Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advances in Exosome Research in the Management of Lung Cancer

Author(s): Huiqing Shen, Dawei Cao and Xinri Zhang*

Volume 23, Issue 10, 2023

Published on: 19 May, 2023

Page: [921 - 930] Pages: 10

DOI: 10.2174/1568026623666230504101208

Price: $65

Abstract

Lung cancer is one of the most common malignant tumors, and its death rate is much higher than that of colon, kidney, breast, and prostate cancers, and its 5-year survival rate is only 18%. Lung cancer has no specific clinical symptoms in its early stages and lacks effective detection, making early detection difficult. The survival rate for advanced lung cancer is meager, with a median survival of only 12 months for stage IIIB/IV non-small cell lung cancer treated with platinumbased chemotherapy. Exosomes could provide vital information for the early diagnosis of lung cancer and have the potential to become a tumor marker for lung cancer. In addition, scientists have proposed encouraging ways to treat lung cancer by loading drugs, proteins, microRNAs, and siRNAs into exosomes. Therefore, studying lung cancer exosomes and exosomal nano drugs will provide new ideas and approaches for the diagnosis and treatment of lung cancer. This paper reviews the progress of research on the biological functions of exosomes and exosomal nanomedicines and their applications in clinical practice.

« Previous
Graphical Abstract

[1]
Postmus, P.E.; Kerr, K.M.; Oudkerk, M.; Senan, S.; Waller, D.A.; Vansteenkiste, J.; Escriu, C.; Peters, S. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2017, 28(Suppl. 4), iv1-iv21.
[http://dx.doi.org/10.1093/annonc/mdx222] [PMID: 28881918]
[2]
Vansteenkiste, J.; Crinò, L.; Dooms, C.; Douillard, J.Y.; Faivre-Finn, C.; Lim, E.; Rocco, G.; Senan, S.; Van Schil, P.; Veronesi, G.; Stahel, R.; Peters, S.; Felip, E.; Stahel, R.; Felip, E.; Peters, S.; Kerr, K.; Besse, B.; Vansteenkiste, J.; Eberhardt, W.; Edelman, M.; Mok, T.; O’Byrne, K.; Novello, S.; Bubendorf, L.; Marchetti, A.; Baas, P.; Reck, M.; Syrigos, K.; Paz-Ares, L.; Smit, E.F.; Meldgaard, P.; Adjei, A.; Nicolson, M.; Crinò, L.; Van Schil, P.; Senan, S.; Faivre-Finn, C.; Rocco, G.; Veronesi, G.; Douillard, J-Y.; Lim, E.; Dooms, C.; Weder, W.; De Ruysscher, D.; Le Pechoux, C.; De Leyn, P.; Westeel, V. 2nd ESMO Consensus Conference on Lung Cancer: Early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann. Oncol., 2014, 25(8), 1462-1474.
[http://dx.doi.org/10.1093/annonc/mdu089] [PMID: 24562446]
[3]
de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; van ’t Westeinde, S.; Prokop, M.; Mali, W.P.; Mohamed Hoesein, F.A.A.; van Ooijen, P.M.A.; Aerts, J.G.J.V.; den Bakker, M.A.; Thunnissen, E.; Verschakelen, J.; Vliegenthart, R.; Walter, J.E.; ten Haaf, K.; Groen, H.J.M.; Oudkerk, M. Reduced lung-cancer mortality with volume ct screening in a randomized trial. N. Engl. J. Med., 2020, 382(6), 503-513.
[http://dx.doi.org/10.1056/NEJMoa1911793] [PMID: 31995683]
[4]
Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med., 2011, 365(5), 395-409.
[http://dx.doi.org/10.1056/NEJMoa1102873] [PMID: 21714641]
[5]
Hong, H.; Hahn, S.; Matsuguma, H.; Inoue, M.; Shintani, Y.; Honda, O.; Izumi, Y.; Asakura, K.; Asamura, H.; Isaka, T.; Lee, K.; Choi, Y.S.; Kim, Y.T.; Park, C.M.; Goo, J.M.; Yoon, S.H. Pleural recurrence after transthoracic needle lung biopsy in stage I lung cancer: a systematic review and individual patient-level meta-analysis. Thorax, 2021, 76(6), 582-590.
[http://dx.doi.org/10.1136/thoraxjnl-2020-216492] [PMID: 33723018]
[6]
Chiu, Y.W.; Kao, Y.H.; Simoff, M.J.; Ost, D.E.; Wagner, O.; Lavin, J.; Culbertson, R.A.; Smith, D.G. Costs of biopsy and complications in patients with lung cancer. Clinicoecon. Outcomes Res., 2021, 13, 191-200.
[http://dx.doi.org/10.2147/CEOR.S295494] [PMID: 33762834]
[7]
Srivastava, A.; Filant, J.; Moxley, K.; Sood, A.; McMeekin, S.; Ramesh, R. Exosomes: a role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment. Curr. Gene Ther., 2015, 15(2), 182-192.
[http://dx.doi.org/10.2174/1566523214666141224100612] [PMID: 25537774]
[8]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[9]
Cossetti, C.; Iraci, N.; Mercer, T.R.; Leonardi, T.; Alpi, E.; Drago, D.; Alfaro-Cervello, C.; Saini, H.K.; Davis, M.P.; Schaeffer, J.; Vega, B.; Stefanini, M.; Zhao, C.; Muller, W.; Garcia-Verdugo, J.M.; Mathivanan, S.; Bachi, A.; Enright, A.J.; Mattick, J.S.; Pluchino, S. Extracellular vesicles from neural stem cells transfer IFNγ via Ifngr1 to activate Stat1 signaling in target cells. Mol. Cell, 2014, 56(2), 193-204.
[http://dx.doi.org/10.1016/j.molcel.2014.08.020] [PMID: 25242146]
[10]
Pironti, G.; Strachan, R.T.; Abraham, D.; Mon-Wei Yu, S.; Chen, M.; Chen, W.; Hanada, K.; Mao, L.; Watson, L.J.; Rockman, H.A. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II Type 1 receptors. Circulation, 2015, 131(24), 2120-2130.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.015687] [PMID: 25995315]
[11]
Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol., 2008, 110(1), 13-21.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.033] [PMID: 18589210]
[12]
Nilsson, J.; Skog, J.; Nordstrand, A.; Baranov, V.; Mincheva-Nilsson, L.; Breakefield, X.O.; Widmark, A. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br. J. Cancer, 2009, 100(10), 1603-1607.
[http://dx.doi.org/10.1038/sj.bjc.6605058] [PMID: 19401683]
[13]
Belhadj, Z.; He, B.; Deng, H.; Song, S.; Zhang, H.; Wang, X.; Dai, W.; Zhang, Q. A combined “eat me/don’t eat me” strategy based on extracellular vesicles for anticancer nanomedicine. J. Extracell. Vesicles, 2020, 9(1), 1806444.
[http://dx.doi.org/10.1080/20013078.2020.1806444] [PMID: 32944191]
[14]
Bao, J.; Zhang, Q.; Duan, T.; Hu, R.; Tang, J. The fate of nanoparticles in vivo and the strategy of designing stealth nanoparticle for drug delivery. Curr. Drug Targets, 2021, 22(8), 922-946.
[http://dx.doi.org/10.2174/1389450122666210118105122] [PMID: 33461465]
[15]
Srivastava, A.; Amreddy, N.; Babu, A.; Panneerselvam, J.; Mehta, M.; Muralidharan, R.; Chen, A.; Zhao, Y.D.; Razaq, M.; Riedinger, N.; Kim, H.; Liu, S.; Wu, S.; Abdel-Mageed, A.B.; Munshi, A.; Ramesh, R. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci. Rep., 2016, 6(1), 38541.
[http://dx.doi.org/10.1038/srep38541] [PMID: 27941871]
[16]
Wiklander, O.P.B.; Nordin, J.Z.; O’Loughlin, A.; Gustafsson, Y.; Corso, G.; Mäger, I.; Vader, P.; Lee, Y.; Sork, H.; Seow, Y.; Heldring, N.; Alvarez-Erviti, L.; Smith, C.I.E.; Le Blanc, K.; Macchiarini, P.; Jungebluth, P.; Wood, M.J.A.; Andaloussi, S.E.L. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles, 2015, 4(1), 26316.
[http://dx.doi.org/10.3402/jev.v4.26316] [PMID: 25899407]
[17]
Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release, 2015, 219, 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030]
[18]
Song, H.; Liu, B.; Dong, B.; Xu, J.; Zhou, H.; Na, S.; Liu, Y.; Pan, Y.; Chen, F.; Li, L.; Wang, J. Exosome-based delivery of natural products in cancer therapy. Front. Cell Dev. Biol., 2021, 9, 650426.
[http://dx.doi.org/10.3389/fcell.2021.650426] [PMID: 33738290]
[19]
Moon, B.; Chang, S. Exosome as a delivery vehicle for cancer therapy. Cells, 2022, 11(3), 316.
[http://dx.doi.org/10.3390/cells11030316] [PMID: 35159126]
[20]
Antimisiaris, S.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 2018, 10(4), 218.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[21]
Mamdani, H.; Ahmed, S.; Armstrong, S.; Mok, T.; Jalal, S.I. Blood-based tumor biomarkers in lung cancer for detection and treatment. Transl. Lung Cancer Res., 2017, 6(6), 648-660.
[http://dx.doi.org/10.21037/tlcr.2017.09.03] [PMID: 29218268]
[22]
Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol., 2013, 8(9), 1156-1162.
[http://dx.doi.org/10.1097/JTO.0b013e318299ac32]
[23]
Tamiya, H.; Mitani, A.; Saito, A.; Ishimori, T.; Saito, M.; Isago, H.; Jo, T.; Yamauchi, Y.; Tanaka, G.; Nagase, T. Exosomal MicroRNA expression profiling in patients with lung adenocarcinoma-associated malignant pleural effusion. Anticancer Res., 2018, 38(12), 6707-6714.
[http://dx.doi.org/10.21873/anticanres.13039] [PMID: 30504380]
[24]
Kim, J.E.; Eom, J.S.; Kim, W.; Jo, E.J.; Mok, J.; Lee, K.; Kim, K.U.; Park, H.; Lee, M.K.; Kim, M. Diagnostic value of microRNAs derived from exosomes in bronchoalveolar lavage fluid of early-stage lung adenocarcinoma: A pilot study. Thorac. Cancer, 2018, 9(8), 911-915.
[http://dx.doi.org/10.1111/1759-7714.12756] [PMID: 29806739]
[25]
Sandfeld-Paulsen, B.; Jakobsen, K.R.; Bæk, R.; Folkersen, B.H.; Rasmussen, T.R.; Meldgaard, P.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal proteins as diagnostic biomarkers in lung cancer. J. Thorac. Oncol., 2016, 11(10), 1701-1710.
[http://dx.doi.org/10.1016/j.jtho.2016.05.034]
[26]
Niu, L.; Song, X.; Wang, N.; Xue, L.; Song, X.; Xie, L. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer. Cancer Sci., 2019, 110(1), 433-442.
[http://dx.doi.org/10.1111/cas.13862] [PMID: 30407700]
[27]
Zhang, L.; Shan, X.; Wang, J.; Zhu, J.; Huang, Z.; Zhang, H.; Zhou, X.; Cheng, W.; Shu, Y.; Zhu, W.; Liu, P. A three-microRNA signature for lung squamous cell carcinoma diagnosis in Chinese male patients. Oncotarget, 2017, 8(49), 86897-86907.
[http://dx.doi.org/10.18632/oncotarget.19666] [PMID: 29156844]
[28]
Feng, M.; Zhao, J.; Wang, L.; Liu, J. Upregulated expression of serum exosomal microRNAs as diagnostic biomarkers of lung adenocarcinoma. Ann. Clin. Lab. Sci., 2018, 48(6), 712-718.
[PMID: 30610040]
[29]
Zhang, Y.; Zhang, Y.; Yin, Y.; Li, S. Detection of circulating exosomal miR-17-5p serves as a novel non-invasive diagnostic marker for non-small cell lung cancer patients. Pathol. Res. Pract., 2019, 215(8), 152466.
[http://dx.doi.org/10.1016/j.prp.2019.152466] [PMID: 31146974]
[30]
Wu, Q.; Yu, L.; Lin, X.; Zheng, Q.; Zhang, S.; Chen, D.; Pan, X.; Huang, Y. Combination of Serum miRNAs with Serum Exosomal miRNAs in early diagnosis for non-small-cell lung cancer. Cancer Manag. Res., 2020, 12, 485-495.
[http://dx.doi.org/10.2147/CMAR.S232383] [PMID: 32021461]
[31]
Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol., 2016, 11(3), 295-303.
[http://dx.doi.org/10.1038/nnano.2015.292] [PMID: 26689376]
[32]
Qiu, L.; Valente, M.; Dolen, Y.; Jäger, E.; Beest, M.T.; Zheng, L.; Figdor, C.G.; Verdoes, M. Endolysosomal-escape nanovaccines through adjuvant-induced tumor antigen assembly for enhanced effector CD8(+) T cell activation. Small, 2018, 14(15), e1703539.
[http://dx.doi.org/10.1002/smll.201703539]
[33]
Wu, J.; Li, S.; Zhang, P. Tumor-derived exosomes: Immune properties and clinical application in lung cancer. Cancer Drug Resist., 2022, 5(1), 102-113.
[http://dx.doi.org/10.20517/cdr.2021.99] [PMID: 35582534]
[34]
Wang, C.; Xu, L.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater., 2014, 26(48), 8154-8162.
[http://dx.doi.org/10.1002/adma.201402996] [PMID: 25331930]
[35]
Tao, W.; Zhu, X.; Yu, X.; Zeng, X.; Xiao, Q.; Zhang, X.; Ji, X.; Wang, X.; Shi, J.; Zhang, H.; Mei, L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater., 2017, 29(1), 1603276.
[http://dx.doi.org/10.1002/adma.201603276] [PMID: 27797119]
[36]
Moy, A.J.; Tunnell, J.W. Combinatorial immunotherapy and nanoparticle mediated hyperthermia. Adv. Drug Deliv. Rev., 2017, 114, 175-183.
[http://dx.doi.org/10.1016/j.addr.2017.06.008] [PMID: 28625829]
[37]
Melo, S.A.; Luecke, L.B.; Kahlert, C.; Fernandez, A.F.; Gammon, S.T.; Kaye, J.; LeBleu, V.S.; Mittendorf, E.A.; Weitz, J.; Rahbari, N.; Reissfelder, C.; Pilarsky, C.; Fraga, M.F.; Piwnica-Worms, D.; Kalluri, R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015, 523(7559), 177-182.
[http://dx.doi.org/10.1038/nature14581] [PMID: 26106858]
[38]
Liu, Q.; Fan, T.; Zheng, Y.; Yang, S.; Yu, Z.; Duo, Y.; Zhang, Y.; Adah, D.; Shi, L.; Sun, Z.; Wang, D.; Xie, J.; Wu, H.; Wu, Z.; Ge, C.; Qiao, L.; Wei, C.; Huang, L.; Yan, Q.; Yang, Q.; Bao, S.; Liu, L.P.; Zhang, H. Immunogenic exosome-encapsulated black phosphorus nanoparticles as an effective anticancer photo-nanovaccine. Nanoscale, 2020, 12(38), 19939-19952.
[http://dx.doi.org/10.1039/D0NR05953F] [PMID: 32991664]
[39]
Chao, Y.; Chen, G.; Liang, C.; Xu, J.; Dong, Z.; Han, X.; Wang, C.; Liu, Z. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Lett., 2019, 19(7), 4287-4296.
[http://dx.doi.org/10.1021/acs.nanolett.9b00579] [PMID: 31132270]
[40]
Petrova, T.V.; Koh, G.Y. Biological functions of lymphatic vessels. Science, 2020, 369(6500), eaax4063.
[http://dx.doi.org/10.1126/science.aax4063] [PMID: 32646971]
[41]
Shen, W.T.; Hsu, R.S.; Fang, J.H.; Hu, P.F.; Chiang, C.S.; Hu, S.H. marginative delivery-mediated extracellular leakiness and t cell infiltration in lung metastasis by a biomimetic nanoraspberry. Nano Lett., 2021, 21(3), 1375-1383.
[http://dx.doi.org/10.1021/acs.nanolett.0c04122] [PMID: 33562964]
[42]
Lin, B.; Wang, Y.; Zhao, K.; Lü, W.D.; Hui, X.; Ma, Y.; Lv, R. Exosome-based rare earth nanoparticles for targeted in situ and metastatic tumor imaging with chemo-assisted immunotherapy. Biomater. Sci., 2022, 10(3), 744-752.
[http://dx.doi.org/10.1039/D1BM01809D] [PMID: 34940770]
[43]
Sridharan, K.; Gogtay, N.J. Therapeutic nucleic acids: Current clinical status. Br. J. Clin. Pharmacol., 2016, 82(3), 659-672.
[http://dx.doi.org/10.1111/bcp.12987] [PMID: 27111518]
[44]
del Pozo-Rodríguez, A.; Rodríguez-Gascón, A.; Rodríguez-Castejón, J.; Vicente-Pascual, M.; Gómez-Aguado, I.; Battaglia, L.S.; Solinís, M.Á. Gene Therapy. Adv. Biochem. Eng. Biotechnol., 2019, 171, 321-368.
[http://dx.doi.org/10.1007/10_2019_109] [PMID: 31492963]
[45]
Nayerossadat, N.; Ali, P.A.; Maedeh, T. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[46]
Luiz, M.T.; Tofani, L.B.; Araújo, V.H.S.; Di Filippo, L.D.; Duarte, J.L.; Marchetti, J.M.; Chorilli, M. Gene therapy based on lipid nanoparticles as non-viral vectors for glioma treatment. Curr. Gene Ther., 2021, 21(5), 452-463.
[http://dx.doi.org/10.2174/1566523220999201230205126] [PMID: 33390137]
[47]
Mancheño-Corvo, P.; Martín-Duque, P. Viral gene therapy. Clin. Transl. Oncol., 2006, 8(12), 858-867.
[http://dx.doi.org/10.1007/s12094-006-0149-y]
[48]
Chen, Y.H.; Keiser, M.S.; Davidson, B.L. Viral vectors for gene transfer. Curr. Protoc. Mouse Biol., 2018, 8(4), e58.
[http://dx.doi.org/10.1002/cpmo.58] [PMID: 30485696]
[49]
Darband, S.G.; Mirza-Aghazadeh-Attari, M.; Kaviani, M.; Mihanfar, A.; Sadighparvar, S.; Yousefi, B.; Majidinia, M. Exosomes: natural nanoparticles as bio shuttles for RNAi delivery. J. Control. Release, 2018, 289, 158-170.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.001]
[50]
Jiang, X.C.; Gao, J.Q. Exosomes as novel bio-carriers for gene and drug delivery. Int. J. Pharm., 2017, 521(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[51]
Meehan, K.; Vella, L.J. The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit. Rev. Clin. Lab. Sci., 2016, 53(2), 121-131.
[http://dx.doi.org/10.3109/10408363.2015.1092496] [PMID: 26479834]
[52]
Fedorko, M.; Pacik, D.; Wasserbauer, R.; Juracek, J.; Varga, G.; Ghazal, M.; Nussir, M.I. MicroRNAs in the pathogenesis of renal cell carcinoma and their diagnostic and prognostic utility as cancer biomarkers. Int. J. Biol. Markers, 2016, 31(1), 26-37.
[http://dx.doi.org/10.5301/jbm.5000174] [PMID: 26481440]
[53]
Li, J.; Yu, J.; Zhang, H.; Wang, B.; Guo, H.; Bai, J.; Wang, J.; Dong, Y.; Zhao, Y.; Wang, Y. Exosomes-Derived MiR-302b Suppresses lung cancer cell proliferation and migration via TGFβRII Inhibition. Cell. Physiol. Biochem., 2016, 38(5), 1715-1726.
[http://dx.doi.org/10.1159/000443111] [PMID: 27160836]
[54]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[55]
Winter, J.; Jung, S.; Keller, S.; Gregory, R.I.; Diederichs, S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell Biol., 2009, 11(3), 228-234.
[http://dx.doi.org/10.1038/ncb0309-228] [PMID: 19255566]
[56]
Hwang, H-W.; Mendell, J.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer, 2006, 94(6), 776-780.
[http://dx.doi.org/10.1038/sj.bjc.6603023] [PMID: 16495913]
[57]
Giallombardo, M.; Chacártegui Borrás, J.; Castiglia, M.; Van Der Steen, N.; Mertens, I.; Pauwels, P.; Peeters, M.; Rolfo, C. Exosomal miRNA analysis in non-small cell lung cancer (NSCLC) patients’ plasma through qPCR: a feasible liquid biopsy tool. J. Vis. Exp., 2016, (111), 53900.
[http://dx.doi.org/10.3791/53900] [PMID: 27285610]
[58]
Grimolizzi, F.; Monaco, F.; Leoni, F.; Bracci, M.; Staffolani, S.; Bersaglieri, C.; Gaetani, S.; Valentino, M.; Amati, M.; Rubini, C.; Saccucci, F.; Neuzil, J.; Tomasetti, M.; Santarelli, L. Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci. Rep., 2017, 7(1), 15277.
[http://dx.doi.org/10.1038/s41598-017-15475-6] [PMID: 29127370]
[59]
Shen, J.; Xu, J.; Chen, B.; Ma, D.; Chen, Z.; Li, J.C.; Zhu, C. Elevated integrin α6 expression is involved in the occurrence and development of lung adenocarcinoma, and predicts a poor prognosis: A study based on immunohistochemical analysis and bioinformatics. J. Cancer Res. Clin. Oncol., 2019, 145(7), 1681-1693.
[http://dx.doi.org/10.1007/s00432-019-02907-1] [PMID: 31175464]
[60]
Corcoran, C.; Rani, S.; Breslin, S.; Gogarty, M.; Ghobrial, I.M.; Crown, J.; O’Driscoll, L. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Mol. Cancer, 2014, 13(1), 71.
[http://dx.doi.org/10.1186/1476-4598-13-71] [PMID: 24655723]
[61]
Li, X-J.; Luo, X-Q.; Han, B-W.; Duan, F-T.; Wei, P-P.; Chen, Y-Q. MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br. J. Cancer, 2013, 109(8), 2189-2198.
[http://dx.doi.org/10.1038/bjc.2013.562] [PMID: 24030073]
[62]
Krishnan, K.; Steptoe, A.L.; Martin, H.C.; Pattabiraman, D.R.; Nones, K.; Waddell, N.; Mariasegaram, M.; Simpson, P.T.; Lakhani, S.R.; Vlassov, A.; Grimmond, S.M.; Cloonan, N. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA, 2013, 19(12), 1767-1780.
[http://dx.doi.org/10.1261/rna.042143.113] [PMID: 24158791]
[63]
Xu, W.; Hang, M.; Yuan, C.Y.; Wu, F.L.; Chen, S.B.; Xue, K. MicroRNA-139-5p inhibits cell proliferation and invasion by targeting insulin-like growth factor 1 receptor in human non-small cell lung cancer. Int. J. Clin. Exp. Pathol., 2015, 8(4), 3864-3870.
[PMID: 26097570]
[64]
Cagel, M.; Grotz, E.; Bernabeu, E.; Moretton, M.A.; Chiappetta, D.A. Doxorubicin: nanotechnological overviews from bench to bedside. Drug Discov. Today, 2017, 22(2), 270-281.
[http://dx.doi.org/10.1016/j.drudis.2016.11.005] [PMID: 27890669]
[65]
Banerjee, A.; Pathak, S.; Subramanium, V.D. G, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov. Today, 2017, 22(8), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2017.05.006] [PMID: 28545838]
[66]
Ross, J.S.; Schenkein, D.P.; Pietrusko, R.; Rolfe, M.; Linette, G.P.; Stec, J.; Stagliano, N.E.; Ginsburg, G.S.; Symmans, W.F.; Pusztai, L.; Hortobagyi, G.N. Targeted therapies for cancer 2004. Am. J. Clin. Pathol., 2004, 122(4), 598-609.
[http://dx.doi.org/10.1309/5CWPU41AFR1VYM3F] [PMID: 15487459]
[67]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030]
[68]
Braberg, H.; Echeverria, I.; Bohn, S.; Cimermancic, P.; Shiver, A.; Alexander, R.; Xu, J.; Shales, M.; Dronamraju, R.; Jiang, S.; Dwivedi, G.; Bogdanoff, D.; Chaung, K.K.; Hüttenhain, R.; Wang, S.; Mavor, D.; Pellarin, R.; Schneidman, D.; Bader, J.S.; Fraser, J.S.; Morris, J.; Haber, J.E.; Strahl, B.D.; Gross, C.A.; Dai, J.; Boeke, J.D.; Sali, A.; Krogan, N.J. Genetic interaction mapping informs integrative structure determination of protein complexes. Science, 2020, 370(6522), eaaz4910.
[http://dx.doi.org/10.1126/science.aaz4910] [PMID: 33303586]
[69]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]
[70]
Slingerland, M.; Guchelaar, H.J.; Gelderblom, H. Histone deacetylase inhibitors. Anticancer Drugs, 2014, 25(2), 140-149.
[http://dx.doi.org/10.1097/CAD.0000000000000040] [PMID: 24185382]
[71]
Lin, Y.; Li, S.; Xiao, Z.; Chen, S.; Yang, L.; Peng, Q.; Li, H.; Fu, J.; Yu, X.; Zhang, L. Epigenetic inhibition assisted chemotherapeutic treatment of lung cancer based on artificial exosomes. Pharmacol. Res., 2021, 171, 105787.
[http://dx.doi.org/10.1016/j.phrs.2021.105787] [PMID: 34314859]
[72]
Mulcahy, L.A.; Pink, R.C.; Carter, D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 2014, 3(1), 24641.
[http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
[73]
Finn, O. J. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Ann. Oncol., 2012, 23(Suppl. 8), viii6-9.
[http://dx.doi.org/10.1093/annonc/mds256]
[74]
Parolini, I.; Federici, C.; Raggi, C.; Lugini, L.; Palleschi, S.; De Milito, A.; Coscia, C.; Iessi, E.; Logozzi, M.; Molinari, A.; Colone, M.; Tatti, M.; Sargiacomo, M.; Fais, S. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem., 2009, 284(49), 34211-34222.
[http://dx.doi.org/10.1074/jbc.M109.041152] [PMID: 19801663]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy