Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Antiviral Flavonoids: A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2

Author(s): Chiranjeet Saha, Roumi Naskar and Sandipan Chakraborty*

Volume 24, Issue 1, 2024

Published on: 19 June, 2023

Page: [39 - 59] Pages: 21

DOI: 10.2174/1389557523666230503105053

Price: $65

conference banner
Abstract

Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.

Graphical Abstract

[1]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[2]
Cermak, R. Effect of dietary flavonoids on pathways involved in drug metabolism. Expert Opin. Drug Metab. Toxicol., 2008, 4(1), 17-35.
[http://dx.doi.org/10.1517/17425255.4.1.17] [PMID: 18370856]
[3]
Grzybowski, A.; Pietrzak, K. Albert Szent-Györgyi (1893-1986): The scientist who discovered vitamin C. Clin. Dermatol., 2013, 31(3), 327-331.
[http://dx.doi.org/10.1016/j.clindermatol.2012.08.001] [PMID: 23738385]
[4]
Meserole, L. Chapter 15 - Health foods in anti-aging therapy: reducers of physiological decline and degenerative diseases. Advances in Phytomedicine; Iwu, M.M.; Wootton, J.C., Eds.; Elsevier, 2002, 1, pp. 173-180.
[http://dx.doi.org/10.1016/S1572-557X(02)80024-1]
[5]
Mathesius, U. Flavonoid functions in plants and their interactions with other organisms. Plants, 2018, 7(2), 30.
[http://dx.doi.org/10.3390/plants7020030] [PMID: 29614017]
[6]
Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules, 2014, 19(10), 16240-16265.
[http://dx.doi.org/10.3390/molecules191016240] [PMID: 25310150]
[7]
Takahashi, A.; Ohnishi, T. The significance of the study about the biological effects of solar ultraviolet radiation using the Exposed Facility on the International Space Station. Biol. Sci. Space, 2004, 18(4), 255-260.
[http://dx.doi.org/10.2187/bss.18.255] [PMID: 15858393]
[8]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[9]
Chaudhuri, S.; Banerjee, A.; Basu, K.; Sengupta, B.; Sengupta, P.K. Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects. Int. J. Biol. Macromol., 2007, 41(1), 42-48.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.12.003] [PMID: 17239435]
[10]
Pahari, B.; Chakraborty, S.; Chaudhuri, S.; Sengupta, B.; Sengupta, P.K. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: Insights from spectroscopic and quantum chemical studies. Chem. Phys. Lipids, 2012, 165(4), 488-496.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.10.006] [PMID: 22062971]
[11]
Chakraborty, S.; Biswas, P.K. Elucidation of the mechanistic pathways of the hydroxyl radical scavenging reaction by daidzein using hybrid QM/MM dynamics. J. Phys. Chem. A, 2012, 116(34), 8775-8785.
[http://dx.doi.org/10.1021/jp303543z] [PMID: 22853918]
[12]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[13]
Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; Ogata, A.; Kawase, I.; Tanaka, T. Flavonoids and related compounds as anti-allergic substances. Allergol. Int., 2007, 56(2), 113-123.
[http://dx.doi.org/10.2332/allergolint.R-06-135] [PMID: 17384531]
[14]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[15]
Miyazawa, M.; Hisama, M. Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci. Biotechnol. Biochem., 2003, 67(10), 2091-2099.
[http://dx.doi.org/10.1271/bbb.67.2091] [PMID: 14586095]
[16]
Zhao, L.; Yuan, X.; Wang, J.; Feng, Y.; Ji, F.; Li, Z.; Bian, J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg. Med. Chem., 2019, 27(5), 677-685.
[http://dx.doi.org/10.1016/j.bmc.2019.01.027] [PMID: 30733087]
[17]
Chakraborty, S.; Basu, S. Multi-functional activities of citrus flavonoid narirutin in Alzheimer’s disease therapeutics: An integrated screening approach and in vitro validation. Int. J. Biol. Macromol., 2017, 103, 733-743.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.110] [PMID: 28528948]
[18]
Chakraborty, S.; Bandyopadhyay, J.; Chakraborty, S.; Basu, S. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer’s disease therapeutics. Eur. J. Med. Chem., 2016, 121, 810-822.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.057] [PMID: 27068363]
[19]
Chakraborty, S.; Rakshit, J.; Bandyopadhyay, J.; Basu, S. Multi-target inhibition ability of neohesperidin dictates its neuroprotective activity: Implication in Alzheimer’s disease therapeutics. Int. J. Biol. Macromol., 2021, 176, 315-324.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.073] [PMID: 33581209]
[20]
Chakraborty, S.; Rakshit, J.; Bandyopadhyay, J.; Basu, S. Multi-functional neuroprotective activity of neohesperidin dihydrochalcone: A novel scaffold for Alzheimer’s disease therapeutics identified via drug repurposing screening. New J. Chem., 2018, 42(14), 11755-11769.
[http://dx.doi.org/10.1039/C8NJ00853A]
[21]
Hermenean, A.; Mariasiu, T.; Navarro-González, I.; Vegara-Meseguer, J. Miuțescu, E.; Chakraborty, S.; Pérez-Sánchez, H. Hepatoprotective activity of chrysin is mediated through TNF-α in chemically-induced acute liver damage: An in vivo study and molecular modeling. Exp. Ther. Med., 2017, 13(5), 1671-1680.
[http://dx.doi.org/10.3892/etm.2017.4181] [PMID: 28565752]
[22]
Waheed Janabi, A.H.; Kamboh, A.A.; Saeed, M.; Xiaoyu, L. BiBi, J.; Majeed, F.; Naveed, M.; Mughal, M.J.; Korejo, N.A.; Kamboh, R.; Alagawany, M.; Lv, H. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran. J. Basic Med. Sci., 2020, 23(2), 140-153.
[http://dx.doi.org/10.22038/IJBMS.2019.35125.8353] [PMID: 32405356]
[23]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[24]
Arct, J.; Pytkowska, K. Flavonoids as components of biologically active cosmeceuticals. Clin. Dermatol., 2008, 26(4), 347-357.
[http://dx.doi.org/10.1016/j.clindermatol.2008.01.004] [PMID: 18691514]
[25]
Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother., 2022, 146, 112442.
[http://dx.doi.org/10.1016/j.biopha.2021.112442] [PMID: 35062053]
[26]
Sahoo, S.K.; Sahoo, S.; Mohapatra, P. Flavonoids for the treatment of breast cancer, present status and future prospective. Anticancer. Agents Med. Chem., 2023, 23(6), 658-675.
[http://dx.doi.org/10.2174/1871520623666221024114521] [PMID: 36284374]
[27]
Lundstrom, K. Hromić-Jahjefendić A.; Bilajac, E.; Aljabali, A.A.A.; Baralić K.; Sabri, N.A.; Shehata, E.M.; Raslan, M.; Raslan, S.A.; Ferreira, A.C.B.H.; Orlandi, L.; Serrano-Aroca, Á.; Uversky, V.N.; Hassan, S.S.; Redwan, E.M.; Azevedo, V.; Alzahrani, K.J.; Alsharif, K.F.; Halawani, I.F.; Alzahrani, F.M.; Tambuwala, M.M.; Barh, D. COVID-19 signalome: Potential therapeutic interventions. Cell. Signal., 2023, 103, 110559.
[http://dx.doi.org/10.1016/j.cellsig.2022.110559] [PMID: 36521656]
[28]
Mazurakova, A.; Koklesova, L.; Samec, M.; Kudela, E.; Sivakova, J.; Pribulova, T.; Pec, M.J.; Pec, M.; Kello, M.; Büsselberg, D.; Golubnitschaja, O.; Gaspar, L.; Caprnda, M.; Adamek, M.; Prosecky, R.; Eminova, E.; Baranenko, D.; Kruzliak, P.; Kubatka, P.; Biringer, K. Flavonoids exert potential in the management of hypertensive disorders in pregnancy. Pregnancy Hypertens., 2022, 29, 72-85.
[http://dx.doi.org/10.1016/j.preghy.2022.06.007] [PMID: 35803199]
[29]
van Dam, R.M.; Naidoo, N.; Landberg, R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases. Curr. Opin. Lipidol., 2013, 24(1), 25-33.
[http://dx.doi.org/10.1097/MOL.0b013e32835bcdff] [PMID: 23254472]
[30]
Proença, C.; Ribeiro, D.; Freitas, M.; Fernandes, E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Crit. Rev. Food Sci. Nutr., 2022, 62(12), 3137-3207.
[http://dx.doi.org/10.1080/10408398.2020.1862755] [PMID: 33427491]
[31]
Li, T.; Zhao, Y.; Yuan, L.; Zhang, D.; Feng, Y.; Hu, H.; Hu, D.; Liu, J. Total dietary flavonoid intake and risk of cardiometabolic diseases: A dose-response meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr., 2022, 1-13.
[http://dx.doi.org/10.1080/10408398.2022.2126427] [PMID: 36148848]
[32]
Rengasamy, K.R.R.; Khan, H.; Gowrishankar, S.; Lagoa, R.J.L.; Mahomoodally, F.M.; Khan, Z.; Suroowan, S.; Tewari, D.; Zengin, G.; Hassan, S.T.S.; Pandian, S.K. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol. Ther., 2019, 194, 107-131.
[http://dx.doi.org/10.1016/j.pharmthera.2018.09.009] [PMID: 30268770]
[33]
Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential Role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants, 2019, 8(2), 35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[34]
Valentín-Blasini, L.; Blount, B.C.; Caudill, S.P.; Needham, L.L. Urinary and serum concentrations of seven phytoestrogens in a human reference population subset. J. Expo. Sci. Environ. Epidemiol., 2003, 13(4), 276-282.
[http://dx.doi.org/10.1038/sj.jea.7500278] [PMID: 12923554]
[35]
Valentín-Blasini, L.; Sadowski, M.A.; Walden, D.; Caltabiano, L.; Needham, L.L.; Barr, D.B. Urinary phytoestrogen concentrations in the U.S. population (1999–2000). J. Expo. Sci. Environ. Epidemiol., 2005, 15(6), 509-523.
[http://dx.doi.org/10.1038/sj.jea.7500429] [PMID: 15928707]
[36]
Peeters, P.H.M.; Slimani, N.; van der Schouw, Y.T.; Grace, P.B.; Navarro, C.; Tjonneland, A.; Olsen, A.; Clavel-Chapelon, F.; Touillaud, M.; Boutron-Ruault, M.C.; Jenab, M.; Kaaks, R.; Linseisen, J.; Trichopoulou, A.; Trichopoulos, D.; Dilis, V.; Boeing, H.; Weikert, C.; Overvad, K.; Pala, V.; Palli, D.; Panico, S.; Tumino, R.; Vineis, P.; Bueno-de-Mesquita, H.B.; van Gils, C.H.; Skeie, G.; Jakszyn, P.; Hallmans, G.; Berglund, G.; Key, T.J.; Travis, R.; Riboli, E.; Bingham, S.A. Variations in plasma phytoestrogen concentrations in European adults. J. Nutr., 2007, 137(5), 1294-1300.
[http://dx.doi.org/10.1093/jn/137.5.1294] [PMID: 17449595]
[37]
Mustafa, A.M.; Malintan, N.T.; Seelan, S.; Zhan, Z.; Mohamed, Z.; Hassan, J.; Pendek, R.; Hussain, R.; Ito, N. Phytoestrogens levels determination in the cord blood from Malaysia rural and urban populations. Toxicol. Appl. Pharmacol., 2007, 222(1), 25-32.
[http://dx.doi.org/10.1016/j.taap.2007.03.014] [PMID: 17490695]
[38]
Todaka, E.; Sakurai, K.; Fukata, H.; Miyagawa, H.; Uzuki, M.; Omori, M.; Osada, H.; Ikezuki, Y.; Tsutsumi, O.; Iguchi, T.; Mori, C. Fetal exposure to phytoestrogens—The difference in phytoestrogen status between mother and fetus. Environ. Res., 2005, 99(2), 195-203.
[http://dx.doi.org/10.1016/j.envres.2004.11.006] [PMID: 16194669]
[39]
Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 2020, 328, 109211.
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[40]
Ding, Y.; Dou, J.; Teng, Z.; Yu, J.; Wang, T.; Lu, N.; Wang, H.; Zhou, C. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Arch. Virol., 2014, 159(12), 3269-3278.
[http://dx.doi.org/10.1007/s00705-014-2192-2] [PMID: 25078390]
[41]
Yazawa, K.; Kurokawa, M.; Obuchi, M.; Li, Y.; Yamada, R.; Sadanari, H.; Matsubara, K.; Watanabe, K.; Koketsu, M.; Tuchida, Y.; Murayama, T. Anti-influenza virus activity of tricin, 4′5,7-trihydroxy-3′5′-dimethoxyflavone. Antivir. Chem. Chemother., 2011, 22(1), 1-11.
[http://dx.doi.org/10.3851/IMP1782] [PMID: 21860068]
[42]
Jeong, H.J.; Ryu, Y.B.; Park, S.J.; Kim, J.H.; Kwon, H.J.; Kim, J.H.; Park, K.H.; Rho, M.C.; Lee, W.S. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg. Med. Chem., 2009, 17(19), 6816-6823.
[http://dx.doi.org/10.1016/j.bmc.2009.08.036] [PMID: 19729316]
[43]
Kozłowska, A.; Szostak-Wegierek, D. Flavonoids-food sources and health benefits. Rocz. Panstw. Zakl. Hig., 2014, 65(2), 79-85.
[PMID: 25272572]
[44]
Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review. Food Res. Int., 2015, 77, 221-235.
[http://dx.doi.org/10.1016/j.foodres.2015.06.021]
[45]
Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J. Agric. Food Chem., 2003, 51(25), 7513-7521.
[http://dx.doi.org/10.1021/jf034815d] [PMID: 14640607]
[46]
Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[47]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[48]
Wang, L.; Song, J.; Liu, A.; Xiao, B.; Li, S.; Wen, Z.; Lu, Y.; Du, G. research progress of the antiviral bioactivities of natural flavonoids. Nat. Prod. Bioprospect., 2020, 10(5), 271-283.
[http://dx.doi.org/10.1007/s13659-020-00257-x] [PMID: 32948973]
[49]
Shrinet, K.; Singh, R.K.; Chaurasia, A.K.; Tripathi, A.; Kumar, A. Bioactive compounds and their future therapeutic applications. Natural Bioactive Compounds; Sinha, R.p.; Häder, D-P., Eds.; Academic Press, 2021, pp. 337-362.
[http://dx.doi.org/10.1016/B978-0-12-820655-3.00017-3]
[50]
Hasegawa, M. On the flavonoids contained in prunus woods. Nihon Shinrin Gakkaishi, 1958, 40(3), 111-121.
[http://dx.doi.org/10.11519/jjfs1953.40.3_111] [PMID: 31096954]
[51]
Mizuno, H.; Yoshikawa, H.; Usuki, T. Extraction of nobiletin and tangeretin from peels of shekwasha and ponkan using [c2mim][(meo)(h)po2] and centrifugation Nat. Prod. Communicat.,, 2019, 14(5), 1934578X19845816.
[http://dx.doi.org/10.1177/1934578X19845816]
[52]
You, J.; Cheng, J.; Yu, B.; Duan, C.; Peng, J. Baicalin, a chinese herbal medicine, inhibits the proliferation and migration of human non-small cell lung carcinoma (nsclc) cells, a549 and h1299, by activating the sirt1/ampk signaling pathway. Med. Sci. Monit., 2018, 24, 2126-2133.
[http://dx.doi.org/10.12659/MSM.909627] [PMID: 29632297]
[53]
Kuwabara, H.; Mouri, K.; Otsuka, H.; Kasai, R.; Yamasaki, K. Tricin from a malagasy connaraceous plant with potent antihistaminic activity. J. Nat. Prod., 2003, 66(9), 1273-1275.
[http://dx.doi.org/10.1021/np030020p] [PMID: 14510616]
[54]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[55]
Markham, K.R.; Porter, J.L. Evidence of biosynthetic simplicity in the flavonoid chemistry of the Ricciaceae. Phytochemistry, 1975, 14(1), 199-201.
[http://dx.doi.org/10.1016/0031-9422(75)85037-0]
[56]
Iwashina, T.; Matsumoto, S.; Nishida, M.; Nakaike, T. New and rare flavonol glycosides from asplenium trichomanes-ramosum as stable chemotaxonomic markers. Biochem. Syst. Ecol., 1995, 23(3), 283-290.
[http://dx.doi.org/10.1016/0305-1978(94)E0076-R]
[57]
Wei, X.; Zhao, Z.; Zhong, R.; Tan, X. A comprehensive review of herbacetin: From chemistry to pharmacological activities. J. Ethnopharmacol., 2021, 279, 114356.
[http://dx.doi.org/10.1016/j.jep.2021.114356] [PMID: 34166735]
[58]
Bendz, G.; Mårtensson, O.; Terenius, L.; Block-Bolten, A.; Toguri, J.M.; Flood, H. Moss Pigments. I. The Anthocyanins of Bryum cryophilum O. Mårt. Acta Chem. Scand., 1962, 16, 1183-1190.
[http://dx.doi.org/10.3891/acta.chem.scand.16-1183]
[59]
Patel, K.; Jain, A.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. J. Acute Dis., 2013, 2(3), 169-178.
[http://dx.doi.org/10.1016/S2221-6189(13)60123-7]
[60]
Ding, K.; Wang, S. Efficient synthesis of isoflavone analogues via a Suzuki coupling reaction. Tetrahedron Lett., 2005, 46(21), 3707-3709.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.143]
[61]
Costa, C.A.; Guiné, R.P.F.; Costa, D.V.T.A.; Correia, H.E.; Nave, A. Chapter 3 - Pest Control in Organic Farming. In: Organic Farming; Chandran, S.; Unni, M.R.; Thomas, S., Eds.; Woodhead Publishing, 2019; pp. 41-90.
[http://dx.doi.org/10.1016/B978-0-12-813272-2.00003-3]
[62]
Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; Zhilina, O.M.; Garsiya, E.R.; Smeriglio, A.; Trombetta, D.; Pons, D.G.; Martorell, M.; Cardoso, S.M.; Razis, A.F.A.; Sunusi, U.; Kamal, R.M.; Rotariu, L.S.; Butnariu, M.; Docea, A.O.; Calina, D. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 3268136.
[http://dx.doi.org/10.1155/2021/3268136] [PMID: 34336089]
[63]
Wang, Q.S.; Wang, Y.L.; Zhang, W.Y.; Li, K.D.; Luo, X.F.; Cui, Y.L. Puerarin from Pueraria lobata alleviates the symptoms of irritable bowel syndrome-diarrhea. Food Funct., 2021, 12(5), 2211-2224.
[http://dx.doi.org/10.1039/D0FO02848G] [PMID: 33595580]
[64]
Jung, H.; Kang, A.; Kang, S.; Park, Y.K.; Song, M. The root extract of Pueraria lobata and its main compound, puerarin, prevent obesity by increasing the energy metabolism in skeletal muscle. Nutrients, 2017, 9(1), 33.
[http://dx.doi.org/10.3390/nu9010033] [PMID: 28054981]
[65]
Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113(3), 287-299.
[http://dx.doi.org/10.1007/PL00013940]
[66]
Liu, L.; Shan, S.; Zhang, K.; Ning, Z.Q.; Lu, X.P.; Cheng, Y.Y. Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate transcription of adiponectin. Phytother. Res., 2008, 22(10), 1400-1403.
[http://dx.doi.org/10.1002/ptr.2504] [PMID: 18690615]
[67]
Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[68]
Pérez-Chabela, M.L.; Hernández-Alcántara, A.M. Chapter 8 - Agroindustrial Coproducts as Sources of Novel Functional Ingredients. Grumezescu; A.M. Food Processing for Increased Quality and Consumption, 2018.
[http://dx.doi.org/10.1016/B978-0-12-811447-6.00008-4]
[69]
Bae, J.; Kim, N.; Shin, Y.; Kim, S.Y.; Kim, Y.J. Activity of catechins and their applications. Biomed. Dermatol., 2020, 4(1), 8.
[http://dx.doi.org/10.1186/s41702-020-0057-8]
[70]
Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res., 2008, 131(2), 111-120.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[71]
Lalani, S.; Poh, C.L. Flavonoids as antiviral agents for enterovirus A71 (EV-A71). Viruses, 2020, 12(2), 184.
[http://dx.doi.org/10.3390/v12020184] [PMID: 32041232]
[72]
Xu, J.J.; Wu, X.; Li, M.M.; Li, G.Q.; Yang, Y.T.; Luo, H.J.; Huang, W.H.; Chung, H.Y.; Ye, W.C.; Wang, G.C.; Li, Y.L. Antiviral activity of polymethoxylated flavones from “Guangchenpi”, the edible and medicinal pericarps of citrus reticulata ‘Chachi’. J. Agric. Food Chem., 2014, 62(10), 2182-2189.
[http://dx.doi.org/10.1021/jf404310y] [PMID: 24377463]
[73]
Nagase, H.; Omae, N.; Omori, A.; Nakagawasai, O.; Tadano, T.; Yokosuka, A.; Sashida, Y.; Mimaki, Y.; Yamakuni, T.; Ohizumi, Y. Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities. Biochem. Biophys. Res. Commun., 2005, 337(4), 1330-1336.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.001] [PMID: 16253614]
[74]
Cherrak, S.A.; Merzouk, H.; Mokhtari-Soulimane, N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One, 2020, 15(10), e0240653.
[http://dx.doi.org/10.1371/journal.pone.0240653] [PMID: 33057452]
[75]
Al-Karmalawy, A.A.; Farid, M.M.; Mostafa, A.; Ragheb, A.Y.; Mahmoud, H. S.; Shehata, M.; Shama, N.M.A.; GabAllah, M.; Mostafa-Hedeab, G.; Marzouk, M.M. Naturally Available Flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules, 2021, 26(21), 6559.
[http://dx.doi.org/10.3390/molecules26216559] [PMID: 34770969]
[76]
Martin-Benlloch, X.; Novodomska, A.; Jacquemin, D.; Davioud-Charvet, E.; Elhabiri, M. Iron(III) coordination properties of ladanein, a flavone lead with a broad-spectrum antiviral activity. New J. Chem., 2018, 42(10), 8074-8087.
[http://dx.doi.org/10.1039/C7NJ04867J]
[77]
Martin-Benlloch, X.; Haid, S.; Novodomska, A.; Rominger, F.; Pietschmann, T.; Davioud-Charvet, E.; Elhabiri, M. Physicochemical properties govern the activity of potent Antiviral flavones. ACS Omega, 2019, 4(3), 4871-4887.
[http://dx.doi.org/10.1021/acsomega.8b03332] [PMID: 31459671]
[78]
Wang, B.; Ding, Y.; Zhao, P.; Li, W.; Li, M.; Zhu, J.; Ye, S. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput. Biol. Med., 2022, 143, 105241.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105241] [PMID: 35114443]
[79]
Nouadi, B.; Ezaouine, A.; El Messal, M.; Blaghen, M.; Bennis, F.; Chegdani, F. Prediction of anti-COVID 19 therapeutic power of medicinal moroccan plants using molecular docking. Bioinform. Biol. Insights, 2021, 15, 11779322211009199.
[http://dx.doi.org/10.1177/11779322211009199] [PMID: 33888980]
[80]
Khazeei Tabari, M.A.; Iranpanah, A.; Bahramsoltani, R.; Rahimi, R. Flavonoids as promising antiviral agents against SARS-CoV-2 Infection: A Mechanistic Review. Molecules, 2021, 26(13), 3900.
[http://dx.doi.org/10.3390/molecules26133900] [PMID: 34202374]
[81]
El-hawary, S.S.; Ali, T.F.S.; Abo El-Ela, S.O.; Elwekeel, A.; Abdelmohsen, U.R.; Owis, A.I. Secondary metabolites of Livistona decipiens as potential inhibitors of SARS-CoV-2. RSC Advances, 2022, 12(30), 19505-19511.
[http://dx.doi.org/10.1039/D2RA01306A] [PMID: 35865563]
[82]
Zhang, W.; Qiao, H.; Lv, Y.; Wang, J.; Chen, X.; Hou, Y.; Tan, R.; Li, E. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One, 2014, 9(10), e110429.
[http://dx.doi.org/10.1371/journal.pone.0110429] [PMID: 25330384]
[83]
Qian, S.; Fan, W.; Qian, P.; Zhang, D.; Wei, Y.; Chen, H.; Li, X. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses, 2015, 7(4), 1613-1626.
[http://dx.doi.org/10.3390/v7041613] [PMID: 25835532]
[84]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[85]
Shibata, C.; Ohno, M.; Otsuka, M.; Kishikawa, T.; Goto, K.; Muroyama, R.; Kato, N.; Yoshikawa, T.; Takata, A.; Koike, K. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology, 2014, 462-463, 42-48.
[http://dx.doi.org/10.1016/j.virol.2014.05.024] [PMID: 25092460]
[86]
Khandelwal, N.; Chander, Y.; Kumar, R.; Riyesh, T.; Dedar, R.K.; Kumar, M.; Gulati, B.R.; Sharma, S.; Tripathi, B.N.; Barua, S.; Kumar, N. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Res., 2020, 181, 104870.
[http://dx.doi.org/10.1016/j.antiviral.2020.104870] [PMID: 32707051]
[87]
Farhat, A.; Ben Hlima, H.; Khemakhem, B.; Ben Halima, Y.; Michaud, P.; Abdelkafi, S.; Fendri, I. Apigenin analogues as SARS-CoV-2 main protease inhibitors: In-silico screening approach. Bioengineered, 13(2), 3350-3361.
[http://dx.doi.org/10.1080/21655979.2022.2027181]
[88]
Moghaddam, E.; Teoh, B.T.; Sam, S.S.; Lani, R.; Hassandarvish, P.; Chik, Z.; Yueh, A.; Abubakar, S.; Zandi, K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci. Rep., 2014, 4(1), 5452.
[http://dx.doi.org/10.1038/srep05452] [PMID: 24965553]
[89]
Lin, C.; Tsai, F.J.; Hsu, Y.M.; Ho, T.J.; Wang, G.K.; Chiu, Y.J.; Ha, H.A.; Yang, J.S. Study of baicalin toward COVID-19 treatment: In silico target analysis and in vitro inhibitory effects on SARS-CoV-2 proteases. Biomed. Hub, 2021, 6(3), 122-137.
[http://dx.doi.org/10.1159/000519564] [PMID: 34934765]
[90]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[91]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[92]
Enkhtaivan, G.; Maria John, K.M.; Pandurangan, M.; Hur, J.H.; Leutou, A.S.; Kim, D.H. Extreme effects of Seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts. Saudi J. Biol. Sci., 2017, 24(7), 1646-1656.
[http://dx.doi.org/10.1016/j.sjbs.2016.01.004] [PMID: 30294231]
[93]
Kim, Y.; Narayanan, S.; Chang, K.O. Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Res., 2010, 88(2), 227-235.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.016] [PMID: 20826184]
[94]
Meyer, J.J.M.; Afolayan, A.J.; Taylor, M.B.; Erasmus, D. Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens. J. Ethnopharmacol., 1997, 56(2), 165-169.
[http://dx.doi.org/10.1016/S0378-8741(97)01514-6] [PMID: 9174978]
[95]
Mitrocotsa, D.; Mitaku, S.; Axarlis, S.; Harvala, C.; Malamas, M. Evaluation of the antiviral activity of kaempferol and its glycosides against human cytomegalovirus. Planta Med., 2000, 66(4), 377-379.
[http://dx.doi.org/10.1055/s-2000-8550] [PMID: 10865462]
[96]
Care, C.; Sornjai, W.; Jaratsittisin, J.; Hitakarun, A.; Wikan, N.; Triwitayakorn, K.; Smith, D.R. Discordant activity of kaempferol towards dengue virus and japanese encephalitis virus. Molecules, 2020, 25(5), 1246.
[http://dx.doi.org/10.3390/molecules25051246] [PMID: 32164193]
[97]
Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus Planta Med.,, 2014, 80(02/03), 177-182.
[http://dx.doi.org/10.1055/s-0033-1360277] [PMID: 24458263]
[98]
Khan, A.; Heng, W.; Wang, Y.; Qiu, J.; Wei, X.; Peng, S.; Saleem, S.; Khan, M.; Ali, S.S.; Wei, D.Q. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS‐COV‐2 main protease (3CLPRO). Phytother. Res., 2021, 35(6), 2841-2845.
[http://dx.doi.org/10.1002/ptr.6998] [PMID: 33448101]
[99]
Lyu, S.Y.; Rhim, J.Y.; Park, W.B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res., 2005, 28(11), 1293-1301.
[http://dx.doi.org/10.1007/BF02978215] [PMID: 16350858]
[100]
Lee, S.; Lee, H.H.; Shin, Y.S.; Kang, H.; Cho, H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch. Pharm. Res., 2017, 40(5), 623-630.
[http://dx.doi.org/10.1007/s12272-017-0898-x] [PMID: 28258480]
[101]
Neznanov, N.; Kondratova, A.; Chumakov, K.M.; Neznanova, L.; Kondratov, R.; Banerjee, A.K.; Gudkov, A.V. Quercetinase pirin makes poliovirus replication resistant to flavonoid quercetin. DNA Cell Biol., 2008, 27(4), 191-198.
[http://dx.doi.org/10.1089/dna.2007.0682] [PMID: 18067462]
[102]
Liu, Z.; Zhao, J.; Li, W.; Shen, L.; Huang, S.; Tang, J.; Duan, J.; Fang, F.; Huang, Y.; Chang, H.; Chen, Z.; Zhang, R. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Sci. Rep., 2016, 6(1), 19095.
[http://dx.doi.org/10.1038/srep19095] [PMID: 26754609]
[103]
Liu, Z.; Zhao, J.; Li, W.; Wang, X.; Xu, J.; Xie, J.; Tao, K.; Shen, L.; Zhang, R. Molecular docking of potential inhibitors for influenza H7N9. Comput. Math. Methods Med., 2015, 2015, 480764.
[http://dx.doi.org/10.1155/2015/480764] [PMID: 25861376]
[104]
Nguyen, T.T.H.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[105]
Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; Jiang, H. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem., 2006, 14(24), 8295-8306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[106]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[107]
Agrawal, P. K.; Agrawal, C.; Blunden, G. Quercetin: Antiviral significance and possible COVID-19 integrative considerations. Nat. . Prod. Communicat, 2020, 15(12), 1934578X20976293.
[http://dx.doi.org/ 10.1177/1934578X20976293]
[108]
Dayem, A.A.; Choi, H.Y.; Kim, Y.B.; Cho, S.G. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One, 2015, 10(3), e0121610.
[http://dx.doi.org/10.1371/journal.pone.0121610] [PMID: 25806943]
[109]
Zhan, Y.; Ta, W.; Tang, W.; Hua, R.; Wang, J.; Wang, C.; Lu, W. Potential antiviral activity of isorhamnetin against SARS‐COV ‐2 spike pseudotyped virus in vitro. Drug Dev. Res., 2021, 82(8), 1124-1130.
[http://dx.doi.org/10.1002/ddr.21815] [PMID: 33847382]
[110]
Jo, S.; Kim, H.; Kim, S.; Shin, D.H.; Kim, M.S. Characteristics of flavonoids as potent MERS‐CoV 3C‐like protease inhibitors. Chem. Biol. Drug Des., 2019, 94(6), 2023-2030.
[http://dx.doi.org/10.1111/cbdd.13604] [PMID: 31436895]
[111]
Jo, S.; Kim, S.; Kim, D.Y.; Kim, M-S.; Shin, D.H. flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J. Enzyme Inhib. Med. Chem., 35(1), 1539-1544.
[http://dx.doi.org/10.1080/14756366.2020.1801672]
[112]
Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-512.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[113]
Calland, N.; Sahuc, M.E.; Belouzard, S.; Pène, V.; Bonnafous, P.; Mesalam, A.A.; Deloison, G.; Descamps, V.; Sahpaz, S.; Wychowski, C.; Lambert, O.; Brodin, P.; Duverlie, G.; Meuleman, P.; Rosenberg, A.R.; Dubuisson, J.; Rouillé, Y.; Séron, K. Polyphenols inhibit Hepatitis C virus entry by a new mechanism of action. J. Virol., 2015, 89(19), 10053-10063.
[http://dx.doi.org/10.1128/JVI.01473-15] [PMID: 26202241]
[114]
Vázquez-Calvo, Á.; Jiménez de Oya, N.; Martín-Acebes, M.A.; Garcia-Moruno, E.; Saiz, J.C. antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west nile virus, zika virus, and dengue virus. Front. Microbiol., 2017, 8, 1314.
[http://dx.doi.org/10.3389/fmicb.2017.01314] [PMID: 28744282]
[115]
Akinnusi, P.A.; Olubode, S.O.; Salaudeen, W.A. Molecular binding studies of anthocyanins with multiple antiviral activities against SARS-CoV-2. Bull. Natl. Res. Cent., 2022, 46(1), 102.
[http://dx.doi.org/10.1186/s42269-022-00786-0] [PMID: 35431537]
[116]
Rameshkumar, M.R.; Indu, P.; Arunagirinathan, N.; Venkatadri, B.; El-Serehy, H.A.; Ahmad, A. Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA polymerase and spike proteins: A molecular docking study. Saudi J. Biol. Sci., 2021, 28(1), 448-458.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.028] [PMID: 33110386]
[117]
Kannan, S.; Kolandaivel, P. The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus. J. Biomol. Struct. Dyn., 2018, 36(16), 4255-4269.
[http://dx.doi.org/10.1080/07391102.2017.1413422] [PMID: 29199545]
[118]
Fakhar, Z.; Faramarzi, B.; Pacifico, S.; Faramarzi, S. Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in silico perspective of therapeutic targets against COVID-19 pandemic. J. Biomol. Struct. Dyn., 2021, 39(16), 6171-6183.
[http://dx.doi.org/10.1080/07391102.2020.1801510] [PMID: 32741312]
[119]
Messaoudi, O.; Gouzi, H.; El-Hoshoudy, A.N.; Benaceur, F.; Patel, C.; Goswami, D.; Boukerouis, D.; Bendahou, M. Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. Egyptian J. Petrol., 2021, 30(1), 33-43.
[http://dx.doi.org/10.1016/j.ejpe.2021.01.001]
[120]
LeCher, J.C.; Diep, N.; Krug, P.W.; Hilliard, J.K. Genistein has antiviral activity against Herpes B Virus and acts synergistically with antiviral treatments to reduce effective dose. Viruses, 2019, 11(6), 499.
[http://dx.doi.org/10.3390/v11060499] [PMID: 31159175]
[121]
Arabyan, E.; Hakobyan, A.; Kotsinyan, A.; Karalyan, Z.; Arakelov, V.; Arakelov, G.; Nazaryan, K.; Simonyan, A.; Aroutiounian, R.; Ferreira, F.; Zakaryan, H. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral Res., 2018, 156, 128-137.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.014] [PMID: 29940214]
[122]
Vela, E.M.; Bowick, G.C.; Herzog, N.K.; Aronson, J.F. Genistein treatment of cells inhibits arenavirus infection. Antiviral Res., 2008, 77(2), 153-156.
[http://dx.doi.org/10.1016/j.antiviral.2007.09.005] [PMID: 17961732]
[123]
Guo, J.; Xu, X.; Rasheed, T.K.; Yoder, A.; Yu, D.; Liang, H.; Yi, F.; Hawley, T.; Jin, T.; Ling, B.; Wu, Y. Genistein interferes with SDF-1- and HIV-mediated actin dynamics and inhibits HIV infection of resting CD4 T cells. Retrovirology, 2013, 10(1), 62.
[http://dx.doi.org/10.1186/1742-4690-10-62] [PMID: 23782904]
[124]
Pan, B.; Fang, S.; Zhang, J.; Pan, Y.; Liu, H.; Wang, Y.; Li, M.; Liu, L. Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Comput. Struct. Biotechnol. J., 2020, 18, 3518-3527.
[http://dx.doi.org/10.1016/j.csbj.2020.11.010] [PMID: 33200026]
[125]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[126]
Ahmadi, A.; Hassandarvish, P.; Lani, R.; Yadollahi, P.; Jokar, A.; Bakar, S.A.; Zandi, K. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances, 2016, 6(73), 69421-69430.
[http://dx.doi.org/10.1039/C6RA16640G]
[127]
Cheng, F.J.; Huynh, T.K.; Yang, C.S.; Hu, D.W.; Shen, Y.C.; Tu, C.Y.; Wu, Y.C.; Tang, C.H.; Huang, W.C.; Chen, Y.; Ho, C.Y. Hesperidin is a potential inhibitor against SARS-CoV-2 infection. Nutrients, 2021, 13(8), 2800.
[http://dx.doi.org/10.3390/nu13082800] [PMID: 34444960]
[128]
Tutunchi, H.; Naeini, F.; Ostadrahimi, A.; Hosseinzadeh-Attar, M.J. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID ‐19. Phytother. Res., 2020, 34(12), 3137-3147.
[http://dx.doi.org/10.1002/ptr.6781] [PMID: 32613637]
[129]
Agrawal, P. K.; Agrawal, C.; Blunden, G. Naringenin as a Possible Candidate Against SARS-CoV-2 Infection and in the Pathogenesis of COVID-19. Nat. Prod. Communicat., 2021, 16(12), 1934578X211066723.
[http://dx.doi.org/ 10.1177/1934578X211066723]
[130]
Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[131]
Takahashi, T.; Kurebayashi, Y.; Tani, K.; Yamazaki, M.; Minami, A.; Takeuchi, H. The Antiviral effect of catechins on mumps virus infection. J. Funct. Foods, 2021, 87, 104817.
[http://dx.doi.org/10.1016/j.jff.2021.104817]
[132]
Nance, C.L.; Siwak, E.B.; Shearer, W.T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J. Allergy Clin. Immunol., 2009, 123(2), 459-465.
[http://dx.doi.org/10.1016/j.jaci.2008.12.024] [PMID: 19203663]
[133]
Chourasia, M.; Koppula, P.; Battu, A.; Ouseph, M.; Singh, A. EGCG, a Green Tea Catechin, as a potential therapeutic agent for symptomatic and asymptomatic SARS-CoV-2 infection. Molecules, 2021, 26(5), 1200.
[http://dx.doi.org/10.3390/molecules26051200] [PMID: 33668085]
[134]
Jang, M.; Park, R.; Park, Y.I.; Cha, Y.E.; Yamamoto, A.; Lee, J.I.; Park, J. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochem. Biophys. Res. Commun., 2021, 547, 23-28.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.016] [PMID: 33588235]
[135]
Ohishi, T.; Hishiki, T.; Baig, M.S.; Rajpoot, S.; Saqib, U.; Takasaki, T.; Hara, Y. Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2. PLoS One, 2022, 17(7), e0271112.
[http://dx.doi.org/10.1371/journal.pone.0271112] [PMID: 35830431]
[136]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[137]
Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[138]
Xiong, Y.; Zhu, G.H.; Wang, H.N.; Hu, Q.; Chen, L.L.; Guan, X.Q.; Li, H.L.; Chen, H.Z.; Tang, H.; Ge, G.B. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia, 2021, 152, 104909.
[http://dx.doi.org/10.1016/j.fitote.2021.104909] [PMID: 33894315]
[139]
Joshi, G.; Sindhu, J.; Thakur, S.; Rana, A.; Sharma, G.; Mayank; Poduri, R. Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads. Food Chem. Toxicol., 2021, 152, 112160.
[http://dx.doi.org/10.1016/j.fct.2021.112160] [PMID: 33823228]
[140]
Murugesan, S.; Kottekad, S.; Crasta, I.; Sreevathsan, S.; Usharani, D.; Perumal, M.K.; Mudliar, S.N. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants – Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) – A molecular docking and simulation study. Comput. Biol. Med., 2021, 136, 104683.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104683] [PMID: 34329860]
[141]
Khanna, K.; Kohli, S.K.; Kaur, R.; Bhardwaj, A.; Bhardwaj, V.; Ohri, P.; Sharma, A.; Ahmad, A.; Bhardwaj, R.; Ahmad, P. Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. Phytomedicine, 2021, 85, 153361.
[http://dx.doi.org/10.1016/j.phymed.2020.153361] [PMID: 33485605]
[142]
Saakre, M.; Mathew, D.; Ravisankar, V. Perspectives on plant flavonoid quercetin-based drugs for novel SARS-CoV-2. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 21.
[http://dx.doi.org/10.1186/s43088-021-00107-w] [PMID: 33782651]
[143]
Huang, F.; Li, Y.; Leung, E.L.H.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; Luo, H.; Luo, L. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol. Res., 2020, 158, 104929.
[http://dx.doi.org/10.1016/j.phrs.2020.104929] [PMID: 32442720]
[144]
Liu, X.; Raghuvanshi, R.; Ceylan, F.D.; Bolling, B.W. Quercetin and Its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) Activity. J. Agric. Food Chem., 2020, 68(47), 13982-13989.
[http://dx.doi.org/10.1021/acs.jafc.0c05064] [PMID: 33179911]
[145]
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and Vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[146]
Solnier, J.; Fladerer, J.P. Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochem. Rev., 2021, 20(4), 773-795.
[http://dx.doi.org/10.1007/s11101-020-09720-6] [PMID: 32982616]
[147]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[148]
Chakraborty, S.; Basu, S. Insight into the anti-amyloidogenic activity of polyphenols and its application in virtual screening of phytochemical database. Med. Chem. Res., 2014, 23(12), 5141-5148.
[http://dx.doi.org/10.1007/s00044-014-1081-2]
[149]
Chakraborty, S.; Basu, S. Mechanistic insight into the radical scavenging activity of polyphenols and its application in virtual screening of phytochemical library: An in silico approach. Eur. Food Res. Technol., 2014, 239(5), 885-893.
[http://dx.doi.org/10.1007/s00217-014-2285-x]
[150]
Kwon, S.; Bae, H.; Jo, J.; Yoon, S. Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinformat., 2019, 20(1), 521.
[http://dx.doi.org/10.1186/s12859-019-3135-4] [PMID: 31655545]
[151]
Abdel-Ilah, L.; Veljovic, E.; Gurbeta, L.; Badnjevic, A. Applications of QSAR study in drug design. Int. J. Eng. Res. Technol. (Ahmedabad), 2017, 6(6)
[http://dx.doi.org/10.17577/IJERTV6IS060241]
[152]
Semichem, Inc.. The AMPAC People., Available From: http://www.semichem.com/codessa/default.php [Accessed on: Nov 14, 2022].
[153]
Semichem, Inc. The AMPAC People., Available From: http://www.semichem.com/ampac/default.php [Accessed on: Nov 14, 2022].
[154]
Palaz, S.; Türkkan, B. Eroğlu, E. A QSPR study for the prediction of the p Ka of N-Base Ligands and formation constant Kc of Bis(2,2′-bipyridine)Platinum(II)-N-Base adducts using quantum mechanically derived descriptors. ISRN Phys. Chem., 2012, 2012, 260171.
[http://dx.doi.org/10.5402/2012/260171]
[155]
Govender, K.; Chuturgoon, A. An overview of repurposed drugs for potential COVID-19 treatment. Antibiotics (Basel), 2022, 11(12), 1678.
[http://dx.doi.org/10.3390/antibiotics11121678] [PMID: 36551336]
[156]
Khan, S.A.; Al-Balushi, K. Combating COVID-19: The role of drug repurposing and medicinal plants. J. Infect. Public Health, 2021, 14(4), 495-503.
[http://dx.doi.org/10.1016/j.jiph.2020.10.012] [PMID: 33743371]
[157]
Prasad, K.; Kumar, V. Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2. Curr. Res Pharmacol. Drug Discov., 2021, 2, 100042.
[http://dx.doi.org/10.1016/j.crphar.2021.100042] [PMID: 34870150]
[158]
Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health, 2020, 2(12), e667-e676.
[http://dx.doi.org/10.1016/S2589-7500(20)30192-8] [PMID: 32984792]
[159]
Loucera, C.; Esteban-Medina, M.; Rian, K.; Falco, M.M.; Dopazo, J.; Peña-Chilet, M. Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection. Signal Transduct. Target. Ther., 2020, 5(1), 290.
[http://dx.doi.org/10.1038/s41392-020-00417-y] [PMID: 33311438]
[160]
Rizzuti, B.; Grande, F.; Conforti, F.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Ortega-Alarcon, D.; Vega, S.; Reyburn, H.T.; Abian, O.; Velazquez-Campoy, A. rutin is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: Implications for Drug Design of Quercetin Analogs. Biomedicines, 2021, 9(4), 375.
[http://dx.doi.org/10.3390/biomedicines9040375] [PMID: 33918402]
[161]
Tao, K.; Tzou, P.L.; Kosakovsky Pond, S.L.; Ioannidis, J.P.A.; Shafer, R.W. Susceptibility of SARS-CoV-2 omicron variants to therapeutic monoclonal antibodies: Systematic review and meta-analysis. Microbiol. Spectr., 2022, 10(4), e00926-e22.
[http://dx.doi.org/10.1128/spectrum.00926-22] [PMID: 35700134]
[162]
Chakraborty, S.; Saha, A.; Saha, C.; Ghosh, S.; Mondal, T. Decoding the effects of spike receptor binding domain mutations on antibody escape abilities of omicron variants. Biochem. Biophys. Res. Commun., 2022, 627, 168-175.
[http://dx.doi.org/10.1016/j.bbrc.2022.08.050] [PMID: 36041326]
[163]
Rizzuti, B.; Ceballos-Laita, L.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Vega, S.; Grande, F.; Conforti, F.; Abian, O.; Velazquez-Campoy, A. sub-micromolar inhibition of SARS-COV-2 3clpro by natural compounds. Pharmaceuticals (Basel), 2021, 14(9), 892.
[http://dx.doi.org/10.3390/ph14090892] [PMID: 34577592]
[164]
Halma, M.T.J.; Wever, M.J.A.; Abeln, S.; Roche, D.; Wuite, G.J.L. Therapeutic potential of compounds targeting SARS-CoV-2 helicase. Front Chem., 2022, 10, 1062352.
[http://dx.doi.org/10.3389/fchem.2022.1062352] [PMID: 36561139]
[165]
Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol., 2020, 164, 1693-1703.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.235] [PMID: 32745548]
[166]
Agrawal, P. K.; Agrawal, C.; Blunden, G. Rutin: A Potential Antiviral for Repurposing as a SARS-CoV-2 Main Protease (Mpro) Inhibitor. Nat Prod. Comm., , 2021, 16(4), 1934578X21991723.
[http://dx.doi.org/10.1177/1934578X21991723]
[167]
Jain, A.S.; Sushma, P.; Dharmashekar, C.; Beelagi, M.S.; Prasad, S.K.; Shivamallu, C.; Prasad, A.; Syed, A.; Marraiki, N.; Prasad, K.S. In silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi J. Biol. Sci., 2021, 28(1), 1040-1051.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.049] [PMID: 33424398]
[168]
Campesi, I.; Racagni, G.; Franconi, F. Just a Reflection: Does drug repurposing perpetuate sex-gender bias in the safety profile? Pharmaceuticals (Basel), 2021, 14(8), 730.
[http://dx.doi.org/10.3390/ph14080730] [PMID: 34451827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy