127087
[http://dx.doi.org/10.1016/j.bmcl.2020.127087] [PMID: 32160978]
[41]
Afifi, T.H.; Okasha, R.M.; Ahmed, H.E.A.; Ilaš, J.; Saleh, T.; Abd-El-Aziz, A.S. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents. EXCLI J., 2017, 16, 868-902.
[PMID: 28828001]
[42]
Tarhan, H.N.; Hosseinzadeh, L.; Aliabadi, A.; Babak, G.; Foroumadi, A. Cytotoxic and apoptogenic properties of 2-phenylthiazole-4-carboxamide derivatives in human carcinoma cell lines. J Rep Pharm Sci., 2012, 1(1), 1-6.
[43]
Ren, D.; Tu, H.C.; Kim, H.; Wang, G.X.; Bean, G.R.; Takeuchi, O.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.D.; Cheng, E.H.Y. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science, 2010, 330(6009), 1390-1393.
[http://dx.doi.org/10.1126/science.1190217] [PMID: 21127253]
[44]
Slee, E.A.; Harte, M.T.; Kluck, R.M.; Wolf, B.B.; Casiano, C.A.; Newmeyer, D.D.; Wang, H.G.; Reed, J.C.; Nicholson, D.W.; Alnemri, E.S.; Green, D.R.; Martin, S.J. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol., 1999, 144(2), 281-292.
[http://dx.doi.org/10.1083/jcb.144.2.281] [PMID: 9922454]
[45]
Willis, S.N.; Fletcher, J.I.; Kaufmann, T.; van Delft, M.F.; Chen, L.; Czabotar, P.E.; Ierino, H.; Lee, E.F.; Fairlie, W.D.; Bouillet, P.; Strasser, A.; Kluck, R.M.; Adams, J.M.; Huang, D.C.S. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 2007, 315(5813), 856-859.
[http://dx.doi.org/10.1126/science.1133289] [PMID: 17289999]
[46]
Polyak, K.; Xia, Y.; Zweier, J.L.; Kinzler, K.W.; Vogelstein, B. A model for p53-induced apoptosis. Nature, 1997, 389(6648), 300-305.
[http://dx.doi.org/10.1038/38525] [PMID: 9305847]
[47]
Benhar, M.; Engelberg, D.; Levitzki, A. ROS, stress activated kinases and stress signaling in cancer. EMBO Rep., 2002, 3(5), 420-425.
[http://dx.doi.org/10.1093/embo-reports/kvf094] [PMID: 11991946]
[48]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[49]
Ma, L.; Wang, X.; Li, W.; Li, T.; Xiao, S.; Lu, J.; Xu, J.; Zhao, Y. Rational design, synthesis and biological evaluation of triphenylphosphonium-ginsenoside conjugates as mitochondria-targeting anti-cancer agents. Bioorg. Chem., 2020, 103104150
[http://dx.doi.org/10.1016/j.bioorg.2020.104150] [PMID: 32942193]
[50]
Fadok, V.A.; Voelker, D.R.; Campbell, P.A.; Cohen, J.J.; Bratton, D.L.; Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol., 1992, 148(7), 2207-2216.
[http://dx.doi.org/10.4049/jimmunol.148.7.2207] [PMID: 1545126]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy