Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Current Expansion of Silver and Gold Nanomaterials towards Cancer Theranostics: Development of Therapeutics

Author(s): Pawan Gupta*, Kritigya Mishra, Amit Kumar Mittal*, Neha Handa and Manash K. Paul

Volume 20, Issue 3, 2024

Published on: 26 May, 2023

Page: [356 - 372] Pages: 17

DOI: 10.2174/1573413719666230503144904

Price: $65

conference banner
Abstract

Nanomaterial-based therapeutics is an emerging tool for the treatment of numerous types of cancer. Various types of polymeric, lipid and inorganic nanoparticles (NPs) result in a wider series of applications in cancer diagnosis and therapeutics. The NPs properties are due to high surface area to volume ratio, surface plasmon resonance, absorption in the visible spectrum and light scattering. These unique characteristics of NPs arise due to their optical surface properties for conjugation/surface modification and smaller size. In cancer therapeutics, NPs based products are used as a biomarker for early detection/diagnosis of tumours, drug nano-conjugates for the delivery of chemotherapeutic drugs to the tumour-specific site, chemo-protective agents, etc.

Furthermore, other advantages of NPs are biocompatibility, lesser toxicity, enhanced permeability and retention effect, higher stability, and specific targeting with a selective accumulation of nano drugs in the tissue of the tumour. The selective targeting of NPs to tumour tissue is possible by adding surface-active targeting agents i.e., antibodies. The selective transport of drug NPs conjugates to the cancer cells is increased and extravagated due to permeable vasculature from endothelial cells gap while failing the transport of drug NPs conjugates in normal cells. This review emphasizes metallic NPs, including silver NPs (AgNPs) and gold NPs (AuNPs), which are extensively reconnoitered in various applications in cellular targeting, imaging, drug delivery, DNA-NPs conjugates for biosensor/point of care devices development, photothermal/photodynamic therapy, protein-protein interaction, etc. In addition, this review discussed different synthetic methods of AgNPs and AuNPs and characterization methods. Furthermore, it highlighted the different properties and applications of AgNPs and AuNPs in cancer theranostics.

Graphical Abstract

[1]
Dong, P.; Rakesh, K.P.; Manukumar, H.M.; Mohammed, Y.H.E.; Karthik, C.S.; Sumathi, S.; Mallu, P.; Qin, H.L. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem., 2019, 85, 325-336.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.019] [PMID: 30658232]
[2]
Yang, J.; Yang, Y.W. Metal–organic frameworks for biomedical applications. Small, 2020, 16(10), 1906846.
[http://dx.doi.org/10.1002/smll.201906846] [PMID: 32026590]
[3]
Dunuweera, S.P.; Rajapakse, R.M.S.I.; Rajapakshe, R.B.S.D.; Wijekoon, S.H.D.P.; Thilakarathna, N.M.G.G.S.; Rajapakse, R.M.G. Review on targeted drug delivery carriers used in nanobiomedical applications. Curr. Nanosci., 2019, 15(4), 382-397.
[http://dx.doi.org/10.2174/1573413714666181106114247]
[4]
Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.K.; Marchon, D.; Flatt, R.J.; Estrela-Lopis, I.; Llop, J.; Moya, S.; Ziolo, R.F. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep., 2017, 72(1), 1-58.
[http://dx.doi.org/10.1016/j.surfrep.2017.02.001]
[5]
Ezzat, M.A.; Ezzat, S.M.; Alduraibi, N.S. On size-dependent thermo-viscoelasticity theory for piezoelectric materials. Waves Random Complex Media, 2022, 1-23.
[http://dx.doi.org/10.1080/17455030.2022.2043569]
[6]
Ezzat, M.A.; Al-Muhiameed, Z.I.A. Thermo-mechanical response of size-dependent piezoelectric materials in thermo-viscoelasticity theory. Steel Compos. Struct., 2022, 45(1), 535-546.
[7]
Ray, P.; Haideri, N.; Haque, I.; Mohammed, O.; Chakraborty, S.; Banerjee, S.; Quadir, M.; Brinker, A.; Banerjee, S. The impact of nanoparticles on the immune system: A gray zone of nanomedicine. J. Immunol. Sci., 2021, 5(1), 19-33.
[http://dx.doi.org/10.29245/2578-3009/2021/1.1206]
[8]
Bagchi, M.; Moriyama, H.; Shahidi, F. Bagchi, D., (Ed). Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences; Wiley-Blackwell: Hoboken, New Jersey, 2013, p. 824. ISBN: 978-0-470-67037-8
[9]
Abohamzeh, E.; Sheikholeslami, M.; Shafee, A. Toxicity of Nanomaterials; Nanomaterials and Nanotechnology in Medicine, 2022, pp. 447-478.
[10]
Patil, A.; Mishra, V.; Thakur, S.; Riyaz, B.; Kaur, A.; Khursheed, R.; Patil, K.; Sathe, B. Nanotechnology derived nanotools in biomedical perspectives: An update. Curr. Nanosci., 2018, 15(2), 137-146.
[http://dx.doi.org/10.2174/1573413714666180426112851]
[11]
Yan, L.; Shen, J.; Wang, J.; Yang, X.; Dong, S.; Lu, S. Nanoparticle-based drug delivery system: A patient-friendly chemotherapy for oncology. Dose Response, 2020, 18(3)
[http://dx.doi.org/10.1177/1559325820936161] [PMID: 32699536]
[12]
Xu, X.; Yang, G.; Xue, X.; Lu, H.; Wu, H.; Huang, Y.; Jing, D.; Xiao, W.; Tian, J.; Yao, W.; Pan, C.; Lin, T.; Li, Y. A polymer-free, biomimicry drug self-delivery system fabricated via a synergistic combination of bottom-up and top-down approaches. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(47), 7842-7853.
[http://dx.doi.org/10.1039/C8TB01464G] [PMID: 31380107]
[13]
Andhari, S.S.; Wavhale, R.D.; Dhobale, K.D.; Tawade, B.V.; Chate, G.P.; Patil, Y.N.; Khandare, J.J.; Banerjee, S.S. Self-propelling targeted magneto-nanobots for deep tumor penetration and pH-responsive intracellular drug delivery. Sci. Rep., 2020, 10(1), 4703.
[http://dx.doi.org/10.1038/s41598-020-61586-y] [PMID: 32170128]
[14]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[15]
Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems; Emergent Materials, 2022, pp. 1-23.
[16]
Bhaskar, S.; Tian, F.; Stoeger, T.; Kreyling, W.; de la Fuente, J.M.; Grazú, V.; Borm, P.; Estrada, G.; Ntziachristos, V.; Razansky, D. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part. Fibre Toxicol., 2010, 7(1), 3.
[http://dx.doi.org/10.1186/1743-8977-7-3] [PMID: 20199661]
[17]
Cai, Y.; Si, W.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Organic dye based nanoparticles for cancer phototheranostics. Small, 2018, 14(25), 1704247.
[http://dx.doi.org/10.1002/smll.201704247] [PMID: 29611290]
[18]
Alshehri, S.; Imam, S.S.; Rizwanullah, M.; Akhter, S.; Mahdi, W.; Kazi, M.; Ahmad, J. Progress of cancer nanotechnology as diagnostics, therapeutics, and theranostics nanomedicine: preclinical promise and translational challenges. Pharmaceutics, 2020, 13(1), 24.
[http://dx.doi.org/10.3390/pharmaceutics13010024] [PMID: 33374391]
[19]
Dolez, P.I. Nanomaterials Definitions, Classifications, and Applications.Nanoengineering; Elsevier, 2015, pp. 3-40.
[http://dx.doi.org/10.1016/B978-0-444-62747-6.00001-4]
[20]
Kajani, A.; Javanmard, H.S.; Asadnia, M.; Razmjou, A. Recent advances in nanomaterials development for nanomedicine and cancer. ACS Appl. Bio Mater., 2021, 4(8), 5908-5925.
[http://dx.doi.org/10.1021/acsabm.1c00591] [PMID: 35006909]
[21]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[22]
Shipway, A.N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 2000, 1(1), 18-52.
[http://dx.doi.org/10.1002/1439-7641(20000804)1:1<18:AID-CPHC18>3.0.CO;2-L] [PMID: 23696260]
[23]
Lue, J.T. A review of characterization and physical property studies of metallic nanoparticles. J. Phys. Chem. Solids, 2001, 62(9-10), 1599-1612.
[http://dx.doi.org/10.1016/S0022-3697(01)00099-3]
[24]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[25]
Aghebati-Maleki, A.; Dolati, S.; Ahmadi, M.; Baghbanzhadeh, A.; Asadi, M.; Fotouhi, A.; Yousefi, M.; Aghebati-Maleki, L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol., 2020, 235(3), 1962-1972.
[http://dx.doi.org/10.1002/jcp.29126] [PMID: 31441032]
[26]
Ficai, D.; Ficai, A.; Andronescu, E. Advances in cancer treatment: Role of nanoparticles. In: Nanomaterials—Toxicity and Risk Assessment; IntechOpen: London, UK, 2015; p. 1-22.
[27]
Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol., 2015, 6(1), 1769-1780.
[http://dx.doi.org/10.3762/bjnano.6.181] [PMID: 26425429]
[28]
Zhao, Y.; Xing, G.; Chai, Z. Are carbon nanotubes safe? Nat. Nanotechnol., 2008, 3(4), 191-192.
[http://dx.doi.org/10.1038/nnano.2008.77] [PMID: 18654501]
[29]
Patra, C.R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P. Application of gold nanoparticles for targeted therapy in cancer. J. Biomed. Nanotechnol., 2008, 4(2), 99-132.
[http://dx.doi.org/10.1166/jbn.2008.016]
[30]
Mody, V.; Siwale, R.; Singh, A.; Mody, H. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[31]
Rahman, M.; Alam, K.; Hafeez, A.; Ilyas, R.; Beg, S. Protein-based nanomedicines as anticancer drug delivery platforms. In: Nanoformulation Strategies for Cancer Treatment; Elsevier: Amsterdam, Netherlands, 2021; pp. 153-169.
[32]
Sarbadhikary, P.; George, B.P.; Abrahamse, H. Recent advances in photosensitizers as multifunctional theranostic agents for imaging-guided photodynamic therapy of cancer. Theranostics, 2021, 11(18), 9054-9088.
[http://dx.doi.org/10.7150/thno.62479] [PMID: 34522227]
[33]
Păduraru, D.N.; Ion, D.; Niculescu, A.G.; Mușat, F.; Andronic, O.; Grumezescu, A.M.; Bolocan, A. Recent developments in metallic nanomaterials for cancer therapy, diagnosing and imaging applications. Pharmaceutics, 2022, 14(2), 435.
[http://dx.doi.org/10.3390/pharmaceutics14020435] [PMID: 35214167]
[34]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[35]
Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem., 2016, 27(10), 2225-2238.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[36]
Morey, J.; Llinás, P.; Bueno-Costa, A.; León, A.J.; Piña, M.N. Raltitrexed-modified gold and silver nanoparticles for targeted cancer therapy: Cytotoxicity behavior in vitro on A549 and HCT-116 human cancer cells. Materials, 2021, 14(3), 534.
[http://dx.doi.org/10.3390/ma14030534] [PMID: 33499297]
[37]
de Oliveira Gonçalves, K.; Vieira, D.P.; Levy, D.; Bydlowski, S.P.; Courrol, L.C. Uptake of silver, gold, and hybrids silver-iron, gold-iron and silver-gold aminolevulinic acid nanoparticles by MCF-7 breast cancer cells. Photodiagn. Photodyn. Ther., 2020, 32, 102080.
[http://dx.doi.org/10.1016/j.pdpdt.2020.102080] [PMID: 33157326]
[38]
Zahed, F.M.; Hatamluyi, B.; Lorestani, F.; Es’haghi, Z. Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. J. Pharm. Biomed. Anal., 2018, 161, 12-19.
[http://dx.doi.org/10.1016/j.jpba.2018.08.004] [PMID: 30142492]
[39]
Duran, N.; Seabra, A.B. Biogenic synthesized Ag/Au nanoparticles: Production, characterization, and applications. Curr. Nanosci., 2018, 14(2), 82-94.
[http://dx.doi.org/10.2174/1573413714666171207160637]
[40]
Lim, Z.Z.J.; Li, J.E.J.; Ng, C.T.; Yung, L.Y.L.; Bay, B.H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin., 2011, 32(8), 983-990.
[http://dx.doi.org/10.1038/aps.2011.82] [PMID: 21743485]
[41]
Yeşilot, Ş.; Aydın A.Ç. Silver nanoparticles; a new hope in cancer therapy? East. J. Med., 2019, 24(1), 111-116.
[http://dx.doi.org/10.5505/ejm.2019.66487]
[42]
Tian, Z.Q.; Ren, B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem., 2004, 55(1), 197-229.
[http://dx.doi.org/10.1146/annurev.physchem.54.011002.103833] [PMID: 15117252]
[43]
Kaler, A.; Mittal, A.K.; Katariya, M.; Harde, H.; Agrawal, A.K.; Jain, S.; Banerjee, U.C. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles. J. Nanopart. Res., 2014, 16(9), 2605.
[http://dx.doi.org/10.1007/s11051-014-2605-x]
[44]
Murphy, M.; Ting, K.; Zhang, X.; Soo, C.; Zheng, Z. Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J. Nanomater., 2015, 2015, 5.
[http://dx.doi.org/10.1155/2015/696918]
[45]
Lansdown, A.B. ilver in health care: Antimicrobial effects and safety in use. Curr. Probl. Dermatol., 2006, 33, 17-34.
[46]
Sim, W.; Barnard, R.; Blaskovich, M.A.T.; Ziora, Z. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017). Antibiotics, 2018, 7(4), 93.
[http://dx.doi.org/10.3390/antibiotics7040093] [PMID: 30373130]
[47]
Zhao, Y.; Sultan, D.; Detering, L.; Cho, S.; Sun, G.; Pierce, R.; Wooley, K.L.; Liu, Y. Copper-64-alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy. Angew. Chem. Int. Ed., 2014, 53(1), 156-159.
[http://dx.doi.org/10.1002/anie.201308494] [PMID: 24272951]
[48]
Huang, J.Y.; Lin, H.T.; Chen, T.H.; Chen, C.A.; Chang, H.T.; Chen, C.F. Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sens., 2018, 3(1), 174-182.
[http://dx.doi.org/10.1021/acssensors.7b00823] [PMID: 29282979]
[49]
Hernández-Arteaga, A.; de Jesús Zermeño Nava, J.; Kolosovas-Machuca, E.S.; Velázquez-Salazar, J.J.; Vinogradova, E.; José-Yacamán, M.; Navarro-Contreras, H.R. Diagnosis of breast cancer by analysis of sialic acid concentrations in human saliva by surface-enhanced Raman spectroscopy of silver nanoparticles. Nano Res., 2017, 10(11), 3662-3670.
[http://dx.doi.org/10.1007/s12274-017-1576-5]
[50]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[51]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[52]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13(10), 2638-2650.
[http://dx.doi.org/10.1039/c1gc15386b]
[53]
Slepička, P.; Slepičková Kasálková, N.; Siegel, J.; Kolská, Z.; Švorčík, V. Methods of gold and silver nanoparticles preparation. Materials, 2019, 13(1), 1.
[http://dx.doi.org/10.3390/ma13010001] [PMID: 31861259]
[54]
Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv., 2019, 1(3), 937-947.
[http://dx.doi.org/10.1039/C8NA00238J] [PMID: 36133214]
[55]
Grabowska, E.; Marchelek, M.; Paszkiewicz-Gawron, M.; Zaleska-Medynska, A. Metal Oxide-Based Photocatalysis; Zaleska-Medynska, A., Ed.; Elsevier, 2018, p. 51-209.
[56]
Sadrolhosseini, A.R.; Mahdi, M.A.; Alizadeh, F.; Rashid, S.A. Laser ablation technique for synthesis of metal nanoparticle in liquid. Laser Technology and its Applications, 2019, 63-83.
[57]
Vanecht, E.; Binnemans, K.; Seo, J.W.; Stappers, L.; Fransaer, J. Growth of sputter-deposited gold nanoparticles in ionic liquids. Phys. Chem. Chem. Phys., 2011, 13(30), 13565-13571.
[http://dx.doi.org/10.1039/c1cp20552h] [PMID: 21674115]
[58]
Gorrasi, G.; Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem., 2015, 17(5), 2610-2625.
[http://dx.doi.org/10.1039/C5GC00029G]
[59]
Salah, N.; Habib, S.S.; Khan, Z.H.; Memic, A.; Azam, A. Al-Hamedi; Zahed, N.; Habib, High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomedicine, 2011, 6, 863-869.
[http://dx.doi.org/10.2147/IJN.S18267] [PMID: 21720499]
[60]
Singh, J.P.; Kumar, M.; Sharma, A.; Pandey, G.; Chae, K.H.; Lee, S. Bottom-Up and Top-Down Approaches for Mg. In: Sonochemical Reactions; IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.91182]
[61]
Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology, 2012, 2(3), 22-48.
[http://dx.doi.org/10.5923/j.nn.20120203.01]
[62]
Pimpin, A.; Srituravanich, W. Review on micro-and nanolithography techniques and their applications. Eng. J., 2012, 16(1), 37-56.
[http://dx.doi.org/10.4186/ej.2012.16.1.37]
[63]
Hulteen, J.C.; Treichel, D.A.; Smith, M.T.; Duval, M.L.; Jensen, T.R.; Van Duyne, R.P. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B, 1999, 103(19), 3854-3863.
[http://dx.doi.org/10.1021/jp9904771]
[64]
Shah, P.; Gavrin, A. Synthesis of nanoparticles using high-pressure sputtering for magnetic domain imaging. J. Magn. Magn. Mater., 2006, 301(1), 118-123.
[http://dx.doi.org/10.1016/j.jmmm.2005.06.023]
[65]
Lugscheider, E.; Bärwulf, S.; Barimani, C.; Riester, M.; Hilgers, H. Magnetron-sputtered hard material coatings on thermoplastic polymers for clean room applications. Surf. Coat. Tech., 1998, 108-109, 398-402.
[http://dx.doi.org/10.1016/S0257-8972(98)00627-6]
[66]
Salavati-Niasari, M.; Davar, F.; Mir, N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 2008, 27(17), 3514-3518.
[http://dx.doi.org/10.1016/j.poly.2008.08.020]
[67]
Amendola, V.; Meneghetti, M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys. Chem. Chem. Phys., 2009, 11(20), 3805-3821.
[http://dx.doi.org/10.1039/b900654k] [PMID: 19440607]
[68]
Amendola, V.; Meneghetti, M.; Granozzi, G.; Agnoli, S.; Polizzi, S.; Riello, P.; Boscaini, A.; Anselmi, C.; Fracasso, G.; Colombatti, M.; Innocenti, C.; Gatteschi, D.; Sangregorio, C. Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. J. Mater. Chem., 2011, 21(11), 3803-3813.
[http://dx.doi.org/10.1039/c0jm03863f]
[69]
Singh, S.; Jain, D.V.S.; Singla, M.L. Sol–gel based composite of gold nanoparticles as matix for tyrosinase for amperometric catechol biosensor. Sens. Actuators B Chem., 2013, 182, 161-169.
[http://dx.doi.org/10.1016/j.snb.2013.02.111]
[70]
Hakke, V.; Sonawane, S.; Anandan, S.; Sonawane, S.; Ashokkumar, M. Process intensification approach using microreactors for synthesizing nanomaterials—a critical review. Nanomaterials, 2021, 11(1), 98.
[http://dx.doi.org/10.3390/nano11010098] [PMID: 33406661]
[71]
Gomes, D.D.; Pimentel, A.C.; Santos, L.; Barquinha, P.M.; Pereira, L.; Fortunato, E.; Martins, R. Metal oxide nanostructures: synthesis, properties and applications; Elsevier, 2018.
[72]
Rastogi, A.; Singh, P.; Haraz, F.A.; Barhoum, A. Fundamentals of Nanoparticles; Barhoum, A.; Hamdy Makhlouf, A.S., Eds.; Elsevier, 2018, p. 571-604.
[http://dx.doi.org/10.1016/B978-0-323-51255-8.00023-9]
[73]
Mittal, A.K.; Bhaumik, J.; Kumar, S.; Banerjee, U.C. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci., 2014, 415, 39-47.
[http://dx.doi.org/10.1016/j.jcis.2013.10.018] [PMID: 24267328]
[74]
Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199.
[http://dx.doi.org/10.1016/j.jcis.2014.06.030] [PMID: 25000181]
[75]
Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng. C, 2015, 53, 120-127.
[http://dx.doi.org/10.1016/j.msec.2015.04.038] [PMID: 26042698]
[76]
Mittal, A.K.; Banerjee, U.C. In vivo safety, toxicity, biocompatibility and anti-tumour efficacy of bioinspired silver and selenium nanoparticles. Mater. Today Commun., 2021, 26, 102001.
[http://dx.doi.org/10.1016/j.mtcomm.2020.102001]
[77]
Mittal, A.K.; Kaler, A.; Banerjee, U.C. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomed. Eng., 2012, 4(3)
[http://dx.doi.org/10.5101/nbe.v4i3.p118-124]
[78]
Sivakumar, P.; Ramesh, R.; Ramanand, A.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. J. Alloys Compd., 2013, 563, 6-11.
[http://dx.doi.org/10.1016/j.jallcom.2013.02.077]
[79]
Mann, S.; Burkett, S.L.; Davis, S.A.; Fowler, C.E.; Mendelson, N.H.; Sims, S.D.; Walsh, D.; Whilton, N.T. Sol− gel synthesis of organized matter. Chem. Mater., 1997, 9(11), 2300-2310.
[http://dx.doi.org/10.1021/cm970274u]
[80]
Hernández, R.; Hernández-Reséndiz, J.R.; Cruz-Ramírez, M.; Velázquez-Castillo, R.; Escobar-Alarcón, L.; Ortiz-Frade, L.; Esquivel, K. Au-TiO2 synthesized by a microwave-and sonochemistry-assisted sol-gel method: Characterization and application as photocatalyst. Catalysts, 2020, 10(9), 1052.
[http://dx.doi.org/10.3390/catal10091052]
[81]
Tai, C.Y.; Tai, C.T.; Chang, M.H.; Liu, H.S. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind. Eng. Chem. Res., 2007, 46(17), 5536-5541.
[http://dx.doi.org/10.1021/ie060869b]
[82]
Mohammadi, S.; Harvey, A.; Boodhoo, K.V.K. Synthesis of TiO2 nanoparticles in a spinning disc reactor. Chem. Eng. J., 2014, 258, 171-184.
[http://dx.doi.org/10.1016/j.cej.2014.07.042]
[83]
Bhaviripudi, S.; Mile, E.; Steiner, S.A., III; Zare, A.T.; Dresselhaus, M.S.; Belcher, A.M.; Kong, J. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc., 2007, 129(6), 1516-1517.
[http://dx.doi.org/10.1021/ja0673332] [PMID: 17283991]
[84]
Kammler, H.K.; Mädler, L.; Pratsinis, S.E. Flame synthesis of nanoparticles. Chem. Eng. Technol., 2001, 24(6), 583-596.
[http://dx.doi.org/10.1002/1521-4125(200106)24:6<583:AID-CEAT583>3.0.CO;2-H]
[85]
D’Amato, R.; Falconieri, M.; Gagliardi, S.; Popovici, E.; Serra, E.; Terranova, G.; Borsella, E. Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications. J. Anal. Appl. Pyrolysis, 2013, 104, 461-469.
[http://dx.doi.org/10.1016/j.jaap.2013.05.026]
[86]
Golub, D. Ivanič A.; Majerič P.; Tiyyagura, H.R.; Anžel, I.; Rudolf, R. Synthesis of colloidal au nanoparticles through ultrasonic spray pyrolysis and their use in the preparation of polyacrylate-AuNPs’ composites. Materials, 2019, 12(22), 3775.
[http://dx.doi.org/10.3390/ma12223775] [PMID: 31744228]
[87]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-an updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[88]
Chen, J.; Li, Y.; Fang, G.; Cao, Z.; Shang, Y.; Alfarraj, S.; Ali Alharbi, S.; Li, J.; Yang, S.; Duan, X. Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arab. J. Chem., 2021, 14(3), 103000.
[http://dx.doi.org/10.1016/j.arabjc.2021.103000]
[89]
Thakuria, A.; Kataria, B.; Gupta, D. Nanoparticle-based methodologies for targeted drug delivery—an insight. J. Nanopart. Res., 2021, 23(4), 87.
[http://dx.doi.org/10.1007/s11051-021-05190-9]
[90]
Heinemann, M.G.; Rosa, C.H.; Rosa, G.R.; Dias, D. Biogenic synthesis of gold and silver nanoparticles used in environmental applications: A review. Trend. Enviro. Anal. Chem., 2021, 30, e00129.
[http://dx.doi.org/10.1016/j.teac.2021.e00129]
[91]
Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res., 2021, 199(1), 344-370.
[http://dx.doi.org/10.1007/s12011-020-02138-3] [PMID: 32377944]
[92]
Solgi, M.; Taghizadeh, M. Biogenic synthesis of metal nanoparticles by plants. In: Biogenic Nano-Particles and their Use in Agroecosystems; , 2020; p. 593-606.
[93]
Auría-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V.; Gongora, R.; Almendral Parra, M.J.; Manzano-Roman, R.; Fuentes, M. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials, 2019, 9(10), 1365.
[http://dx.doi.org/10.3390/nano9101365] [PMID: 31554176]
[94]
Iram, F.; Yasmeen, A.; Massey, S.; Iqbal, M.S.; Asim, S.; Irshad, M.; Zahid, H.; Khan, A.Y.; Kazimi, S.G.T. Synthesis of gold and silver nanoparticles by use of arabinoglucan from Lallemantia royleana. Int. J. Biol. Macromol., 2021, 191, 1137-1150.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.096] [PMID: 34563577]
[95]
Le, V.T.; Ngu, N.N.Q.; Chau, T.P.; Nguyen, T.D.; Nguyen, V.T.; Nguyen, T.L.H.; Cao, X.T.; Doan, V.D. Silver and gold nanoparticles from Limnophila rugosa Leaves: biosynthesis, characterization, and catalytic activity in reduction of nitrophenols. J. Nanomater., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/5571663]
[96]
Zhang, J.Z. Optical properties and spectroscopy of nanomaterials; World Scientific, 2009.
[http://dx.doi.org/10.1142/7093]
[97]
Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev., 2006, 35(3), 209-217.
[http://dx.doi.org/10.1039/B514191E] [PMID: 16505915]
[98]
Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf., 2010, 111(1), 1-35.
[http://dx.doi.org/10.1016/j.jqsrt.2009.07.012]
[99]
Reiss, G.; Hütten, A. Applications beyond data storage. Nat. Mater., 2005, 4(10), 725-726.
[http://dx.doi.org/10.1038/nmat1494] [PMID: 16195762]
[100]
Qi, M.; Zhang, K.; Li, S.; Wu, J.; Pham-Huy, C.; Diao, X.; Xiao, D.; He, H. Superparamagnetic Fe3O4 nanoparticles: Synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J. Chem., 2016, 40(5), 4480-4491.
[http://dx.doi.org/10.1039/C5NJ02441B]
[101]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[102]
Guo, D.; Xie, G.; Luo, J. Mechanical properties of nanoparticles: Basics and applications. J. Phys. D Appl. Phys., 2014, 47(1), 013001.
[http://dx.doi.org/10.1088/0022-3727/47/1/013001]
[103]
Lee, S.; Choi, S.U-S.; Li, S.; Eastman, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer, 1999, 121(2), 280-289.
[http://dx.doi.org/10.1115/1.2825978]
[104]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[105]
Gurunathan, S.; Kim, J-H.; Kang, M-H. Silver nanoparticle enhances secretion of exosomes in SH-SY5Y cells: Potential therapeutic strategy for human neuroblastoma cancer. Curr. Nanosci., 2022, 18(5), 623-645.
[http://dx.doi.org/10.2174/1573413717666210920095311]
[106]
Saeed, K.; Khan, I. Preparation and characterization of single-walled carbon nanotube/nylon 6, 6 nanocomposites. Instrum. Sci. Technol., 2016, 44(4), 435-444.
[http://dx.doi.org/10.1080/10739149.2015.1127256]
[107]
Saeed, K.; Khan, I. Preparation and properties of single-walled carbon nanotubes/poly(butylene terephthalate) nanocomposites. Iran. Polym. J., 2014, 23(1), 53-58.
[http://dx.doi.org/10.1007/s13726-013-0199-2]
[108]
Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev., 2011, 40(3), 1647-1671.
[http://dx.doi.org/10.1039/C0CS00018C] [PMID: 21082078]
[109]
Khan, I.; Abdalla, A.; Qurashi, A. Synthesis of hierarchical WO3 and Bi2O3/WO3 nanocomposite for solar-driven water splitting applications. Int. J. Hydrogen Energy, 2017, 42(5), 3431-3439.
[110]
Khan, I.; Ali, S.; Mansha, M.; Qurashi, A. Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application. Ultrason. Sonochem., 2017, 36, 386-392.
[http://dx.doi.org/10.1016/j.ultsonch.2016.12.014] [PMID: 28069225]
[111]
Khan, I.; Ibrahim, A.A.M.; Sohail, M.; Qurashi, A. Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting. Ultrason. Sonochem., 2017, 37, 669-675.
[http://dx.doi.org/10.1016/j.ultsonch.2017.02.029] [PMID: 28427681]
[112]
Mansha, M.; Khan, I.; Ullah, N.; Qurashi, A. Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers. Int. J. Hydrogen Energy, 2017, 42(16), 10952-10961.
[http://dx.doi.org/10.1016/j.ijhydene.2017.02.053]
[113]
Avasare, V.; Zhang, Z.; Avasare, D.; Khan, I.; Qurashi, A. Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. Int. J. Energy Res., 2015, 39(12), 1714-1719.
[http://dx.doi.org/10.1002/er.3372]
[114]
Iqbal, N.; Khan, I.; Yamani, Z.H.; Qurashi, A. Sonochemical assisted solvothermal synthesis of gallium oxynitride nanosheets and their solar-driven photoelectrochemical water-splitting applications. Sci. Rep., 2016, 6(1), 32319.
[http://dx.doi.org/10.1038/srep32319] [PMID: 27561646]
[115]
Dablemont, C.; Lang, P.; Mangeney, C.; Piquemal, J.Y.; Petkov, V.; Herbst, F.; Viau, G. FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir, 2008, 24(11), 5832-5841.
[http://dx.doi.org/10.1021/la7028643] [PMID: 18444666]
[116]
Fagerlund, G. Determination of specific surface by the BET method. Matériaux et Constructions, 1973, 6(3), 239-245.
[http://dx.doi.org/10.1007/BF02479039]
[117]
Swinehart, D.F. The beer-lambert law. J. Chem. Educ., 1962, 39(7), 333.
[http://dx.doi.org/10.1021/ed039p333]
[118]
Gesquiere, A.J. Optical properties and spectroscopy of nanomaterials. J. Am. Chem. Soc., 2010, 13210, 3637-3638.
[119]
Tang, L.; Dong, C.; Ren, J. Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy. Talanta, 2010, 81(4-5), 1560-1567.
[http://dx.doi.org/10.1016/j.talanta.2010.03.002] [PMID: 20441939]
[120]
Sakthi Devi, R.; Girigoswami, A.; Siddharth, M.; Girigoswami, K. Applications of gold and silver nanoparticles in theranostics. Appl. Biochem. Biotechnol., 2022, 194(9), 4187-4219.
[http://dx.doi.org/10.1007/s12010-022-03963-z] [PMID: 35551613]
[121]
Jun, B.H.; Noh, M.S.; Kim, J.; Kim, G.; Kang, H.; Kim, M.S.; Seo, Y.T.; Baek, J.; Kim, J.H.; Park, J. Multifunctional silver‐embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small, 2010, 6(1), 119-125.
[122]
Durán, N.; Fávaro, W.J.; Seabra, A.B. What do we really know about nanotoxicology of silver nanoparticles in vivo? New aspects, possible mechanisms, and perspectives. Curr. Nanosci., 2020, 16(3), 292-320.
[http://dx.doi.org/10.2174/1573413714666180809121322]
[123]
Mahmood, M.; Casciano, D.A.; Mocan, T.; Iancu, C.; Xu, Y.; Mocan, L.; Iancu, D.T.; Dervishi, E.; Li, Z.; Abdalmuhsen, M.; Biris, A.R.; Ali, N.; Howard, P.; Biris, A.S. Cytotoxicity and biological effects of functional nanomaterials delivered to various cell lines. J. Appl. Toxicol., 2010, 30(1), 74-83.
[http://dx.doi.org/10.1002/jat.1475] [PMID: 19760634]
[124]
Raja, G.; Jang, Y.K.; Suh, J.S.; Kim, H.S.; Ahn, S.H.; Kim, T.J. Microcellular environmental regulation of silver nanoparticles in cancer therapy: A critical review. Cancers, 2020, 12(3), 664.
[http://dx.doi.org/10.3390/cancers12030664] [PMID: 32178476]
[125]
Eelen, G.; Treps, L.; Li, X.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis updated. Circ. Res., 2020, 127(2), 310-329.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.316851] [PMID: 32833569]
[126]
Darweesh, R.S.; Ayoub, N.M.; Nazzal, S. Gold nanoparticles and angiogenesis: Molecular mechanisms and biomedical applications. Int. J. Nanomedicine, 2019, 14, 7643-7663.
[http://dx.doi.org/10.2147/IJN.S223941] [PMID: 31571869]
[127]
Cross, M.J.; Claesson-Welsh, L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci., 2001, 22(4), 201-207.
[http://dx.doi.org/10.1016/S0165-6147(00)01676-X] [PMID: 11282421]
[128]
Kalishwaralal, K.; Banumathi, E.; Pandian, S.B.R.K.; Deepak, V.; Muniyandi, J.; Eom, S.H.; Gurunathan, S. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf. B Biointerfaces, 2009, 73(1), 51-57.
[http://dx.doi.org/10.1016/j.colsurfb.2009.04.025] [PMID: 19481908]
[129]
Ong, C.; Lim, J.Z.Z.; Ng, C.T.; Li, J.J.; Yung, L.Y.L.; Bay, B.H. Silver nanoparticles in cancer: Therapeutic efficacy and toxicity. Curr. Med. Chem., 2013, 20(6), 772-781.
[PMID: 23298139]
[130]
Gurunathan, S.; Lee, K.J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009, 30(31), 6341-6350.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008] [PMID: 19698986]
[131]
Homan, K.A.; Shah, J.; Gomez, S.; Gensler, H.; Karpiouk, A.B.; Brannon-Peppas, L.; Emelianov, S.Y. Silver nanosystems for photoacoustic imaging and image-guided therapy. J. Biomed. Opt., 2010, 15(2), 1.
[http://dx.doi.org/10.1117/1.3365937] [PMID: 20459238]
[132]
Liu, Y.; Cao, C.S.; Yu, Y.; Si, Y.M. Thermal ablation in cancer. Oncol. Lett., 2016, 12(4), 2293-2295.
[http://dx.doi.org/10.3892/ol.2016.4997] [PMID: 27703520]
[133]
Fan, M.; Han, Y.; Gao, S.; Yan, H.; Cao, L.; Li, Z.; Liang, X.J.; Zhang, J. Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics, 2020, 10(11), 4944-4957.
[http://dx.doi.org/10.7150/thno.42471] [PMID: 32308760]
[134]
Nallathamby, P.D.; Xu, X.H.N. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale, 2010, 2(6), 942-952.
[http://dx.doi.org/10.1039/c0nr00080a] [PMID: 20648292]
[135]
Aghamiri, S.; Jafarpour, A.; Shoja, M. Retracted: Effects of silver nanoparticles coated with anti‐HER2 on irradiation efficiency of SKBR3 breast cancer cells. IET Nanobiotechnol., 2019, 13(8), 808-815.
[http://dx.doi.org/10.1049/iet-nbt.2018.5258] [PMID: 31625520]
[136]
Acharya, D.; Satapathy, S.; Somu, P.; Parida, U.K.; Mishra, G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol. Trace Elem. Res., 2021, 199(5), 1812-1822.
[PMID: 32743762]
[137]
Al-Yousef, H.M.; Amina, M.; Alqahtani, A.S.; Alqahtani, M.S.; Malik, A.; Hatshan, M.R.; Siddiqui, M.R.H.; Khan, M.; Shaik, M.R.; Ola, M.S.; Syed, R. Pollen bee aqueous extract-based synthesis of silver nanoparticles and evaluation of their anti-cancer and anti-bacterial activities. Processes, 2020, 8(5), 524.
[http://dx.doi.org/10.3390/pr8050524]
[138]
Dizman, H.M.; Eroglu, G.O.; Kuruca, S.E.; Arsu, N. Photochemically prepared monodisperse gold nanoparticles as doxorubicin carrier and its cytotoxicity on leukemia cancer cells. Appl. Nanosci., 2021, 11(1), 309-320.
[http://dx.doi.org/10.1007/s13204-020-01589-3]
[139]
Kumar, S.; Harrison, N.; Richards-Kortum, R.; Sokolov, K. Plasmonic nanosensors for imaging intracellular biomarkers in live cells. Nano Lett., 2007, 7(5), 1338-1343.
[http://dx.doi.org/10.1021/nl070365i] [PMID: 17439187]
[140]
Nejati, K.; Dadashpour, M.; Gharibi, T.; Mellatyar, H.; Akbarzadeh, A. Biomedical applications of functionalized gold nanoparticles: A review. J. Cluster Sci., 2021, 1-16.
[141]
Debasmita, D.; Ghosh, S.S.; Chattopadhyay, A. Living gut bacteria functionalized with gold nanoclusters and drug for facile cancer theranostics. ACS Appl. Bio Mater., 2023, 6(2), 628-639.
[http://dx.doi.org/10.1021/acsabm.2c00911] [PMID: 36651899]
[142]
Sperling, R.A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W.J. Biological applications of gold nanoparticles. Chem. Soc. Rev., 2008, 37(9), 1896-1908.
[http://dx.doi.org/10.1039/b712170a] [PMID: 18762838]
[143]
Roth, J. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem. Cell Biol., 1996, 106(1), 1-8.
[http://dx.doi.org/10.1007/BF02473197] [PMID: 8858362]
[144]
Lee, S.; Chon, H.; Lee, M.; Choo, J.; Shin, S.Y.; Lee, Y.H.; Rhyu, I.J.; Son, S.W.; Oh, C.H. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens. Bioelectron., 2009, 24(7), 2260-2263.
[http://dx.doi.org/10.1016/j.bios.2008.10.018] [PMID: 19056254]
[145]
Qian, X.; Peng, X.H.; Ansari, D.O.; Yin-Goen, Q.; Chen, G.Z.; Shin, D.M.; Yang, L.; Young, A.N.; Wang, M.D.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol., 2008, 26(1), 83-90.
[http://dx.doi.org/10.1038/nbt1377] [PMID: 18157119]
[146]
Cheng, Y.; Samia, A.C.; Meyers, J.D.; Panagopoulos, I.; Fei, B.; Burda, C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc., 2008, 130(32), 10643-10647.
[http://dx.doi.org/10.1021/ja801631c] [PMID: 18642918]
[147]
Lee, S.H.; Bae, K.H.; Kim, S.H.; Lee, K.R.; Park, T.G. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm., 2008, 364(1), 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.027] [PMID: 18723087]
[148]
Kim, C.; Ghosh, P.; Rotello, V.M. Multimodal drug delivery using gold nanoparticles. Nanoscale, 2009, 1(1), 61-67.
[http://dx.doi.org/10.1039/b9nr00112c] [PMID: 20644861]
[149]
Polat, O.; Karagoz, A. Isık, S.; Ozturk, R. Influence of gold nanoparticle architecture on in vitro bioimaging and cellular uptake. J. Nanopart. Res., 2014, 16(12), 2725.
[http://dx.doi.org/10.1007/s11051-014-2725-3]
[150]
Agasti, S.S.; Chompoosor, A.; You, C.C.; Ghosh, P.; Kim, C.K.; Rotello, V.M. Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc., 2009, 131(16), 5728-5729.
[http://dx.doi.org/10.1021/ja900591t] [PMID: 19351115]
[151]
Hong, R.; Han, G.; Fernández, J.M.; Kim, B.; Forbes, N.S.; Rotello, V.M. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc., 2006, 128(4), 1078-1079.
[http://dx.doi.org/10.1021/ja056726i] [PMID: 16433515]
[152]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11(3), 169-183.
[http://dx.doi.org/10.1080/10717540490433895] [PMID: 15204636]
[153]
Koch, A.M.; Reynolds, F.; Merkle, H.P.; Weissleder, R.; Josephson, L. Transport of surface-modified nanoparticles through cell monolayers. ChemBioChem, 2005, 6(2), 337-345.
[http://dx.doi.org/10.1002/cbic.200400174] [PMID: 15651046]
[154]
Ding, X.; Yin, C.; Zhang, W.; Sun, Y.; Zhang, Z.; Yang, E.; Sun, D.; Wang, W. Designing aptamer-gold nanoparticle-loaded ph-sensitive liposomes encapsulate morin for treating cancer. Nanoscale Res. Lett., 2020, 15(1), 68.
[http://dx.doi.org/10.1186/s11671-020-03297-x] [PMID: 32232589]
[155]
Girigoswami, A.; Pallavi, P.; Sharmiladevi, P.; Haribabu, V.; Girigoswami, K. A nano approach to formulate photosensitizers for photodynamic therapy. Curr. Nanosci., 2022, 18(6), 675-689.
[http://dx.doi.org/10.2174/1573413718666211222162041]
[156]
Nandi, D.; Sharma, A.; Prabhakar, P.K. Nanoparticle-assisted therapeutic strategies for effective cancer management. Curr. Nanosci., 2020, 16(1), 42-50.
[http://dx.doi.org/10.2174/1573413715666190206151757]
[157]
Meka, R.R.; Mukherjee, S.; Patra, C.R.; Chaudhuri, A. Shikimoyl-ligand decorated gold nanoparticles for use in ex vivo engineered dendritic cell based DNA vaccination. Nanoscale, 2019, 11(16), 7931-7943.
[http://dx.doi.org/10.1039/C8NR10293G] [PMID: 30964937]
[158]
Madamsetty, V.S.; Paul, M.K.; Mukherjee, A.; Mukherjee, S. Functionalization of nanomaterials and their application in melanoma cancer theranostics. ACS Biomater. Sci. Eng., 2020, 6(1), 167-181.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01426] [PMID: 33463233]
[159]
He, J.; Liu, S.; Zhang, Y.; Chu, X.; Lin, Z.; Zhao, Z.; Qiu, S.; Guo, Y.; Ding, H.; Pan, Y.; Pan, J. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front. Pharmacol., 2021, 12, 687399.
[http://dx.doi.org/10.3389/fphar.2021.687399] [PMID: 34163367]
[160]
Kang, M.S.; Lee, S.Y.; Kim, K.S.; Han, D.W. State of the art biocompatible gold nanoparticles for cancer theragnosis. Pharmaceutics, 2020, 12(8), 701.
[http://dx.doi.org/10.3390/pharmaceutics12080701] [PMID: 32722426]
[161]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 2008, 23(3), 217-228.
[http://dx.doi.org/10.1007/s10103-007-0470-x] [PMID: 17674122]
[162]
Link, S.; El-Sayed, M.A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem., 2000, 19(3), 409-453.
[http://dx.doi.org/10.1080/01442350050034180]
[163]
Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett., 2005, 5(4), 709-711.
[http://dx.doi.org/10.1021/nl050127s] [PMID: 15826113]
[164]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[165]
Alamzadeh, Z.; Beik, J.; Mirrahimi, M.; Shakeri-Zadeh, A.; Ebrahimi, F.; Komeili, A.; Ghalandari, B.; Ghaznavi, H.; Kamrava, S.K.; Moustakis, C. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur. J. Pharm. Sci., 2020, 145, 105235.
[http://dx.doi.org/10.1016/j.ejps.2020.105235] [PMID: 31991226]
[166]
Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[167]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[168]
Seo, S.H.; Kim, B.M.; Joe, A.; Han, H.W.; Chen, X.; Cheng, Z.; Jang, E.S. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials, 2014, 35(10), 3309-3318.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.066] [PMID: 24424205]
[169]
Cardinal, J.; Chory, E.; Klune, J.; Icli, T.; Kanzius, J.; Geller, D. 158. Non-invasive radiowave ablation of cancer targeted by gold nanoparticles. J. Surg. Res., 2008, 144(2), 247.
[http://dx.doi.org/10.1016/j.jss.2007.12.179] [PMID: 18498877]
[170]
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
[http://dx.doi.org/10.1038/nrc2442] [PMID: 18650835]
[171]
Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[172]
Mukherjee, A.; Madamsetty, V.S.; Paul, M.K.; Mukherjee, S. Recent advancements of nanomedicine towards antiangiogenic therapy in cancer. Int. J. Mol. Sci., 2020, 21(2), 455.
[http://dx.doi.org/10.3390/ijms21020455] [PMID: 31936832]
[173]
Payne, W.G.; Naidu, D.K.; Wheeler, C.K.; Barkoe, D.; Mentis, M.; Salas, R.E.; Smith, D.J., Jr; Robson, M.C. Wound healing in patients with cancer. Eplasty, 2008, 8, e9-e9.
[PMID: 18264518]
[174]
Folkman, J.; Merler, E.; Abernathy, C.; Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med., 1971, 133(2), 275-288.
[http://dx.doi.org/10.1084/jem.133.2.275] [PMID: 4332371]
[175]
Gotink, K.J.; Verheul, H.M.W. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis, 2010, 13(1), 1-14.
[http://dx.doi.org/10.1007/s10456-009-9160-6] [PMID: 20012482]
[176]
Van der Veldt, A.A.M.; Lubberink, M.; Bahce, I.; Walraven, M.; de Boer, M.P.; Greuter, H.N.J.M.; Hendrikse, N.H.; Eriksson, J.; Windhorst, A.D.; Postmus, P.E.; Verheul, H.M.; Serné, E.H.; Lammertsma, A.A.; Smit, E.F. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: Implications for scheduling of anti-angiogenic drugs. Cancer Cell, 2012, 21(1), 82-91.
[http://dx.doi.org/10.1016/j.ccr.2011.11.023] [PMID: 22264790]
[177]
Mukherjee, P.; Bhattacharya, R.; Wang, P.; Wang, L.; Basu, S.; Nagy, J.A.; Atala, A.; Mukhopadhyay, D.; Soker, S. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res., 2005, 11(9), 3530-3534.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2482] [PMID: 15867256]
[178]
Zhang, Y.; Xiong, X.; Huai, Y.; Dey, A.; Hossen, M.N.; Roy, R.V.; Elechalawar, C.K.; Rao, G.; Bhattacharya, R.; Mukherjee, P. Gold nanoparticles disrupt tumor microenvironment-endothelial cell cross talk to inhibit angiogenic phenotypes in vitro. Bioconjug. Chem., 2019, 30(6), 1724-1733.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00262] [PMID: 31067032]
[179]
Patel, N.; Kaler, A.; Jain, S.; Banerjee, U. Biosynthesis of selenium nanoparticle by whole cells of Saccharomyces boulardii and its evaluation as anticancer agent. Curr. Nanosci., 2013, 9(4), 463-468.
[http://dx.doi.org/10.2174/15734137113099990058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy